
Received December 29, 2020, accepted January 14, 2021, date of publication January 20, 2021, date of current version February 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3053068

Reconfigurable and High-Efficiency Password
Recovery Algorithms Based on HRCA
BIN LI 1, FENG FENG1, XIAOJIE CHEN2, AND YAN CAO1
1School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
2State Key Laboratory of Mathematical Engineering and Advanced Computing, PLA Strategic Support Force Information Engineering University, Zhengzhou
450001, China

Corresponding author: Bin Li (cctvlibin@163.com)

ABSTRACT Cryptographic algorithms are widely used in information security fields such as network
protocol authentication and commercial encryption software. Password recovery based on the hash algorithm
is an important means of electronic forensics, encrypted information restoration, illegal information filtering,
and network security maintenance. The traditional password recovery system is based mainly on the CPU
and GPU and has a low energy efficiency ratio and cracking efficiency and cannot meet high-performance
computing requirements. To further improve the computational efficiency and application flexibility of
password recovery algorithms, this paper proposes a reconfigurable computing kernel design method based
on a hybrid reconfigurable computing array (HRCA). Through in-depth analysis of the hash algorithm,
the basic computing kernel set is extracted, and the combination design is carried out from the unit kernel,
interconnection and storage structure to reconstruct the hash algorithm to match the application with the
appropriate structure. Second, combined with the pipeline technology, the full pipeline hash and high-
speed password attack algorithms are optimized and implemented to meet the needs of high-performance
computing. Finally, an advanced computing kernel library is established, and the combination of a com-
puting kernel map from the control and communication levels to achieve multidimensional reconfigurable
computing and an overall placement strategy is used to make full use of the chip resources to improve
computational efficiency. The experimental results and analysis show that compared with traditional CPU
and GPUmethods, the password recovery algorithm designed in this paper has the highest cracking speeds at
78.22 times and 2.65 times that of the CPU and GPU, respectively, and the highest energy efficiency ratio is
25.88 times and 3.16 times that of the CPU and GPU, respectively. Furthermore, the recovery efficiency has
been significantly improved and meets the requirements of high-performance password recovery computing.

INDEX TERMS HRCA, computing kernel, reconfigurable, hash algorithm, password recovery.

I. INTRODUCTION
At present, password-based authentication methods are still
widely used in various information systems. To prevent user
information from being eavesdropped or leaked, the hash
function is often used in an authentication protocol to authen-
ticate a password [1]–[5]. To effectively recover network
protocols and application passwords based on the hash algo-
rithm; provide support for electronic forensics, informa-
tion intelligence acquisition, criminal record review, and
encrypted data behavior analysis; and evaluate the security
of the new password hashing scheme [6], the optimiza-
tion and implementation of hash algorithms have become

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Afendee Mohamed .

a research hotspot. In many applications, processing speed
and energy efficiency have become important indicators.
However, the hash algorithm itself is very complicated and
requires a large amount of calculation. Therefore, whether
for a software or a hardware implementation, optimization of
the execution frequency and energy consumption represents
difficult points in the design.

In the software implementation, traditional password
recovery based on the CPU architecture is limited by its
computational speed for cryptographic algorithms and can
crack only passwords with low complexity. For GPUs, high-
throughput password recovery algorithms such as SHA1 and
MD5 are implemented by means of multicore parallel com-
puting [7]–[9]. However, the GPU has high power consump-
tion and a low energy efficiency ratio. For FPGAs, different

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 18085

https://orcid.org/0000-0003-3455-4901
https://orcid.org/0000-0001-5985-3970

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

FPGA devices have different structures, the RTL-level design
and placement requirements of the algorithm are different,
and a variety of different schemes have been implemented
[10]–[13]. However, most FPGA schemes do not consider
the multimodule parallel situation and do not mention how to
effectively partition and place the algorithm. The scalability
is poor, which leads to variable algorithm performance. The
password recovery task requires a large amount of calcu-
lation and obvious changes in the calculation cycle, which
are difficult for existing computing structures to work with.
It is necessary to seek a more efficient computing structure.
Therefore, how to use innovative technology to construct a
highly efficient and dynamically variable algorithm in the
field of password recovery must be solved.

The development of computational granularity from com-
plex instructions to today’s instruction set and then to
macro instructions shows that computational granularity is
the most critical aspect to improve processing performance.
To achieve high-efficiency and high-performance computing,
mimic computing [14] proposes a multidimensional recon-
figurable architecture based on a hybrid reconfigurable com-
puting array (HRCA) from the perspective of architecture
innovation. HRCA uses a coarse-grained basic computing
kernel and reconfigurable interconnection to form a high-
order computing segment, which can implement applications
in a parallel and pipeline-efficient way, considering both
computational performance and flexibility. Compared with
bit-level operations, the computing kernel is stronger and
more suitable for calculation-intensive applications. Com-
pared with the instruction set, the computing kernel does not
need instruction fetching and instruction decoding and thus
has better execution efficiency. In addition, unlike CPU and
GPU instruction processing, by adding a look-up table (LUT)
and register hardware resources, the computing kernel can
operate multiple serial instruction operations in one clock,
simplifying and accelerating FPGA calculations. Second,
the computing kernel can be reconstructed to form a unit
kernel, and then the unit kernel can interconnect to form a
functional module, which is coarse-grained reconfigurable.
Finally, HRCA is equivalent to the ‘‘dedicated instruction
set’’ of the reconfigurable FPGA, which provides technical
support for the determination of special-purpose kernels and
the generation of reconfigurable hardware functional units
for domain applications. With FPGA-reconfigurable devices,
HRCA can directly map the computing kernel to the hard-
ware logic, which can make fuller use of FPGA resources,
simplify the complexity of FPGA programming, increase the
frequency of FPGA work, and improve the flexibility and
scalability of FPGAs, thereby realizing efficient computing.

This paper is based on the HRCA design method, and
through in-depth analysis of the features of the hash algo-
rithm, the basic computing kernel set is extracted. In addi-
tion, a pipeline structure is formed by the computing
kernel reconstruction approach to achieve the purpose of
increasing the working frequency and parallel optimization.
Thus, this approach improves the computational speed and

reduces the energy consumption. At the same time, a high-
speed password generation algorithm is realized by using
the password guessing attack model, and a high-performance
password recovery system is designed using the global asyn-
chronous local synchronous (GALS) architecture, which pro-
vides strong support for password-based authentication and
computer forensics.

The main contributions of this paper include the following:
1) A description of the model and structure of HRCA is

provided that applies HRCA to the field of password
recovery, gives a complete design method, and builds a
multidimensional reconfigurable system.

2) The extraction algorithm of the basic computing ker-
nel is given, and a method of kernel reconstruction is
proposed from three aspects of the unit kernel struc-
ture, interconnection structure and storage structure.
Moreover, the algorithm ismatchedwith an appropriate
structure.

3) To meet the computational requirements of the pass-
word recovery algorithm, the hash algorithm and
password generation algorithm are designed using
pipeline technology, including mask rules and high-
speed dictionary parsing. A single module can generate
200 M passwords per second and complete the hash
calculation.

4) An advanced computing kernel library is established
for the algorithm kernel, control kernel and commu-
nication kernel, and the parallelism of the password
recovery algorithm with the overall placement strategy
is improved, greatly reducing the difficulty of hardware
parallel program development.

5) Compared with the CPU, the method in this paper
improves the cracking speed and energy efficiency ratio
by more than 20 times and the energy efficiency ratio
of the GPU by 3.16 times, thus improving password
recovery significantly in terms of performance, energy
efficiency, and scalability.

The organization of this paper is as follows. Section 2 intro-
duces the research of HRCA and password recov-
ery algorithms and presents the research motivation.
Section 3 describes the design of password recovery algo-
rithms based on HRCA in detail. Section 4 tests and evaluates
the scheme to verify its effectiveness. Section 5 discusses the
scope and limitations of the method. Finally, Section 6 sum-
marizes this paper and outlines the prospects for ongoing
work.

II. RELATED WORK
A. HRCA OVERVIEW
Based on reconfigurable computing, mimic computing con-
ducts an in-depth analysis of the application, structure, and
effectiveness relationships of high-performance computing in
multiple typical fields and proposes the concept of ‘‘applica-
tion determines structure, structure determines efficiency’’.
Mimic computing breaks through the traditional concept
of FPGA reconstruction and has been comprehensively

18086 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

Fig. 1. TSG computing structure of HRCA.

expanded in the dimensions of reconstruction granularity,
timing breadth, fitness depth, and initiative. Logic gates, logic
blocks, IP cores, and components that have been extended to
subsystems are all multidimensional reconstruction compo-
nents [15]. HRCA, as the key technology of mimic comput-
ing, introduces the concept of computing granulation based
on time and space, that is, the time space granularity (TSG)
structure, as shown in Fig.1. Computing granulation divides
the computational processing into multiple execution frag-
ments with different computing scales and aggregates these
fragments to form the computing kernel. The computing
kernel is the hardware implementation form of computing
granulation. As the basic functional unit of HRCA, its scale
is driven by the target application. It can be reconstituted
into different numbers, granularities and functions of the
arithmetic according to the application requirements, thereby
achieving higher unit utilization and addressing efficient
computing and flexibility. Therefore, HRCA is a computing
structure with variable computing granularity, which is of
great significance for improving the efficiency and resource
utilization of computing systems.

At present, mimic computing has achieved good research
results in the fields of Web services [16] and blockchain [17].
This paper is oriented to the field of password recovery, with
an HRCA multidimensional variable computing structure,
in terms of computational granularity, placement mapping,
and cracking speed, to further improve the high efficiency and
scalability of password recovery algorithms and better meet
the diverse application requirements.

1) STRUCTURE OF HRCA
To achieve high-efficiency computing, HRCAuses the execu-
tion mode of the computing kernel to implement applications
with flexible unit granularity and a fully parallel structure.
The computing kernel implements a computing architecture
with hardware circuits and then continuously inputs the data
stream into the system and completes the calculation, which
belongs to ‘‘structural computing’’ or ‘‘spatial computing’’.
It is obviously different from the von Neumann structure
based on the storage program, which can greatly improve

Fig. 2. HRCA structure of 9 unit kernels.

the execution efficiency. Finally, through a basic computing
kernel set, it is possible to construct a reconfigurable unit
kernel structure with a hybrid of coarse and fine granularity.
The global asynchronization is used between unit kernels,
and local synchronization is used within the unit kernels, that
is, the GALS on-chip system architecture, to achieve high
scalability. In Fig.2, the HRCA structure of 9 unit kernels is
shown.

For HRCA, the large-scale unit kernel structure forms
a high-order computing segment that can support the var-
ious submodules of the application algorithm. In addition,
the basic computing kernel set of HRCA is oriented to spe-
cific application fields, and a library-based mapping method
can be adopted to solve the problem of efficientmapping from
an application to the reconfigurable structure.

B. PASSWORD RECOVERY ALGORITHM
In recent years, with the development of hardware technol-
ogy, many researchers have conducted substantial related
research on the high-speed implementation of password
recovery algorithms on GPUs and FPGAs.

In terms of GPUs, Qiu et al. [18] designed and optimized
the SHA1 and MD5 password recovery algorithms on the
GPU and improved the password generation algorithm to
match the computing speed. Barbieri et al. [19] built a hierar-
chical and heterogeneous environment using multiple GPUs
of different models, proposed a parallelized general exhaus-
tive search model and optimized the MD5 and SHA1 algo-
rithms to leverage GPU performance. Chen et al. [20]
optimized the MD5 Crypt algorithm using CUDA program-
ming. Aggarwal et al. [21] implemented the Bcrypt and
SHA512 algorithms by using distributed cloud comput-
ing. Ge et al. [22] optimized the exhaustive attack of the
SHA512 algorithm on the GPU. Dürmuth and Kranz [23]
implemented two types of hash passwords, Bcrypt and
Scrypt, on a GPU and FPGA, respectively. Dev [24] com-
pared the performance of the SHA256 algorithm used in
bitcoin mining on a CPU and GPU. Dev [25], [26] proposed

VOLUME 9, 2021 18087

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

the use of botnets that were combined with the CPU and GPU
to achieve large-scale hash password recovery.

In terms of FPGAs, Shi et al. [27] introduced hard-
ware optimization technology and implemented MD5,
SHA256 and SHA3 algorithms. Kim et al. [28] imple-
mented a high-throughput SHA1 algorithm on Xilinx
Virtex-6 LX240T through loop unfolding and preprocessing.
Suhaili and Watanabe [29] designed two implementations
of SHA1 on the Arria II GX EP2AGX45DF29C4, namely,
the 80-cycle and 40-cycle unfolded SHA1 structure, with
a maximum frequency of 274.2 MHz. Suhaili and Watan-
abe [30] implemented four MD5 algorithms with different
pipeline stages, with a maximum frequency of 290.53 MHz.
Ioannou et al. [31] optimized the SHA3 algorithm with a
2-stage pipeline on different FPGA devices. Mohamed and
Nadjia [32] optimized the SHA256 algorithm through 6-input
LUTs and the carry-save adder (CSA) and compared the
delays of the two schemes. Maashri et al. [33] used recon-
figurable hardware optimization to implement the XTEA
and SHA512 algorithms. Huo and Liu [34] designed an
application-specific instruction-set processor through hard-
ware and software to realize various high-performance hash
algorithms and meet the requirements of low cost and pro-
grammability. Mestiri et al. [35] optimized the SHA256 and
SHA512 serial algorithms on the Xilinx Virtex-5 FPGA to
improve the performance/area ratio. Rote et al. [36] opti-
mized the structure of each round operation of SHA256 and
SHA512 through the round pipelined technique to increase
the algorithm frequency. Michail et al. [37], [38] aimed at
the SHA1 and SHA2 series hash algorithms using a variety
of FPGA optimization techniques to achieve high-throughput
and area-efficient multimode architectures, which can sup-
port single- or multimode algorithms of SHA1, SHA256 and
SHA512. Tyler et al. [39] introduced an expandable archi-
tecture targeted for an FPGA-based platform for recovering
WPA/WPA2 passphrases. Kammerstetter et al. [40] presented
a highly optimized low-cost FPGA cluster-based WPA2 per-
sonal password recovery system. Ding et al. [41] proposed
a dual-granularity data path adjustment strategy to design
accelerators for RAR3 password recovery. Bai et al. [42] pro-
posed a highly scalable distributed structure based on Zynq
SoC to implement a password recovery system for WinZip
encrypted files.

In terms of high-level synthesis (HLS) programming,
Jin and Finkel [43] implemented an 8-module parallel
MD5 algorithm on an Intel Arria 10 GX1150 FPGA by
using OpenCL programming. Vallina and Gilliland [44]
optimized the SHA1 algorithm by OpenCL programming.
Jacinto et al. [45] optimized the pipelined and nonpipelined
SHA3 algorithms on the Xilinx Zynq-7000 SoPC through
HLS technology combined with C language programming.

Regarding algorithms for password guessing attacks,
Veras et al. [46] proposed a password cracking method
based on semantics, which reduced the dependence on the
training set. Han et al. [47] studied the difference between
Chinese Pinyin and foreign English in setting passwords,

optimized two password guessing methods based on proba-
bilistic context-free grammar (PCFG) and a Markov model,
and improved the hit rate to a certain extent. Ma et al. [48]
compared and analyzed different password guessing mod-
els, noted that the Markov model is superior to the PCFG
model, and proposed that the password probability threshold
is an important indicator for evaluating the password set.
Wang et al. [49] conducted a statistical analysis of many real
password sets, noted that the frequency distribution of pass-
words conforms to a Zipf distribution, and gave the following
formula: fr = C/rs, where r represents the password ranking,
fr represents the password frequency ranked r , and s and C
are constants. The Zipf distribution effectively describes the
relationship between password usage frequency and ranking
in a password set, which provides a theoretical basis for
evaluating password guessing attack models. Wang et al. [50]
proposed a targeted password online guessing attack method.
By using the user’s relevant personal information, including
name, birthday, mobile phone number and the user’s leaked
password, correlation analysis was performed to reduce the
password search space.

As shown in TABLE 1, summarizes the related work
of password recovery applications and their shortcomings.
As seen in TABLE 1, due to high GPU power consump-
tion and low energy efficiency ratio, as the scale continues
to increase, it leads to a sharp increase in electricity and
operating costs. Moreover, because the local memory on
the GPU core is relatively small, the GPU is not good at
hash algorithms that include S-box operations. For FPGA
implementations, the hash algorithm has been optimized in
different degrees, but the performance differs and remains
low. Moreover, some schemes optimize and implement only
a single hash module and do not make full use of chip
resources to achieve parallelization of multiple hashmodules.
Determining how to improve the implementation efficiency
of FPGAs and shorten the routing time is also a problem.
For the implementation of HLS, additional PCIe channels
and memory management are required. The implementa-
tion of these functions consumes considerable resources and
compilation time, causing the hash algorithm to take up
more resources and lose performance. Moreover, HLS pro-
gramming has relatively fixed compilation and optimization
strategies, and flexible development of algorithms, includ-
ing serial-parallel conversion and collaboration, is difficult
to achieve. Therefore, HLS programming cannot adequately
support the flexible use of various applications. For password
guessing attacks, the above solution increases the number of
candidate passwords, occupying increasingly more space and
thus resulting in low password coverage and a complex train-
ing process, and the matching speed cannot meet the needs
of high-performance computing. Moreover, the efficiency of
password cracking depends not only on the high-probability
password itself but also on the support of high-performance
algorithms.

The application range of hash algorithms is very wide,
as shown in TABLE 2, including document encryption,

18088 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

TABLE 1. Summary and comparison of password recovery-related technologies.

TABLE 2. Usage of hash algorithm in mainstream password recovery applications.

compression encryption, software encryption, database
authentication, network protocol authentication, and
blockchain. It can be seen in TABLE 2 that although
SHA1 and MD5 have already undergone collision anal-
ysis, most software and network protocols still use these
two algorithms. Therefore, it is necessary to optimize the
implementation of these two algorithms. In addition, dif-
ferent applications have different requirements, structures,
and implementations for hash computing, so a flexible archi-
tecture is needed to support them. This paper combines
the idea of mimic computing and applies it to the field of
password recovery through the HRCA computing model to
design a high-performance reconfigurable algorithm. The
design achieves multidimensional reconfigurability at the
algorithm level and application level to improve computa-
tional efficiency, reduce power consumption, and improve
system flexibility and scalability.

III. DESIGN OF THE RECONFIGURABLE PASSWORD
RECOVERY ALGORITHM
A. OVERALL FRAMEWORK
The reconfigurable password recovery algorithm is imple-
mented in the form of software and hardware collabora-
tive computing between the host computer and the FPGA.
The host computer is responsible for task scheduling and
management, and the FPGA is mainly responsible for com-
puting. The FPGA communicates with the host computer
through PCIe and is divided into two transmission methods:
BAR and DMA. The BAR channel mainly completes task

configuration, status and result upload; the DMA channel
mainly completes dictionary transmission. The password
recovery algorithm is composed of password generation,
dictionary analysis, password expansion, hash iteration and
comparison verification function modules. To effectively
improve the overall scalability and flexibility of the algo-
rithm, the GALS architecture is used to form the hash com-
puting process into a coarse-grained computing kernel and
instantiate multiple algorithm submodules (ASs). Each AS
is executed synchronously locally, and all ASs are executed
asynchronously globally. When an AS finds the correct pass-
word, the arbitration module outputs according to the AS ID
and transfers it to the host computer. The overall framework
is shown in Fig.3.

In Fig.3, the hash iteration is a reconfigurable module,
which can be reconfigured and loaded according to the user’s
configuration, and the corresponding hash computing kernel
is executed in a pipelined manner. Second, according to the
specific application, different tasks can be flexibly configured
by the address LA and data LD fields, such as single-task
parallel computing and multitask hybrid computing, which
achieves better scalability. At the same time, the mask attack
and dictionary attack are supported to meet the diversity of
attacks. The mask attack is generated directly by the internal
password generationmodule of eachAS; the dictionary attack
is distributed to each AS in turn through the PWD_FIFO
after the parsed password. Finally, the asynchronous FIFO
is placed among the modules in the AS, and the clock
domain is divided, which can effectively improve the working

VOLUME 9, 2021 18089

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

Fig. 3. The overall framework of the password recovery algorithm.

Fig. 4. Design process of password recovery algorithm based on HRCA.

frequency and resource utilization of the core hash iteration
and meet the needs of high-performance computing.

B. EXTRACTION OF BASIC COMPUTING KERNEL
To realize the efficient computation of the password recov-
ery algorithm, we first must analyze the characteristics of
the algorithm, extract the basic computing kernel set, and
describe the appropriate structure. The algorithm is recon-
structed from the three aspects of computing, interconnec-
tion and storage to form the computing array of the core
operation, which simplifies the difficulty of parallel program-
ming. Finally, from the control and communication level,
the GALS architecture is used to generate hardware struc-
tures by the combination mapping of computing kernels in
order to improve the parallelism mapping of the applica-
tion to a reconfigurable structure. A deeper, more extensive,
domain-oriented multidimensional coarse-grained reconfig-
urable system is then built. The basic design process is shown
in Fig.4.

1) EXTRACTION ALGORITHM
Let the target algorithm set supported by HRCA be TAS =
{TA1,TA2, . . . ,TAn}, where the basic block (BB) of the algo-
rithm TAi(1 ≤ i ≤ n) divided by the control data flow graph
(CDFG) is BBTAi = {BB1,BB2, . . . ,BBm}. The basic opera-
tions contained in each BB are executed sequentially or con-
currently, which can be executed completely independently.
For example, according to the function of the hash algorithm,
BB can be divided into key expansion, round iteration, non-
linear functions, etc. After all the BBTAi of TAi are obtained,
according to the code similarity or functional similarity, they
are aggregated and combined to form a basic computing
kernel set BCKS = {b1 × CK1, b2 × CK2, . . . , bk × CKk},
where bj(1 ≤ j ≤ k) is the number of kernels.
Suppose the resource occupied by CKj is rj; then, the total

resource occupied by BCKS is RBCKS =
∑k

j=1 bj × rj.
Second, because the reconstruction algorithm set TAS must

consume resources, let us take public resources as Rpub and
the private resources taken for algorithm TAi reconstruction as
Rpvt (TAi); then, the total reconstruction cost of TAS is RTAS =
RBCKS + Rpub +

∑n
i=1 Rpvt (TAi).

The available resources of the FPGA chip are R, and RTAS
should satisfy the constraint condition Carea: RTAS ≤ R.
Finally, the BB for the same function can be implemented

by many independent FPGA methods, and its reconfigurable
form is limited, so there are many combinations of BCKS.
Then, define the delay constraint condition of the computing
core asCtime and the power consumption asCpower , and adjust
the BCKS by the reconstruction function F . Then, evaluate
the solved BCKS, select the most suitable BCKS from them,
and match the application with the optimal structure.

The specific algorithm is described in Algorithm 1.

C. RECONSTRUCTION OF CORE HASH COMPUTING
1) UNIT KERNEL STRUCTURE
After the basic computing kernel set is obtained, it must
be mapped and reconstructed to form a coarse-grained unit

18090 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

Algorithm 1 Computing Kernel Extraction Algorithm
Input: TAS = {TA1,TA2, . . . ,TAn}
Output: BCKSopt = {b1 × CK1, b2 × CK2, . . . , bk × CKk}
1: for (i = 1 to n) do
2: Divide the basic block BBTAi by CDFG for TAi;
3: end for
4: Under the conditions of Carea, statistically merge BBTAi
5: BCKScur = BBTA1 ∩ BBTA2 ∩ . . . ∩ BBTAn
= {b1 × CK1, b2 × CK2, . . . , bk × CKk}

6: Reconstitute BCKScur to generate a limited number of
versions
{BCKS1,BCKS2, . . . ,BCKSl} = F(BCKScur);

7: Let BCKSopt = BCKScur ;
8: for (i = 1 to l) do
9: Under the conditions of satisfying Carea, Ctime and
Cpower ;

10: IfBCKSi is better thanBCKSopt in terms of resources,
delay and power consumption, then BCKSopt=BCKSi;

11: end for

kernel, and a hybrid granularity structure is established to
form an optimal structure that meets current application
requirements. Because domain-oriented applications gener-
ally process relatively limited types of data, the processing
flow is similar and relatively fixed, and the target structure
that can be reconstructed is limited. Therefore, the reconfig-
urable schemes of the hash algorithm are also limited.

After analyzing the CDFG of the hash algorithm, it was
found that the process of each round of iterative operations
is basically the same. Therefore, each iteration of the hash
algorithm can be refined into a unit kernel. For example, for
the SHA1 algorithm, its iteration operation is:

a = a_next; b = a; c = c_next; d = c; e = d;

a_next = {a[26 : 0], a[31 : 27]} + f + e+ kt + wt ;

c_next = {b[1 : 0], b[31 : 2]};

where a, b, c, d, and e are initialization variables, f is a non-
linear function for each round of iteration, kt is a constant for
each round,wt is a data block for each round, and 0 ≤ t < 80.
Because the calculation of a_next belongs to the critical

path, it can be completed directly using four ADD32 ker-
nels; two CSA kernels; CSA5 kernels; or multiple XOR32,
AND32, OR32, and S32 with one ADD32 kernel; alterna-
tively, the merge method can be used to combine two rounds
of operations into one round. Here, CSA and CSA5 are
function-level arithmetic kernels composed of the basic com-
puting kernel, and the formula is as follows:

CSA(x, y, z)

= (xˆyˆz)+ (((x&y)|(x&z)|(y&z))� 1);

CSA4 = CSA((xˆyˆz), (((x&y)|(x&z)|(y&z))� 1), u);

CSA5 = CSA4((xˆyˆz), (((x&y)|(x&z)|(y&z))� 1), u, v).

For each iteration of SHA1, the unit kernel structure
formed is shown in Fig.5.

Fig. 5. Unit kernel structure of each iteration of SHA1.

In the same way, MD5 also has five unit kernel structures
similar to SHA1. For SHA256 and SHA512, there are six
kinds of unit kernel structures. In addition to the above five
kinds of structures, the 32-bit or 64-bit CSA operations using
CSA6 and CSA7 are also included.

It can be seen that there are many ways to construct the
unit kernel structure of SHA1, SHA256, SHA512, MD5 and
other algorithms, and each unit kernel structure has great dif-
ferences in latency, resource consumption and other aspects.
Therefore, according to the specific device characteristics and
resource distribution, an appropriate unit kernel structure can
be selected to build a high-efficiency algorithm that meets the
requirements.

2) INTERCONNECT STRUCTURE
After the unit kernel is constructed, there are many paths
between registers and registers, and between registers and
look up tables, corresponding to different interconnect struc-
tures. The logic level of each unit kernel structure after
placement and routing is also different, resulting in different
delays. In this way, the interconnection depth can be balanced
by logical association and movement, or the logic topology of
the interconnection can be rewritten to minimize the delay.

VOLUME 9, 2021 18091

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

For example, for the four ADD32 unit kernel structures of
a_next , in the hardware programming environment, in addi-
tion to directly calculating

assign a_next = {a[26 : 0], a[31 : 27]} + f + e+ kt +wt ;
the addition of 5 operands can also be divided into 3, such as

assign temp = {a[26 : 0], a[31 : 27]} + f + e;
assign a_next = temp+ kt + wt ;

to reduce the logic level delay by logical association. More-
over, we can use the precomputation method to calculate
temp <= e+ kt + wt ;

in advance and then calculate
assign a_next = {a[26 : 0], a[31 : 27]} + f + temp;

to move the operation on the critical path to the noncritical
path.

The interconnect structure of these three implementations
is shown in Fig.6.

Fig. 6. Three interconnection methods for calculating a_next .

Since the delay of the cyclic shift is much less than that of
the nonlinear function and the addition, the delay boundaries
for the three schemes in Fig.6 are, respectively, calculated by
the following formulas:

For the delay of Fig.6(a): T1 = tf + 4× tADD32;
For the delay of Fig.6(b): T2 = tf + 3× tADD32;
For the delay of Fig.6(c): T3 = tf + 2× tADD32;

where tf and tADD32 are the delays of the nonlinear functions
f and ADD32, respectively. Obviously, inserting a register
in the middle of the calculation by dividing the original
logic into two parts through a precomputation method can

effectively reduce the interconnection level and delay. At the
same time, interconnecting two close operands, such as pref-
erentially calculating a and f , kt and wt , is more conducive to
placement and routing.

Second, the calculation of a_next and e_next of
SHA256 and SHA512 can also change the interconnection
structure by rewriting the logic to further reduce the delay.
Taking SHA256 as an example, there are:

a_next =
∑

0
(a)+Maj(a, b, c)t

+

∑
1
(e)+ Ch(e, f , g)+ h+ wt + kt ;

e_next = d +
∑

1
(e)+ Ch(e, f , g)+ h+ wt + kt ;

where
∑

0,
∑

1, Maj and Ch are functions of SHA256. Since
the calculation of wt is related only to the input message and
kt is a known initialization parameter, the sum of wt and kt
can be calculated 2 clocks in advance, as follows:

wk (n)t =w(n−1)
t+1 + k

(n)
t .

Then, logically rewriting a_next and e_next , there are

s1 < = wk (n−1)t + h(n−1);

s2 < = s1 +
∑

1
(e(n−1))+ Ch

(
e(n−1), f (n−1), g(n−1)

)
;

s3 < =
∑

0
(a(n−1))+Maj

(
a(n−1), b(n−1), c(n−1)

)
;

assign a_next = s2 + s3;

assign e_next = s2 + d (n−1).

Since wk (n)t can be calculated by 2 clocks in advance and
s1 can be calculated by 1 clock in advance, s2 and s3 can be
calculated at the current clock, and a_next and e_next are
directly connected by being assigned to the output. Before
and after the optimization of the interconnection structure,
the a_next and e_next delays are as follows:

Ta_next = T∑
0
+ TMaj + T∑1

+ TCh + 6× tADD32;

Te_next = T∑
1
+ TCh + 5× tADD32;

Ta_next ′ = Te_next ′ = T∑
1
+ TCh + 3× tADD32.

Obviously, Ta_next ′, Te_next ′ are better than Ta_next , Te_next .
In addition, it is possible to cascade CSA and ADD32 com-

puting kernels or nest the use of CSA to form a hybrid
interconnection for data flow and logic rewriting and sorting.
For the merge operation, in addition to merging 2 rounds into
1 round, we can merge 3 rounds, 4 rounds, or 5 rounds into
1 round. Although multiple rounds of merging increases the
delay and reduces the frequency, it still has a certain advan-
tage because it occupies a small chip area. For example, for
the pipeline SHA1 algorithm, merging 2 rounds into 1 round
increases the delay of tf + 2× tADD32 but reduces the register
resources by approximately 20% and the power consumption
by approximately 36%.

18092 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

3) STORAGE STRUCTURE
For the hash algorithm, due to the need to cache the inter-
mediate results of some operations, a variety of methods
such as registers, RAM or FIFO can be used. Each storage
method corresponds to a different storage structure and has
an important impact on the frequency, resource consumption
and throughput of the algorithm. Through the analysis of
CDFG, the number of data, data bit width and data dimension
required for each step of the algorithm can be obtained, and
the required storage space for data can be calculated from this.
Combined with the distribution and capacity of the FPGA
on-chip storage resources, the appropriate storage method is
then selected. Finally, we use storage strategies such as stor-
age partition and replication to optimize the storage structure
at a fine-grained level to reduce the use of logical resources
and improve the working frequency.

For the serial implementation of the hash algorithm,
in addition to the necessary input and output, each iteration
requires multiple parameters to participate in the calculation.
The specific storage requirements of SHA1 are given in
TABLE 3.

TABLE 3. SHA1 serial algorithm storage requirements.

It can be seen in TABLE 3 that the serial hash algorithm
does not have high storage requirements during operation
and can completely use the storage method of the register.
However, the serial hash algorithm has low computational
efficiency, cannot meet the computing needs, and must be
accelerated in a pipelined parallel manner. The resource con-
sumption then increases exponentially with the increasing
number of pipeline stages. As shown in TABLE 4, the storage
requirements of the SHA1 algorithm for the 80-stage pipeline
are given.

It can be seen in TABLE 4 that if the storage is still in
registers, a total of 1280 32-bit-wide registers are required
for the SHA1 pipeline algorithm to store the value of the data
block wt . Moreover, the initialization variables h0 − h4 and
intermediate variables a − e and a_next − e_next all need
400 32-bit-wide registers to be cached. Although there are
many register resources in the FPGA, if too many local
registers are consumed, there will still be logic overlap and
increased delay.

TABLE 4. Storage requirements of the SHA1 pipeline algorithm.

Therefore, through data classification and hybrid storage,
the data dependency can no longer cross the boundary of
the data block, and the communication between pipeline
computing kernels is more balanced. According to the data
characteristics of the hash algorithm, the following strategies
are given to optimize the storage structure.

Strategy 1: direct assignment. Hash algorithms all contain
a list of constants, and the scale is small, but the values are
scattered. Using the direct assignment strategy and replacing
BRAM with registers can effectively save the on-chip mem-
ory module interface.

Strategy 2: BRAM storage. For the initialization variables
h0−h4, because multiple groups of different data can be input
each time, they must be stored until output. However, in the
whole hash calculation process, h0 − h4 participates only in
the first and last steps. Therefore, BRAM can be used for
storage, and after the first step is involved in the calculation,
it is sent to storage and then read out and participates in the
calculation in turn in the last step.

Strategy 3: reduce data space. For the storage of block
wt , a two-dimensional register array can be used. In one-
dimensional space, the value can be assigned by cyclic shift,
and in two-dimensional space, the value can be copied by the
register. However, in the last 15 rounds of the hash operation,
the amount ofwt involved in the calculation decreases in turn.
Therefore, in the last 15 rounds, the storage space ofwt can be
reduced. In addition, because wt is shifted and copied in one-
dimensional space, a cyclic shift RAM can be used to replace
the register in order to achieve a balance between resources
and performance.

Strategy 4: data cascading. For the intermediate variables
a−e and a_next−e_next , the five 32-bit data can be combined
into a whole 160-bit-wide data as input and output. Participat-
ing in operations by cascading data is more advantageous to
restrict data to a logical area. Moreover, because b_next = a;
d_next = c; e_next = d; that is, some variables can be
directly assigned to obtain the result.

Strategy 5: data reuse. For operations with precomputation,
there is data overlap, and the value can be passed through
the register during the calculation process to achieve data
multiplexing.

VOLUME 9, 2021 18093

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

For FPGA storage resources, registers are widely dis-
tributed, and BRAM is distributed in a fixed area. Combined
with the above various strategies, the use of hybrid stor-
age can make full use of FPGA resources and effectively
shorten the critical path delay. Obviously, for more complex
calculations of SHA256, SHA512 and HMAC, the combi-
nation of various storage strategies can further improve its
performance.

4) RECONSTRUCTION METHOD
The reconstruction of the computing kernel must adopt a
heuristic strategy to find the optimal solution for different
hardware environments, unit kernel structures, interconnec-
tion structures and storage structures. Here, we can complete
the reconstruction of the kernel by means of equivalent code
transformation through a sliding window and then select
the appropriate code and structure through energy efficiency
assessment and comparison. The process is shown in Fig.7.

Fig. 7. Reconstruction process of hash algorithm.

Under the condition that the area constraints are met,
the iterative process of the hash algorithm is divided
into k consecutive basic blocks, denoted as BLK =

{BLK1,BLK2, . . . ,BLKk}. Each BLKi(1 ≤ i ≤ k) contains
the operation that is performed sequentially or in parallel, and
it is a coarse-grained block that can be performed completely
independently. BLK is interconnected by the CDFG of the
hash algorithm. Then, define a sliding window of size l,
such that each time l iterative groups are selected to contin-
uously replace BLKj(1 ≤ l, j ≤ k) for functional equivalent
replacement, which generates BLK ′j . The area, delay, power
consumption, or energy efficiency ratio of BLK ′j may be
better than those of BLKj. Finally, the simulated annealing
algorithm is used to iteratively optimizeBLK , bring the newly
generated BLK ′j back to BLK , update it to form BLK ′, calcu-
late the cost of BLK ′ in all aspects, and compare with the

cost of the original BLK . If the cost of BLK ′ is less than
the cost of the original BLK , accept the new reconstruction
scheme. Otherwise, accept the new solution with probability
exp(−1d/t), where 1d is the cost difference in area, delay,
power consumption, or energy efficiency ratio, and t is the
current temperature value. Then, slide the window forward
and perform the next code equivalent transformation and
iterative optimization. The specific reconstruction algorithm
is as follows.

Algorithm 2 Reconfigurable Algorithm of Computing
Kernel
Input: BLK = {BLK1,BLK2, . . . ,BLKk}
Output: BLK ′opt =

{
BLK ′1,BLK

′

2, . . . ,BLK
′
k

}
1: t = Initial(t); l = Initial(l);
2: while t > tmin do
3: BLKsub = {BLKi1,BLKi2, . . . ,BLKil} =

ContSel(BLK);
4: for (j = 1 to l) do
5: BLK ′ij = FunRepl(BLKij);
6: end for
7: BLK ′sub =

{
BLK ′i1,BLK

′

i2, . . . ,BLK
′
il

}
;

8: BLK ′ = Update(BLK ,BLK ′sub);
9: 1d = Comparison(BLK ′,BLK);

10: if ((1d < 0) or (Random(0,1)< exp(−1d/t))) then
11: BLK = BLK ′;
12: end if
13: t = t ×1t;
14: Continue to slide the window forward; if the current

window is completely transformed, adjust the window
size and start a new round of code equivalent transfor-
mation;

15: end while

In Algorithm 2, tmin is the termination of low temperature;
1t is the cooling coefficient; ContSel represents the continu-
ous selection of l basic blocks from BLK ; FunRepl indicates
that the computing kernel function is replaced equivalently;
Update means to update the interconnect and storage struc-
ture; and comparison means the difference in area, delay,
power consumption, or energy efficiency ratio.

D. PIPELINE TECHNOLOGY
HRCA implements applications efficiently in a pipelined and
parallel manner. Pipeline technology is a kind of time-parallel
technology. It divides a repetitive process into several subpro-
cesses, and each subprocess runs in parallel with others. For
the password recovery algorithm, in order to find the correct
password, a large number of passwords must be attempted.
The pipeline structure can not only improve the utilization
of hardware resources but also improve the execution speed
with a high acceleration ratio. Here, according to the number
of iterations of the hash algorithm, all loops are unfolded to
form a full pipeline structure. When it is working at full load,
the overall pipeline can calculate a set of hash values at every
clock. The full pipeline architecture is shown in Fig.8.

18094 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

Fig. 8. Full pipeline architecture of hash algorithm.

In Fig.8, the password stream uses FIFO for buffering,
the initialization variables are cached using RAMor the regis-
ter array, the constants are directly assigned, the intermediate
variables are passed in registers after unit kernel calculation,
and the grouped data blocks are transferred by RAM or the
register array after initialization. Second, the password stream
is executed in parallel with the hash operation to form a
synchronous pipeline of linear operations. Third, the unit
kernel is reconstructed with the basic computing kernel, and
the data width is changed; any one of the algorithms of SHA1,
SHA256, SHA512 and MD5 can be implemented, which
have good scalability. Finally, for different FPGA chips,
through the reconstruction of the unit kernel, a full pipeline
hash algorithm with different performance, power consump-
tion and area can also be formed to match the application with
a suitable structure.

E. PASSWORD ATTACK ALGORITHM
1) MASK RULE ALGORITHM
The Zipf distribution of passwords provides a theoretical
basis for password recovery attacks to reduce the password
space and improve the hit rate. The traditional password
exhaustion algorithm tries all possible combinations of pass-
words in turn, and the cracking time depends on the length
of the password and the character set used. This method can
theoretically crack all passwords, but due to the limitations
of the device performance and time, brute force attacks are
often unsuccessful. Here, the password structure partition
method of probabilistic context-free grammar is adopted, and
Dn, Un, Ln and Sn are designated as digits, uppercase letters,
lowercase letters, and special characters with length n, respec-
tively. These special symbols represent the password struc-
ture; for example, the structure of ‘‘Pass@123’’ is expressed
asU1L3S1D3. Further, the corresponding character sets ofDn,
Un, Ln and Sn are specified, and the characters in each char-
acter set are arranged in descending order of probability. The
mask rules are formed by various combinations ofDn,Un, Ln
and Sn, thus improving the efficiency of password guessing
attacks. The specific process is shown in Algorithm 3.

Algorithm 3Mask Rule Password Generation Algorithm
Input: Password character set; pwd_mask; pwd_length;
Output: Candidate password
1: Configure the character set for each byte of the password
2: for (i = 0 to (pwd_length− 1)) do
3: password[i] = Null;
4: index[i] = 0;
5: end for
6: while (True) do
7: for (i = 0 to (pwd_length− 1)) do
8: if (pwd_mask[i] ==‘D’) then
9: password[i] =DigitCharSet(index[i]);

10: else if (pwd_mask[i] ==‘U ’) then
11: password[i] =UpperCharSet(index[i]);
12: else if (pwd_mask[i] ==‘L’) then
13: password[i] =LowerCharSet(index[i]);
14: else if (pwd_mask[i] ==‘S’) then
15: password[i] =SpecialCharSet(index[i]);
16: end if
17: Determine whether index[i] needs to

carry or return to 0;
18: end for
19: Generate password;
20: If index[0 . . . pwd_length − 1] is all 0, jump out of

the while loop;
21: end while

The password generation algorithm judges whether each
byte of the mask rule is a digit, uppercase letter, lowercase
letter, or special character; finds the characters in the cor-
responding character set according to the index; and then
generates a password by combining characters. Furthermore,
the algorithm also judges whether the index carry is out of
bounds or returns to zero, ensuring that the character currently
indexed is always in the corresponding Dn, Un, Ln and Sn
character set. This guarantees that all generated passwords
satisfying the given mask rule. In addition, to meet the needs
of high-performance computing, the mask rule algorithm
must generate candidate passwords within one clock and pass
it to the hash algorithm to complete the operation. For this
purpose, a dual-port RAM is allocated, and the corresponding
character set is stored in the RAM, which can be indexed in
one clock according to the address. Moreover, because each
character of the password mask is independent, a unit kernel
structure can be formed, as shown in Fig.9.

In Fig.9, after the RAM is configured, the address and
counter are initialized by the password mask character, and
the address is updated by the index carry. When the counter
accumulates to a certain degree, the next index carry flag is
generated. At the same time, multiple unit kernels can be
executed in parallel in the form of a pipeline. The carry is
passed between kernels through the index and generates a
password of length n within one clock. The corresponding
overall structure is shown in Fig.10.

VOLUME 9, 2021 18095

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

Fig. 9. Unit kernel structure for password generation.

Fig. 10. Password generation pipeline structure.

2) HIGH-SPEED DICTIONARY PARSING
To meet the demand of dictionary-mode high-performance
computing, the dictionary is transmitted by DMA. First,
the data are transferred to the AXI4 FIFO in burst read-write
mode via PCIe. Then, the data are read from the AXI4 FIFO,
the position of all passwords is determined, and they are
marked according to the newline character. Finally, the data
are truncated according to the mark flag and assembled into a
password of length n, and there is arbitration control to write
the password into the asynchronous FIFO. Since only one
group of data is read from the AXI4 FIFO each time, there
may be a case where the end data do not satisfy a password.
At this time, it is necessary to splice the current valid data
with the next group of data to make up a complete password
and parse it again. The dictionary parsing structure based on
the computing kernel is shown in Fig.11.

Since the AXI4 FIFO bit width is 64 bytes, it is assumed
that the maximum password length is 20 bytes. According
to this, define a 1-bit-wide identification dic_flag[63:0] and
a processing identification dic_proc_flag[84:0], define a 1-
byte-wide cache data dic_data[63:0] and a processing data
dic_proc_data[84:0], and then define a byte counter byte_cnt .
The specific steps of dictionary parsing are as follows:

1) Read the data from the AXI4 FIFO and assign it to
dic_data[63:0]. Determine whether the i(0 ≤ i < 64)
character is a new line character within 1 clock. If so,
dic_flag[i]=0, and otherwise, dic_flag[i]=1;

2) Assign dic_data and dic_flag to dic_proc_data and
dic_proc_flag, and initialize the counter byte_cnt=64;

Fig. 11. Dictionary parallel parsing structure.

3) For a password of length n, if the first n bits of
dic_proc_flag are all 1—that is, dic_proc_flag[n −
1 : 0]==n’b1, and dic_proc_flag[n]==0—then use
dic_proc_data[n : 0] to splice the password of current
length n;

4) dic_proc_flag and dic_proc_data are shifted to the
right by n, byte_cnt = byte_cnt − n;

5) If byte_cnt is less than 22, read the data from the
AXI4 FIFO again, assign dic_data and dic_flag, and
jump to 6); otherwise, jump to 3) to continue execution;

6) Splice dic_data and dic_flag behind the remaining
valid data of dic_proc_data and dic_proc_flag, and
there is byte_cnt = byte_cnt + 64, then jump to 3)
to continue execution.

For steps 3) and 4), the judgment of the password with
length of 1-20 bytes can be completed within 1 clock and
output after splicing. For steps 5) and 6), if the number of
remaining bytes is less than 22, the data must be read again.
Obviously, the remaining 22 bytes contain a complete pass-
word so that it can be parsed while reading the data. In this
way, when the frequency is 200 MHz, 200 M passwords can
be parsed every second, which greatly improves the efficiency
of dictionary attacks.

F. MAPPING AND PLACEMENT OF COMPUTING KERNEL
1) ADVANCED COMPUTING KERNEL LIBRARY
According to the granularity of the partition, the computing
kernel can complete the reconstruction from fine-grained to
coarse-grained. The fine-grained reconstruction embodies the
flexibility, and the coarse-grained reconstruction embodies
the characteristics of high-performance computing. To speed
up hardware design and implementation, the computing ker-
nel is divided into the algorithm, control and communication
to form an advanced password recovery computing kernel
library. The hardware structure is then generated in the form
of the combined mapping, multiplexing pipeline and serial-
parallel hybrid computing for various algorithms, as shown
in Fig.12.

The algorithm computing kernel includes the core hash
algorithm, mask rule algorithm, dictionary high-speed

18096 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

Fig. 12. Schematic diagram of computing kernel structure mapping.

parsing and verification module. They are mainly imple-
mented in the unit kernel reconfigurable form, which is exe-
cuted in the pipelined parallel manner through fine-grained
optimization and has high performance.

The control computing kernel includes loop control,
branch jump, and input/output selection and can be realized
by the execution sequence and jump result of the CDFG
dynamic detection algorithm. Their control logic is realized
by the parameters of loop start point, loop count, loop bound-
ary and judgment conditions.

The communication computing kernel is mainly used to
cache data and connect between modules to achieve IO bal-
ance. Through the CDFG analysis of the data dependencies
and the working frequency of the serial-parallel modules in
the algorithm, the goal is to maximize data throughput and
realize customized data paths.

The algorithm computing kernel has been described in
detail in the previous section. The followingwill be optimized
from the control and communication plane to improve the
overall computational performance while satisfying the flex-
ibility of the password recovery application.

2) CONTROL COMPUTING KERNEL STRUCTURE
There are many password recovery algorithms, and each
algorithm calls the hash function in different loop iterations,
ranging from one to hundreds of thousands. Second, the input
of each iteration is not the same: some are fixed character
splicing, some are different in the order of password and salt
splicing, and some need circular splicing. Finally, the struc-
ture of the called hash function is different: some need to call
the hash function only once per iteration, some need to call
multiple times, and some have a mixed call of multiple hash
functions. Therefore, it is necessary to control and optimize
the core hash calculation of the pipeline; otherwise, it is
unable to give full play to its performance.

Through the analysis of various types of password recov-
ery algorithms, three control optimization structures of fixed
splicing, circular splicing and multihash combination are
given, and the control computing kernel is formed. It can
complete the control of cycle, selection and jump through
parameter configuration.

(1) Fixed splicing control. The input of this kind of hash
pipeline must be spliced at a fixed position according to the
password and the salt length, and then the output of this time
is spliced again at a fixed position and used as the input for the
next time. Such algorithms include Oracle 11+, PDF 1.7 L3,
SSHA-512, and WordPress.

Fig. 13. Pipeline fixed position splicing control.

As shown in Fig.13, the entire control flow is divided into
three states: initialization, loop and end. Each state has its own
control operation. In particular, the input control is spliced
by the branch selection according to the password or the
salt length; the cycle control counts according to the pipeline
stage and the number of cycles and judges whether to jump
out of the loop; the output control judges to output the final
result according to the condition. The corresponding pipeline
control is as follows: 1© after the initialization is completed,
the initial input and the intermediate input are arbitrated by
the input arbitration and input to the pipeline for calculation;
2© the output arbitration judges whether to jump to the end
state according to the cyclic boundary and sends the result to
the next cycle for fixed splicing or output.

(2) Circular splicing control. The input of this type of hash
pipeline requires the circular splicing of the password, salt
and other parameters. When the splicing length reaches a
hash input group, it can be calculated. Therefore, before each
hash iteration, the input must be pieced together in advance;
otherwise, the pipeline will be broken. Its control flow is
shown in Fig.14. Such algorithms include RAR 3.x-4.x,
7-Zip, SHA512 Crypt, and MD5 Crypt.

Because the hash pipeline is batch input, it is necessary
to splice the salt and other parameters with all passwords in
turn; other parameters include byte length, last loop result,

VOLUME 9, 2021 18097

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

Fig. 14. Pipeline circular splicing control.

and 0x80. Here, the splicing effective flag and the position
flag bit array are added to the input control to precalculate the
password, salt and other parameters where the next splicing
is and mark it. After the output arbitration, the batch of
passwords, salts and other parameters are spliced according
to the position flag and input into the hash pipeline. The main
difference between circular splicing and fixed splicing is the
splicing processing of characters, and other operations are
basically similar.

(3) Multihash combination control. For the HMAC algo-
rithm, many hash calculations must be called during one
operation. The formula is

HMAC(P,M) = Hash(P⊕ opad ||Hash(P⊕ ipad ||M)),

where P is the password, M is the input message, and
ipad and opad are external padding, whose initial val-
ues are 0x3636 . . . 36 and 0x5c5c . . . 5c, respectively. The
HMAC algorithm must XOR the filled P with ipad and
opad , and then two hash calculations are performed to
generate ipad_digest and opad_digest , respectively. Next,
ipad_digest and opad_digest are used as the initial hash
values to perform hash operations twice again. In this loop
iteration, the control flow is shown in Fig.15. These algo-
rithms include HMAC-SHA1, RAR 5, HMAC-SHA512, and
HMAC-MD5.

Here, to optimize the HMAC algorithm, two hash pipelines
are used for combined processing. In the initial state,
the batch passwords are XOR ipad and opad and are sequen-
tially input into hash pipelines 1 and 2, respectively. In the
loop state, hash pipelines 1 and 2 alternately use the result of
the other side to splice at a fixed position to form the current
message input. In the end state, the results of out XOR on
hash pipeline 2 are output in turn.

By combining hash algorithms, not only is the con-
trol complexity reduced but also the routing is more con-
ducive to improve the performance. In addition to the
HMAC algorithm, a similar structure can be adopted for the

Fig. 15. Multihash pipeline combination splicing control.

algorithms that nest using hash operations including PHPS,
sha($salt.sha1($pass)), and sha1(md5($pass)).

3) COMMUNICATION COMPUTING KERNEL OPTIMIZATION
The password recovery algorithm consists of multiple mod-
ules, some of which are calculated serially and some of
which are calculated in parallel. To improve data throughput
and avoid insufficient or excessive computation, I/O bal-
ance between modules is critical. The communication com-
puting kernel mainly forms the buffer area through RAM,
FIFO or registers and performs an input/output connection
on each serial-parallel module.

Suppose that serial module X and parallel module Y com-
municate with each other, and X transfers data to Y. The clock
frequency of X is freqx , the calculation period is cycx , and
one output is generated at a time. The clock frequency of
Y is freqy, the period of one iteration is cycy, the number of
iterations is itery, and n groups of data must be input for one
calculation. To give full play to the parallel performance of
Y, the following condition must be satisfied:

(freqx/cycx) ≥ (freqy/(cycy × itery)) × n.

Moreover, the general pipeline frequency is higher than the
serial frequency, such that

freqx ≤ freqy.

The longer the iteration period of Y, the greater the number of
iterations and the lower the output requirements of X. When
Y is fully pipelined and iterates only once, X must also be
pipelined or executed in parallel. Similarly, when the parallel
module Y transfers data to the serial module X, the processing
of X must also satisfy the above conditions.

For the communication optimization between the serial
and parallel modules, we can use CDFG by the greedy strat-
egy to calculate the frequency satisfied by other modules
forward and backward on the premise of ensuring the core

18098 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

hash performance. At the same time, for the communica-
tion between serial and parallel modules in different clock
domains, asynchronous RAMor FIFO is inserted to complete
the data synchronization. Finally, the clock frequency of some
modules is unified to shorten the routing time and improve the
placement quality, as shown in Algorithm 4.

Algorithm 4 Communication Computing Kernel
Optimization
Input: F = {f1, f2, . . . , fn}
Output: Frequency of each functional module
1: Establish CDFG = (V ,E) from F = {f1, f2, . . . , fn};
2: Initialize the freqfix of the on-chip component frequency,

and initialize the freqlow of the module frequency with
lower data throughput;

3: Determine the frequency freqcore of the node vh where
the core hash operation module is located;

4: for (From node vh to breadth-first search for nodes
traversing each layer in the CDFG downward) do

5: if (The current node frequency is not determined)
then

6: if (There is a serial-parallel conversion between
the current node and the parent node) then

7: Calculate the frequency that this node meets,
and insert asynchronous RAM or FIFO between the
modules;

8: else
9: The node is serial or parallel with the parent

node, and its frequency is the same as the parent node;
10: end if
11: else if (The current node has a frequency that is

different from the frequency of the parent node) then
12: Insert asynchronous RAM or FIFO between

modules;
13: end if
14: end for
15: Similarly, from node vh to breadth-first search to traverse

the nodes of each layer in the CDFG up to the root node,
calculate the node frequency of each layer;

16: Traverse the nodes of each layer from the root node, and
adjust the frequency of some nodes appropriately to unify
and reduce the number of clock frequencies to improve
the routing quality.

4) OVERALL PLACEMENT STRATEGY
As the FPGA scale increases, the reconfigurable resources
become more intensive, which results in more time-
consuming routing of complex algorithms. To effectively
reduce the routing complexity and achieve the flexibil-
ity of hash iteration, the FPGA is divided into multiple
regions, and there are FSPregion = {fsp1, fsp2, . . . , fspn}.
For the target hash function set TAShash=(SHA1, SHA256,
SHA512, MD5, . . .), for any fspi(1 ≤ i ≤ n), there is
Implement(fspi) = ∀hash ∈ TAShash; that is, each region can

Fig. 16. High-performance reconfigurable board.

serve as the placement with the same or different password
recovery algorithms.

To accomplish this, we first establish a two-dimensional
FPGA region model (H ,W), where H andW are the number
of CLBs contained in a single column and row of the FPGA,
respectively; that is, H represents the height, and W repre-
sents the width. Second, using a region-based division strat-
egy, multiple ASs are placed and executed in the GLASmode
so that they can work in parallel. The resource consumption
of the initial placement of a single AS can be used to calculate
the number of submodules that can be placed. TheFSPregion is
then divided according to the number of submodules. Third,
according to the number of CLB overlaps and conflict areas
that appear when arrangingmultiple submodules, the analysis
is performed from multiple perspectives of logic, storage and
interconnection. The compilation strategy is then changed
accordingly to perform multiple placements and summa-
rize the results of each placement. Finally, we choose one
of the better placement schemes, adopt the greedy strategy
to prioritize the computing kernel with the spatial division
method, optimize the conflict areas locally, constantly adjust
the CLB conflict areas, and find the global optimal solution.
The details are shown in Algorithm 5.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The experimental hardware platform in this paper is a high-
performance reconfigurable board integrated by 4 large-scale
FPGAs. The FPGA chip type is the xcku060-ffva 1156-2-i. Its
on-chip resources include 726 K logic units, 331,680 LUTs,
663,360 REGs, 1080 BRAMs and 9180 Kb DisRAMs. Its
structure is shown in Fig.16. The programming software is
Xilinx Vivado 2019.2.

In Fig.16, four large-scale FPGAs are mainly responsible
for computing. CPLD communicates with FPGAs and PEX
8311 through address and data buses and can dynamically
load FPGA configuration files from FLASH. PEX 8311 inte-
grates a PCIe communication module and communicates
with the host computer through the PCIe bus.

The experiments are mainly based on the password recov-
ery algorithms. First, the simulated annealing algorithm is

VOLUME 9, 2021 18099

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

Algorithm 5 Computing Kernel Placement Strategy
Input: Initial routing of a single AS
Output: Overall placement scheme
1: The initial routing of a single AS determines the occu-

pancy of resources RAS , such as LUT, registers and
BRAM;

2: From the overall FPGA resource R, calculate the number
of ASs that can be placed n = R/RAS ;

3: Perform an initial placement of n AS, and change the
strategy to choose the best result;

4: If the current strategy meets the timing requirements,
then finish;

5: if (The current solution does not meet the timing require-
ments, but there are still FPGA resources remaining)
then

6: Split theAS into core, high-frequency, low-frequency
and communication computing kernels;

7: According to n, divide the FPGA resources from
top to bottom and left to right in a rectangular way
from the space, which is recorded as FSPregion =
{fsp1, fsp1, . . . , fspn}

8: for (i = 0 to n) do
9: Adopt the minimum partition method, and pref-

erentially place the i-th core computing kernel in fspi;
10: Then, place the i-th high-frequency and low-

frequency computing kernels into fspi;
11: Finally, place the i-th communication computing

kernel into fspi;
12: end for
13: From a global perspective, use the breadth-first

search algorithm to work with overlapping regions;
14: If there are still remaining areas, move the overlap-

ping logic to the nearest area first;
15: If there is no redundant area, move and convert adja-

cent fsp logic blocks to ensure that all fsp logic density is
balanced;

16: end if
17: if (The current solution does not meet the timing require-

ments and exceeds the overall FPGA resource R) then
18: Number of ASs n = n − 1, and jump 3 to continue

execution;
19: end if

used to complete the reconstruction of different basic com-
puting kernels. The different reconstruction schemes are
compared and analyzed from the aspects of performance,
resources, and power consumption to illustrate the high scal-
ability of HRCA. Second, the serial-parallel structure, rout-
ing time, energy efficiency ratio, and performance of other
schemes are compared to illustrate the efficiency of HRCA.
Third, the implementations of different password recovery
algorithms are compared and analyzed, indicating the prac-
ticality of the HRCA design. Finally, from the three dimen-
sions of hash function-level, application-level and board-level

Fig. 17. SHA1 reconstruction delay cost curve.

reconfiguration, the cracking efficiency of password recov-
ery is analyzed to illustrate the flexibility of the HRCA
architecture.

A. RECONSTRUCTION SCHEME ANALYSIS
1) SHA1 RECONSTRUCTION ANALYSIS
Taking the SHA1 algorithm as an example, the overall struc-
ture can be divided into 4 main modules: input preprocessing
module, wt storage module, 4 groups of 20 rounds for a total
of 80 rounds of core operation modules, and output modules.
It is implemented in a full pipeline architecture, mainly forwt
storage and 80 rounds of core operation modules, and adopts
the simulated annealing algorithm for iterative optimization.
Let the scale of reconstruction be 80 rounds, l=20, t=1000,
tmin=1, 1t=0.99, and use ADD32, AND32, OR32, NOT32,
XOR32, CSA and other computing kernels to reconstruct
a_next− e_next . For the reconstruction of wt storage, REGs,
BRAMs, and DisRAMs are used. The computing kernel
used is formally described. Its resource and delay costs are
shown in TABLE 5, where the resource cost is calculated as
LUTs+REGs/2.

After 688 iterations, the algorithm is terminated, and the
reconstruction delay cost of SHA1 is shown in Fig.17. It can
be seen in Fig.17 that the reconstruction delay cost of the
SHA1 computing kernel is between 2.11 and 3.71.

As shown in TABLE 6, the typical SHA1 reconstruction
scheme is realized emphatically.

It can be seen in TABLE 6 that the SHA1 algorithm
formed by the computing kernel reconstruction method has
a frequency above 225 MHz, a delay of 2.08 - 4.44 ns, and
a maximum power consumption of only 4.709 W. At the
same time, it can be seen that the coarse-grained algorithms
constructed by different reconstruction schemes are not the
same regarding delay, structure and resources. In particular,
the scheme of using the register storage and CSA is the best in
terms of performance and resources, and merging two rounds
into one round takes up the fewest resources.

2) COMPARISON OF SERIAL AND PARALLEL STRUCTURES
If the hash algorithm is implemented in a serial structure, each
password must wait for the last password to be processed.

18100 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

TABLE 5. Computing kernel reconstruction resources and delay cost of SHA1.

TABLE 6. Comparison of different SHA1 computing kernel reconstruction schemes.

If a multiserial structure is adopted in parallel, it is assumed
that the parallel number is p and the number of input pass-
words is n. If p ≥ n, there is no need to wait for consecu-
tively entered passwords, and it can directly enter the hash
operation; if p < n, the first p passwords can enter the hash
operation in sequence. For the p + 1 password, it still must
wait. Although the computational efficiency of this parallel
structure can be increased by p times, it is obvious that n
is much larger than p, and the efficiency of the entire hash
operation process is still low. In addition, although the serial
structure takes up fewer resources, due to the complicated
logic operations of each round and the long hash operation
process, most logic operations are tightly coupled, which is
not conducive to routing. For multimodule parallelism, this
leads to FPGA node overlap.

In the pipeline mode, the stage is n, and any number of
passwords can be processed continuously. When the first
password is calculated on the pipeline, the second pass-
word can directly enter the pipeline without waiting for
the first password to be completed. Its computational effi-
ciency is n times that of serial structure. As shown in
TABLE 7, the serial and pipeline structure of each hash
algorithm are compared. Among them, the computational

efficiency increase times=pipeline frequency × stage/serial
frequency; the resource utilization improvement factor =
serial resource × stage/pipeline resource.

According to the comparison in TABLE 7, the pipeline
structure has higher execution efficiency and better resource
usage than the serial structure. Not only can a group of hash
values be calculated in each clock, greatly improving the data
processing speed, but also the whole hash algorithm can be
ensured to work at a higher frequency.

3) COMPARISON OF SYNTHESIS AND ROUTING TIME
Using the HRCA design method simplifies the mapping of
code to the hardware structure and reduces the complexity
of module parallel design. Moreover, the GALS architec-
ture is adopted, which effectively shortens the development
time. In the case of multiple modules in parallel, taking
200 MHz as the performance index and balancing resources
as the optimization goal, the traditional design method and
the HRCA reconstruction designmethod are used for analysis
and comparison, as shown in TABLE 8.

It can be seen in TABLE 8 that the HRCA design method
not only shortens the synthesis and routing time but also
meets the timing constraints and has higher performance.

VOLUME 9, 2021 18101

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

TABLE 7. Comparison of serial and pipeline structures.

TABLE 8. Comparison of synthesis and routing time between traditional and HRCA design methods.

TABLE 9. Comparison of peak password speeds generated by the CPU
and FPGA.

The traditional method has also optimized the algorithm
design, including the pipeline, register cache, and CSA. How-
ever, the same method is adopted for all algorithms, and the
specific FPGA structure and application are not analyzed
in depth in combination with the characteristics of different
algorithms.

B. PERFORMANCE COMPARISON AND ANALYSIS
1) MASK PASSWORD GENERATION SPEED
In the case of a given password strategy, mask rules are used
to exhaust the password. A character set for each byte of the
password is allocated to generate various password combina-
tions, including digits + letters, digits + special characters,
letters + special characters, etc. In the case where the pass-
word length is 20, the peak speed of the password generated
by the CPU, GPU, and FPGA is compared, as shown in
TABLE 9. The CPU type is Intel i5-7500, and the main
frequency is 3.40 GHz; the GPU type is GeForce GTX 1080.

It can be seen in TABLE 9 that the FPGA can generate
a password more than 56.26 and 2.21 times faster than the
CPU and GPU, respectively, which has obvious advantages.

The reason is that the FPGA uses pipeline technology, which
can read the characters in the corresponding position within
one clock and complete the splicing to generate the password.
Second, the FPGA single-password generation module takes
up only 470 LUTs and 270 REGs, with amaximum frequency
of 375 MHz. Finally, when n(n ≤ 100) modules are par-
allel, the speed is increased by dozens of times. Therefore,
the FPGA is more suitable for password recovery of the hash
algorithm than the CPU.

2) DICTIONARY EFFICIENCY ANALYSIS
In dictionary mode, the supply of passwords becomes a bot-
tleneck for algorithms with faster speed. Here, we take the
PDF 1.7 L3 algorithm as an example to compare the impact
of the CPU, GPU and FPGA on the speed under different
dictionary sizes, as shown in TABLE 10.

It can be seen in TABLE 10 that the speed of the FPGA
dictionary password is much higher than that of the CPU
and GPU, and the highest speed is 24.33 and 5.58 times,
respectively. This is mainly because FPGA transfers the dic-
tionary through DMA, can read data while parsing, and can
verify the password at the same time. However, the CPU and
GPU are limited by storage and require frequent interaction
with memory, which affects the speed of dictionary parsing.
In addition, the larger the dictionary, the greater the impact on
the GPU, and its speed continuously decreases. The FPGA
is not affected by the size of the dictionary and is basically
maintained at a stable speed.

3) RECOVERY EFFICIENCY ANALYSIS
Assuming that a password pwd with a length of n cor-
responds to 95 ASCII characters in the set, the password

18102 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

TABLE 10. The speed of each computing component under different dictionary sizes.

Fig. 18. Guessing numbers of three password guessing algorithms.

space is 95n. Obviously when n is large, the password search
space becomes huge. However, due to the Zipf distribu-
tion of password frequencies, most users choose a password
length of 8-14, and the corresponding password space can
be reduced to 958-9514. Moreover, according to the rules of
user password statistics, the password space can be further
reduced, and the recovery rate can be improved. At present,
most users use a combination of letters + digits + special
characters to set passwords; that is, Un1Ln2Dn3Sn4, and n1+
n2+ n3+ n4 = n. At this time, the corresponding password
space is 26n1×26n2×10n3×33n4, which is obviously smaller
than 95n. For example, suppose that the user password struc-
ture is aU1L5D6S1 13-digit password, and one reconfigurable
board can exhaust all passwords in 7.38 days.

In practical application, 5000 SSHA-512 tasks are
obtained, and 109 passwords are generated byMarkovmodel,
PCFG, and the proposed mask rule algorithm. The cracking
results are shown in Fig.18.

It can be seen from Fig.18 that the three algorithms
have their own advantages. When the password length is 8,
the number of guessed passwords by Markov model is higher
than the other two methods. When the password length
is 3-7 and 9-19, PCFG and our algorithm are higher than
Markov model, and our algorithm is higher than PCFG
in most cases. In the end, our algorithm guessed a total
of 416 passwords, Markov model guessed 282 passwords,
and PCFG guessed 359 passwords. The password recovery

Fig. 19. Comparison of the CPU, GPU and FPGA algorithm speed.

accuracy of our algorithm is higher than the other two meth-
ods. This is because our algorithm and PCFG perform better
when generating medium-scale passwords, while Markov
model needs more training data to generate larger-scale pass-
words and obtain better guessability. Then in the case of
massive tasks, using the proposed mask rule algorithm can
give priority to recover more passwords in a short time.

In addition, due to a user’s password reuse behavior, that
is, using the same password to log in to multiple accounts,
when faced with different decryption tasks, the same mask
rule file can be used to crack different tasks to recover most
passwords. Obviously, a multialgorithm and task parallel
architecture is more suitable for applications in the field of
hash password recovery.

4) ENERGY EFFICIENCY RATIO ANALYSIS
To verify the effectiveness of the HRCA design method,
the algorithm speed and energy efficiency ratio of the CPU,
GPU and FPGA are compared here. The software used is
Hashcat v3.60. The comparison algorithms are Oracle 11
(SHA1), PDF 1.7 L3 (SHA256), SSHA-512 (SHA512) and
Skype (MD5). The energy efficiency ratio (EER) is calculated
as follows: EER = performance/power consumption. The
comparison results are shown in Fig.19 and Fig.20.
As seen in Fig.19 and Fig.20, the password recovery algo-

rithms designed based on HRCA have not only a high speed
but also a high energy efficiency ratio. In particular, the

VOLUME 9, 2021 18103

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

Fig. 20. Comparison of the CPU, GPU and FPGA energy efficiency ratio.

Fig. 21. Power consumption of each algorithm changes with increasing
FPGA number.

Fig. 22. Power consumption of each algorithm changes with increasing
number of modules in FPGA.

highest speed is 78.22 times and 2.65 times that of the CPU
and GPU, respectively, and the highest energy efficiency ratio
is 25.88 times and 3.16 times that of the CPU and GPU,
respectively.

Further, the power consumption curves of each algorithm
with the increase in the number of FPGAs and modules are
given, as shown in Fig.21 and Fig.22.
As seen in Fig.21 and Fig.22, the overall power consump-

tion of the FPGA is low, and according to the computing
needs, the FPGA is dynamically called, and the number of

FPGAs or modules is appropriately increased or decreased
to obtain a better energy efficiency ratio. For example, if the
computational requirements are not high, only one FPGA
can be used, and the other FPGAs are in the unloaded
state, or only some modules of one FPGA are used to further
reduce power consumption.

5) COMPARISON WITH OTHER SCHEMES
The performance and throughput of the SHA1, SHA256,
SHA512 and MD5 algorithms of other FPGA schemes and
ours are compared below, as shown in TABLE 11. The calcu-
lation formula of the throughput is as follows:

T = B× f × m/C

where T is the throughput, B is the size of the data block,
f is the clock frequency, m is the number of modules, and C
is the clock cycle required to process the data block.

It can be seen in TABLE 11 that the frequency and through-
put of the hash algorithm implemented in this paper are higher
than those of most other schemes. This is due to the use of
the HRCA design idea, the realization of the hash algorithm
and password generation algorithm with a full pipeline archi-
tecture, and the placement of multiple modules in parallel,
greatly improving the computational performance.

The performance of the SHA1, SHA256, SHA512 and
MD5 algorithms of other GPU schemes and the performance
this scheme are compared, as shown in TABLE 12.
It can be seen in TABLE 12 that the computational speed of

the hash algorithm implemented in this paper is much higher
than that of other GPUs. This result is mainly due to the
fixed hardware structure of the GPU, which is not suitable
for all algorithms, especially for the complex calculation of
SHA256 and SHA512 with a large number of parameters.
The high-performance reconfigurable board in this study con-
tains 4 large-scale FPGAs with variable structures, which is
are suitable for scientific computing in the field.

C. APPLICATION COMPARATIVE ANALYSIS
1) HMAC PERFORMANCE ANALYSIS
The HMAC algorithm includes three basic types: the
HMAC(key=$pass), HMAC(key=$salt) and PBKDF2-
HMAC algorithms. Among them, the passwords and salts
involved in HMAC(key=$pass) and HMAC(key=$salt)
calculations are in different orders, and only one calcu-
lation is performed. PBKDF2-HMAC first performs the
HMAC(key=$pass) operation and then repeats the loop cal-
culation according to the number of iterations. Obviously,
the three calculation modes of HMAC are very similar,
which is very suitable for the shared computing kernel. Here,
through the state machine judgment, the three algorithms
are fused into one. In addition, MD5, SHA1, SHA256 and
SHA512 are further optimized to improve the computational
performance. As shown in TABLE 13, the implementations
of different HMAC algorithms and computing kernel struc-
tures are given.

18104 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

TABLE 11. Comparison with other FPGA schemes.

TABLE 12. Comparison with other GPU schemes.

It can be seen in TABLE 13 that after the fusion of
the three HMAC algorithms, a high computing speed can
still be maintained. In the HMAC single-iteration process,
except for HMAC-SHA512, the calculation of ipad and
opad of other algorithms can be calculated in parallel by
two hash modules, and then the two hash modules are

connected in series to calculate the salt, which speeds up
the calculation process. Similarly, for the PBKDF2-HMAC
calculation with 1000 iterations, alternately using two hash
modules for parallel calculation not only improves the
resource utilization rate but also shortens the calculation
cycle.

VOLUME 9, 2021 18105

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

TABLE 13. Computing kernel structure of HMAC algorithms.

TABLE 14. FPGA reconstruction explanations of different applications.

TABLE 15. Implementation of Xilinx FPGA in different applications.

2) COMPARISON OF PASSWORD RECOVERY APPLICATIONS
To verify the computing kernel of FPGA implementation
under different password recovery applications, different
reconstruction schemes are used, as shown in TABLE 14.
Here, we selected four applications, WPA/WPA2, RAR 5,

Office 2013 and WordPress, and the comparisons before and
after optimization using computing kernels are given. The
results are shown in TABLE 15.

It can be seen in TABLE 15 that the comparative applica-
tions that are not implemented using the HRCA architecture
have lower performance. The reason is that the traditional
design method does not make full use of chip resources, and
the control logic implemented by the architecture is slightly
complicated, which is not suitable for hardware placement
and routing, resulting in poor computational performance.

A comparison with the password recovery algorithm of
other schemes is shown in TABLE 16.

It can be seen in TABLE 16 that the computing speed of
the password recovery algorithm designed by HRCA is much
higher than those of other schemes.

D. MULTIDIMENSIONAL RECONFIGURABLE ANALYSIS
Here, the reconstruction scheme of the hash algorithm is
divided into function-level, application-level and board-level
reconstruction, and a multidimensional reconfiguration is
formed to apply to different applications.

1) FUNCTION-LEVEL RECONSTRUCTION
In this scheme, 10 passwords are randomly selected from
the dictionary library; 10 sets of SHA1, SHA256 and

18106 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

TABLE 16. Comparison with the password recovery algorithm of other schemes.

Fig. 23. Comparison of CPU, GPU and FPGA password recovery efficiency.

SHA512 verification digests are accordingly generated; and
the CPU, GPU and FPGA are used for testing. In the high-
performance reconfigurable board, one chip is configured as
SHA1; one chip is configured as SHA256; two chips are
configured as SHA512; and the CPU and GPU sequentially
crack the tasks of SHA1, SHA256 and SHA512. The test
results are shown in Fig.23.

As seen in Fig.23, the password hit rate of the GPU
and FPGA is much higher than that of CPU in the same
time. Although both the GPU and FPGA hit 28 passwords
in 10,000 s, in the 100 - 5000 s interval, the number of
FPGA hit passwords is higher than that of the GPU, which
is more time sensitive. This result is due to the use of FPGA
reconfigurable features, which can support multiple algo-
rithms or multiple tasks in parallel. Because the hardware
circuit has spatial parallelism, each module has its own cir-
cuit, and the circuits do not affect each other. Although the
CPU has multiple cores and supports multithreading, it is
limited by the architecture, and the computational efficiency
of each core is low. If each core executes an algorithm and
runs independently, the expected computing speed cannot
be achieved. The GPU has many cores, but it is difficult

Fig. 24. FPGA placement of Office 2007 / 2010.

to control. During operation, it can implement only one algo-
rithm and support only one task, which is more suitable for
parallel processing of data. Further, from the Zipf distribution
of the password, it is clear that the multialgorithm and task-
parallel architecture is more suitable for the application of
hash password recovery.

2) APPLICATION-LEVEL RECONSTRUCTION
Here, application-level reconstruction of Office 2007 and
Office 2010 was performed. Both applications used the
SHA1_4 scheme in TABLE 6 to compute the kernel recon-
struction. The number of parallel modules was 7, and the
frequency was 250 MHz. The FPGA placement after recon-
struction is shown in Fig.24.

As seen in Fig.24, the placement of Office 2007 and Office
2010 using the HRCA design method and GALS architecture
is very similar. This is because we divided the applications
reasonably in the computing kernel approach; reconstructed
only the control logic of the algorithm, the communication
module and the verification comparison module; and realized

VOLUME 9, 2021 18107

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

TABLE 17. Algorithm implementation of other boards.

Fig. 25. HRCA-based FPGA + ASIC password recovery algorithm
architecture.

two different applications at a lower cost. This approach
simplifies the development of hardware and highlights the
effectiveness of the HRCA design method.

Similarly, algorithms with the same core hash algorithms,
such as WinZip 128 and WinZip 256, RAR5 and PBKDF2-
HMAC-SHA256, Ms SQL 2012/2014 and SSHA-512,
WordPress, PHPS, and Skype, can be reconstructed in the
same way.

3) BOARD-LEVEL RECONSTRUCTION
In addition, in order to verify the effectiveness of the HRCA
design, the hash algorithm was transplanted to other boards
such as Intel Cyclone V, Huawei FX600 and Xilinx U280.
The specific results are shown in TABLE 17 (the data format
in TABLE 17 is module number/frequency MHz). Among
them, Intel Cyclone V is a low-end board; Xilinx xcku060 is
a mid-end board; and Huawei FX600 and Xilinx U280 are
high-end boards.

It can be seen in TABLE 17 that the hash algorithms of
all boards work at a higher frequency, and 6-98 modules can
be placed for parallel calculation. The resource utilization
rate of each board reaches more than 70%, among which
the resource utilization rate of Cyclone V MD5 is 89.69%;
xcku060 MD5 is 88.20%; FX600 SHA1 is 70.46%; and

U280 SHA256 is 80.88%. The algorithm designed by HRCA
has good portability and can give full play to the computa-
tional performance of different FPGA boards.

V. APPLICABILITY DISCUSSION
This paper mainly studies the hash password recovery algo-
rithm, which is based on logical operation, bit operation and
addition. In addition, its structure is compact, so it is very
suitable for the implementation of HRCA. Second, based on
the HRCA configuration of different computing kernels, hash
algorithms with different models, structures and types can be
realized in very flexible applications. Again, for symmetric
cryptographic algorithms such as AES, SM4, Twofish, and
Serpent, each round can be unfolded to analyze the key
expansion, S-box and data replacement, etc. Using logical
resources, RAMs or LUTs to form a unit kernel in paral-
lel, the approach can form a variety of pipeline algorithms
with different stages. For asymmetric encryption algorithms
including RSA, ECC, and SM2, analysis of modular mul-
tiplication, modular inversion, double point, point addition,
etc., can be used to form a unit kernel with large number of
operations, and different bit-width algorithms can be imple-
mented with control logic. Finally, to further improve the
computational performance, it can also be combined with
HRCA design ideas to implement heterogeneous computing
of FPGAs + ASICs with application-level reconstruction,
as shown in Fig.25. By making full use of the reconfig-
urability of FPGAs and the ultrahigh computational power
of ASICs, each module of the algorithm can be reason-
ably divided, the initialization and comparative verification
of various password recovery algorithms on FPGAs can be
realized, and the core iteration of various algorithms can be
implemented on ASICs to fully save ASIC resources and
improve its computing flexibility.

Cryptographic algorithms are the cornerstone of informa-
tion security, and design methods based on HRCA can also
be used in image and data encryption. For image encryption,
including image parallel encryption [51], a chaotic system
can be used to generate random keys [52] and chaotic image
encryption methods [53], [54] to improve the security and
resistance of the algorithm. In order to improve the speed of
image encryption, a variety of schemes such as the chaotic
communication system [55], chaotic pseudo random number
generator [56], chaos blend DNA coding [57], and chaotic
map image encryption [58]–[61] have been implemented on
FPGAs. Based on this approach, the HRCA method can be

18108 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

used to design and implement various reconfigurable algo-
rithms in the field of image encryption to form a computing
kernel library. In the hardwaremode, different computing ker-
nel combinations are called each time to generate diversified
and variable encryption schemes to improve the security of
image encryption. Moreover, the process of image encryption
is accelerated by hardware to realize a more efficient and
flexible algorithm. For data encryption, the HRCA high-
performance reconfigurable board can be used as the comput-
ing component, and cryptographic algorithms can be used to
coordinately accelerate user authentication, data encryption
transmission and storage. Moreover, embedded platforms can
be built to protect data security and user privacy with crypto-
graphic algorithms to promote the secure development of the
Internet.

Although the HRCA design method has many advantages,
there remain many problems that have not been solved.
First, HRCA is more suitable for computationally intensive
applications, mainly to achieve high-performance scientific
computing. Communication-intensive application focusmore
on data communication and transmission, and the I/O band-
width between modules is the primary consideration. Second,
the extraction and analysis of computing kernels and the
reconstruction and reorganization of unit kernels require a
deep grasp and understanding of domain applications and
mastery of certain hardware technologies. This paper mainly
validates and implements the HRCA design method on an
FPGA. In the domain-oriented application, if the reconfig-
urable chip is specially customized, the computing perfor-
mance can be further improved.

VI. CONCLUSION
A reconfigurable password recovery algorithm based on
HRCA is proposed in this paper. First, through in-depth
analysis of the characteristics of the hash algorithm, the basic
computing kernel set is extracted, and the combination design
is carried out with the unit kernel structure, interconnection
structure and storage structure. Second, the reconstruction of
the computing kernel is completed by using the simulated
annealing algorithm and functional equivalent replacement.
The full pipeline design architecture of the hash algorithm is
given, and the mask rule password algorithm and dictionary
high-speed parsing are used to improve the overall speed of
the password recovery algorithm. Third, the password recov-
ery advanced computing kernel library is presented. With the
algorithm and a control and communication computing kernel
that is multidimensional reconfigurable, an algorithm struc-
ture suitable for the current application is mapped and gen-
erated. Finally, the FPGA is divided into regional resources
to optimize placement and routing in depth, further improv-
ing resource utilization and clock frequency. The experi-
mental results show that this method can reconstruct the
computing kernel scheme with advantages in performance,
resources, power consumption, etc., and can reconstruct a
suitable structure for different FPGAs or applications, reduc-
ing the threshold for parallel hardware design and shortening

the development cycle. Moreover, the designed system has
multidimensional reconfigurability, and the variable structure
significantly improves the recovery efficiency. The password
recovery algorithm based on HRCA has a high hardware
utilization rate, considering the efficiency and flexibility of
the computing.

However, due to the numerous password recovery algo-
rithms, this paper implements only part of the encryption
recovery algorithm. The next step is to complete the imple-
mentation of other password recovery algorithms in order to
increase the types of algorithms supported by the HRCA. The
heterogeneous computing collaboration of FPGA + ASIC
should be further studied to establish an ASIC hardware
computing kernel library and realize a higher-performance
and scalable password recovery algorithm. In addition, how
to effectively apply HRCA to other fields, such as image
encryption and big data security, has yet to be further studied
and explored.

REFERENCES
[1] N. Paladi, C. Gehrmann, and A. Michalas, ‘‘Providing user security guar-

antees in public infrastructure clouds,’’ IEEE Trans. Cloud Comput., vol. 5,
no. 3, pp. 405–419, Jul. 2017.

[2] S. A. Kumar, T. Vealey, and H. Srivastava, ‘‘Security in Internet of Things:
Challenges, solutions and future directions,’’ in Proc. 49th Hawaii Int.
Conf. Syst. Sci. (HICSS), Jan. 2016, pp. 5772–5781.

[3] S. A. Chaudhry, M. S. Farash, H. Naqvi, and M. Sher, ‘‘A secure and
efficient authenticated encryption for electronic payment systems using
elliptic curve cryptography,’’ Electron. Commerce Res., vol. 16, no. 1,
pp. 113–139, Mar. 2016.

[4] N. Katende, C. Wilson, and A. Kibe, ‘‘Enhancing trust in cloud computing
using md5 hashing algorithm and rsa encryption standard,’’ Int. J. Sci. Eng.
Res., vol. 8, no. 3, pp. 550–566, 2017.

[5] V. Nicolls, N.-A. Le-Khac, L. Chen, and M. Scanlon, ‘‘IPv6 security and
forensics,’’ in Proc. 6th Int. Conf. Innov. Comput. Technol. (INTECH),
Aug. 2016, pp. 743–748.

[6] G. Hatzivasilis, I. Papaefstathiou, and C. Manifavas, ‘‘Password hash-
ing competition—Survey and benchmark,’’ IACR Cryptol. ePrint Arch.,
vol. 2015, pp. 1–30, Mar. 2015.

[7] A.-D. Vu, J.-I. Han, H.-A. Nguyen, Y.-M. Kim, and E.-J. Im, ‘‘A homoge-
neous parallel brute force cracking algorithm on the GPU,’’ in Proc. ICTC,
Sep. 2011, pp. 561–564.

[8] K.-C. Lu, A. F. M. Huang, A. Y. S. Su, T.-J. Ding, and C.-N. Su, ‘‘Infor-
mation password recovery with GPU,’’ in Proc. Int. Carnahan Conf. Secur.
Technol. (ICCST), Sep. 2015, pp. 1–5.

[9] R. Hranický, M. Holkovič, and P. Matoušek, ‘‘On efficiency of distributed
password recovery,’’ J. Digit. Forensics, Secur. Law, vol. 11, no. 2,
pp. 79–96, 2016.

[10] A. Abbas, R. Voss, L. Wienbrandt, and M. Schimmler, ‘‘An efficient
implementation of PBKDF2 with RIPEMD-160 on multiple FPGAs,’’ in
Proc. 20th IEEE Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2014,
pp. 454–461.

[11] F. Wiemer and R. Zimmermann, ‘‘High-speed implementation of bcrypt
password search using special-purpose hardware,’’ in Proc. Int. Conf.
ReConFigurable Comput. FPGAs (ReConFig), Dec. 2014, pp. 1–6.

[12] X. Li, C. Cao, P. Li, S. Shen, Y. Chen, and L. Li, ‘‘Energy-efficient
hardware implementation of LUKS PBKDF2 with AES on FPGA,’’ in
Proc. IEEE Trustcom/BigDataSE/ISPA, Aug. 2016, pp. 402–409.

[13] P. Liu, S. Li, and Q. Ding, ‘‘An energy-efficient accelerator based on
hybrid CPU-FPGA devices for password recovery,’’ IEEE Trans. Comput.,
vol. 68, no. 2, pp. 170–181, Feb. 2019.

[14] J. Wu, ‘‘Meaning and vision of mimic computing and mimic security
defense,’’ (in Chinese), Telecommun. Sci., vol. 30, no. 7, pp. 1–7, 2014.

[15] B. Li, Q. Zhou, and X. Si, ‘‘Mimic computing for password recovery,’’
Future Gener. Comput. Syst., vol. 84, pp. 58–77, Jul. 2018.

VOLUME 9, 2021 18109

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

[16] Z. Fan and L. Xing-Guo, ‘‘Design and verification of reconfigurable Web
cloud access device based on smart hybrid storage,’’ in Proc. Int. Conf.
Comput. Inf. Sci., Jun. 2013, pp. 1483–1488.

[17] J. Fu, S. Qiao, Y. Huang, X. Si, B. Li, and C. Yuan, ‘‘A study on the
optimization of blockchain hashing algorithm based on PRCA,’’ Secur.
Commun. Netw., vol. 2020, pp. 1–12, Sep. 2020.

[18] W. Qiu, Z. Gong, Y. Guo, B. Liu, X. Tang, and Y. Yuan, ‘‘GPU-based high
performance password recovery technique for hash functions,’’ J. Inf. Sci.
Eng., vol. 32, pp. 97–112, Jan. 2016.

[19] D. Barbieri, V. Cardellini, and S. Filippone, ‘‘Exhaustive key search on
clusters of GPUs,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops, May 2014, pp. 1160–1168.

[20] R. Chen, Y. Zhang, J. Zhang, and J. Xu, ‘‘Design and optimizations of the
MD5 crypt cracking algorithm based on CUDA,’’ in Proc. Int. Conf. Cloud
Comput., 2014, pp. 155–164.

[21] A. Aggarwal, P. Chaphekar, and R. Mandrekar, ‘‘Cryptanalysis of bcrypt
and SHA-512 using distributed processing over the cloud,’’ Int. J. Comput.
Appl., vol. 128, no. 16, pp. 13–16, Oct. 2015.

[22] C. Ge, L. Xu, W. Qiu, Z. Huang, J. Guo, G. Liu, and Z. Gong, ‘‘Optimized
password recovery for SHA-512 on GPUs,’’ in Proc. 7 IEEE Int. Conf.
Comput. Sci. Eng. (CSE) IEEE Int. Conf. Embedded Ubiquitous Comput.
(EUC), Jul. 2017, pp. 226–229.

[23] M. Dürmuth and T. Kranz, ‘‘On password guessing with GPUs and
FPGAs,’’ in Proc. Int. Conf. Passwords, vol. 9393, Dec. 2014, pp. 19–38.

[24] J. Anish Dev, ‘‘Bitcoin mining acceleration and performance quantifica-
tion,’’ in Proc. IEEE 27th Can. Conf. Electr. Comput. Eng. (CCECE),
May 2014, pp. 1–6.

[25] J. Anish Dev, ‘‘Usage of botnets for high speed MD5 hash cracking,’’
in Proc. 3rd Int. Conf. Innov. Comput. Technol. (INTECH), Aug. 2013,
pp. 314–320.

[26] J. A. Dev, ‘‘On the imminent advent of botnet powered cracking,’’ in Proc.
IEEE 2nd Int. Conf. Collaboration Internet Comput. (CIC), Nov. 2016,
pp. 188–195.

[27] Z. Shi, C. Ma, J. Cote, and B. Wang, ‘‘Hardware implementation of
hash functions,’’ in Introduction to Hardware Security and Trust, vol. 10.
New York, NY, USA: Springer, 2012, pp. 27–50.

[28] J.-w. Kim, H.-u. Lee, and Y. Won, ‘‘Design for high throughput SHA-1
hash function on FPGA,’’ in Proc. 4th Int. Conf. Ubiquitous Future Netw.
(ICUFN), Jul. 2012, pp. 403–404.

[29] S. B. Suhaili and T. Watanabe, ‘‘High throughput evaluation of SHA-1
implementation using unfolding transformation,’’ ARPN J. Eng. Appl. Sci.,
vol. 11, no. 5, pp. 3350–3355, 2016.

[30] S. B. Suhaili and T. Watanabe, ‘‘High-throughput message digest (MD5)
design and simulation-based power estimation using unfolding transfor-
mation,’’ J. Signal Process., vol. 21, no. 6, pp. 233–238, 2017.

[31] L. Ioannou, H. E. Michail, and A. G. Voyiatzis, ‘‘High performance
pipelined FPGA implementation of the SHA-3 hash algorithm,’’ in Proc.
4th Medit. Conf. Embedded Comput. (MECO), Jun. 2015, pp. 68–71.

[32] A.Mohamed andA.Nadjia, ‘‘SHA-2 hardware core for virtex-5 FPGA,’’ in
Proc. IEEE 12th Int. Multi-Conf. Syst., Signals Devices (SSD), Mar. 2015,
pp. 1–5.

[33] A. Al Maashri, L. Pathuri, M. Awadalla, A. Ahmad, and M. Ould-Khaoua,
‘‘Optimized hardware crypto engines for XTEA and SHA-512 for wire-
less sensor nodes,’’ Indian J. Sci. Technol., vol. 9, no. 29, pp. 1–7,
Aug. 2016.

[34] Y. Huo and D. Liu, ‘‘A high-throughput processor for cryptographic hash
functions,’’ J. Commun., vol. 11, no. 7, pp. 702–709, 2016.

[35] H. Mestiri, F. Kahri, B. Bouallegue, and M. Machhout, ‘‘Efficient FPGA
hardware implementation of secure hash function SHA-2,’’ Int. J. Comput.
Netw. Inf. Secur., vol. 7, no. 1, pp. 9–15, Dec. 2014.

[36] M. D. Rote, V. N, and D. Selvakumar, ‘‘High performance SHA-2 core
using the round pipelined technique,’’ in Proc. IEEE Int. Conf. Electron.,
Comput. Commun. Technol. (CONECCT), Jul. 2015, pp. 1–6.

[37] H. E. Michail, G. S. Athanasiou, G. Theodoridis, and C. E. Goutis, ‘‘On the
development of high-throughput and area-efficient multi-mode crypto-
graphic hash designs in FPGAs,’’ Integration, vol. 47, no. 4, pp. 387–407,
Sep. 2014.

[38] H. E. Michail, G. S. Athanasiou, G. Theodoridis, A. Gregoriades, and
C. E. Goutis, ‘‘Design and implementation of totally-self checking SHA-1
and SHA-256 hash functions’ architectures,’’Microprocessors Microsyst.,
vol. 45, pp. 227–240, Sep. 2016.

[39] J. Tyler, R. Daniel, H. Phillip, and Z. Joseph, ‘‘An FPGA architecture for
the recovery ofWPA/WPA2 keys,’’ J. Circuits Syst. Comput., vol. 24, no. 7,
pp. 1–26, 2015.

[40] M. Kammerstetter, M. Muellner, D. Burian, C. Kudera, and W. Kastner,
‘‘Efficient high-speed wpa2 brute force attacks using scalable low-cost
fpga clustering,’’ in Proc. Int. Conf. Cryptograph. Hardw. Embedded Syst.
Berlin, Germany: Springer, 2016, pp. 559–577.

[41] Q. Ding, Z. Zhang, S. Li, and P. Liu, ‘‘Energy-efficient RAR3 password
recoverywith dual-granularity data path strategy,’’ inProc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2019, pp. 1–5.

[42] X. Bai, L. Jiang, J. Yang, Q. Dai, and M. Z. A. Bhuiyan, ‘‘Password recov-
ery for ZIP files based on ARM-FPGA cluster,’’ in Proc. Int. Conf. Secur.,
Privacy Anonymity Comput., Commun. Storage, 2017, pp. 405–414.

[43] Z. Jin and H. Finkel, ‘‘Evaluation of MD5Hash kernel on OpenCL FPGA
platform,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops
(IPDPSW), May 2018, pp. 1026–1032.

[44] F. M. Vallina and S. Gilliland, ‘‘Performance optimization for a SHA-1
cryptographic workload expressed in OpenCL for FPGA execution,’’ in
Proc. 3rd Int. Workshop OpenCL IWOCL, 2015, p. 7.

[45] H. S. Jacinto, L. Daoud, and N. Rafla, ‘‘High level synthesis using vivado
HLS for optimizations of SHA-3,’’ in Proc. IEEE 60th Int. Midwest Symp.
Circuits Syst. (MWSCAS), Aug. 2017, pp. 563–566.

[46] R. Veras, C. Collins, and J. Thorpe, ‘‘On the semantic patterns of passwords
and their security impact,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2014,
pp. 1–16.

[47] W. Han, Z. Li, L. Yuan, and W. Xu, ‘‘Regional patterns and vulnerability
analysis of chinese Web passwords,’’ IEEE Trans. Inf. Forensics Security,
vol. 11, no. 2, pp. 258–272, Feb. 2016.

[48] J. Ma, W. Yang, M. Luo, and N. Li, ‘‘A study of probabilistic password
models,’’ in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 689–704.

[49] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, ‘‘Zipf’s law
in passwords,’’ IEEE Trans. Inf. Forensics Security, vol. 12, no. 11,
pp. 2776–2791, Nov. 2017.

[50] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, ‘‘Targeted online
password guessing: An underestimated threat,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2016, pp. 1242–1254.

[51] X. Wang, L. Feng, and H. Zhao, ‘‘Fast image encryption algorithm based
on parallel computing system,’’ Inf. Sci., vol. 486, pp. 340–358, Jun. 2019.

[52] X. Wang and S. Gao, ‘‘Image encryption algorithm for synchronously
updating Boolean networks based on matrix semi-tensor product theory,’’
Inf. Sci., vol. 507, pp. 16–36, Jan. 2020.

[53] X. Wang and S. Gao, ‘‘Image encryption algorithm based on the matrix
semi-tensor product with a compound secret key produced by a Boolean
network,’’ Inf. Sci., vol. 539, pp. 195–214, Oct. 2020.

[54] Y. Xian and X.Wang, ‘‘Fractal sorting matrix and its application on chaotic
image encryption,’’ Inf. Sci., vol. 547, pp. 1154–1169, Feb. 2021.

[55] E. Tlelo-Cuautle, V. H. Carbajal-Gomez, P. J. Obeso-Rodelo,
J. J. Rangel-Magdaleno, and J. C. Nuñez-Pérez, ‘‘FPGA realization
of a chaotic communication system applied to image processing,’’
Nonlinear Dyn., vol. 82, no. 4, pp. 1879–1892, Dec. 2015.

[56] A. A. Rezk, A. H. Madian, A. G. Radwan, and A. M. Soliman, ‘‘Reconfig-
urable chaotic pseudo random number generator based on FPGA,’’ AEU
Int. J. Electron. Commun., vol. 98, pp. 174–180, Jan. 2019.

[57] V. Muralidharan, S. Arumugham, S. Rethinam, S. Janakiraman,
H. N. Upadhyay, and S. Rajagopalan, ‘‘Chaos blend DNA coding
for image encryption on FPGA,’’ in Proc. Int. Conf. Comput. Commun.
Informat. (ICCCI), Jan. 2018, pp. 1–6.

[58] A. J. Mansor, H. N. Abdalla, and H. T. Ziboon, ‘‘Digital image scrambling
using chaotic systems based on FPGA,’’ in Proc. 3rd Sci. Conf. Electr. Eng.
(SCEE), Dec. 2018, pp. 19–24.

[59] O. A. Aboulseoud and S. M. Ismail, ‘‘FPGA floating point fractional-order
chaotic map image encryption,’’ in Proc. 31st Int. Conf. Microelectron.
(ICM), Dec. 2019, pp. 134–137.

[60] H. A. Abdullah and H. N. Abdullah, ‘‘Fpga implementation of color image
encryption using a new chaotic map,’’ Indonesian J Electr Eng Comput Sci,
vol. 13, no. 1, pp. 129–137, 2019.

[61] E. Tlelo-Cuautle, J. D. Díaz-Mu noz, A. M. González-Zapata,
R. Li, W. D. León-Salas, F. V. Fernández, O. Guillén-Fernández, and
I. Cruz-Vega, ‘‘Chaotic image encryption using hopfield and hindmarsh–
rose neurons implemented on fpga,’’ Sensors, vol. 20, no. 5, pp. 1–22,
2020.

18110 VOLUME 9, 2021

B. Li et al.: Reconfigurable and High-Efficiency Password Recovery Algorithms Based on HRCA

BIN LI received the Ph.D. degree in software
engineering from PLA Strategic Support Force
Information Engineering University, Zhengzhou,
China, in 2018. He is currently working with the
School of Information Engineering, Zhengzhou
University, Zhengzhou. His main research inter-
ests include high-performance computing and
information security.

FENG FENG received the M.S. degree in com-
puter science and technology from Zhengzhou
University, Zhengzhou, China, in 2019, where he
is currently pursuing the Ph.D. degree. His main
research interests include high-performance com-
puting and information security.

XIAOJIE CHEN received the M.S. degree in com-
puter science and technology from Zhengzhou
University, Zhengzhou, China, in 2019, where
he is currently pursuing the Ph.D. degree with
PLA Strategic Support Force Information Engi-
neering University. His main research interests
include high-performance computing and infor-
mation security.

YAN CAO received the Ph.D. degree in com-
puter application technology from PLA Strategic
Support Force Information Engineering Univer-
sity, Zhengzhou, China, in 2013. He is currently
working with the School of Information Engineer-
ing, Zhengzhou University, Zhengzhou. His main
research interests include network security and
parallel computing.

VOLUME 9, 2021 18111

