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ABSTRACT Fruit detection plays a vital role in harvesting robot platforms. However, complicated envi-
ronment attributes such as illumination variation, occlusion, have made fruit detection a challenging task.
A robust YOLOMuskmelon model that is accurate and fast was proposed to solve detection difficulties.
The YOLOMuskmelon model incorporated ReLU activated ResNet43 backbone with new 2,3,4,3,2 residual
block arrangement, spatial pyramid pooling(SPP), complete Intersection over Union (CIoU) loss, feature
pyramid network(FPN), and distance Intersection over Union−NonMaximumSuppression(DIoU−NMS) to
improve detection performance. The obtained average precision (AP) results of YOLOMuskmelon at 89.6%
is greater than YOLOv3 at 82.3%, YOLOResNet50 at 85.5%, but less than YOLOv4 at 91.6%. However,
the detection speed of YOLOMuskmelon at 96.3 frame per second(fps) outperformed YOLOv3 at 56.6fps,
YOLOv4 at 54.1fps and YOLOResNet50 at 71.2fps. Meanwhile, the YOLOMuskmelon which is 56.1%
faster than YOLOv4 model showed a better generalization and real−time fruit harvesting robots prospect.

INDEX TERMS YOLOMuskmelon, fruit detection, speed and accuracy, complicated environment,
harvesting robots.

I. INTRODUCTION
Robotic harvesting offers solution to the expensive cost of
manual labor, growing demand for food, increasing fruit qual-
ity and so on. With these, there have been growing interest
in the application agricultural robots for harvesting fruit and
vegetables over the years [1]. Meanwhile, fruit detection
plays an important part in harvesting robots, and the detection
of fruit for harvest purpose depends on accuracy and speed.
However, fruit detection is generally influenced by many
factors such as illumination variation, occlusions, including
cases when the fruit exhibits a similar visual appearance as
its background. Therefore, a robust well-generalized fruit
detection model is necessary to overcome these challenges.

Muskmelon as a case study for fruit detection in this paper
provides essential nutrients such as vitamin A, vitamin C and
several health benefits to man [2]. Meanwhile, muskmelon
matures more quickly in moist, warm weather than cool
conditions. The appearance, smell, touch, and maturity time
frame are the traditional measures used to identified matured
muskmelons. The event that happens during maturity stages
is that the background color of the fruit turns from green
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to yellow, the stem breaks (slips) away from the vine eas-
ily and the netting gets coarse and rough during maturity
stages. These have made muskmelon detection very task-
ing in addition to its complicated environment conditions
mentioned earlier particularly occlusion, which are stems
occlusion, leaves occlusion as well as muskmelon overlap.
Deep learning methods have made considerable progress to
tackle the challenges of fruit detection.

Fruit detection using deep learning have been investigated
in numerous studies by Shi et al. [3], Li et al. [4],
Kirk et al. [5], Liu et al. [6], Lin et al. [7], Vasconez et al. [8]
and so on. Although good performance in their application
were achieved, still faces major challenges of tradeoff
between detection speed and accuracy i.e. higher accu-
racy but slower and lower accuracy but faster. Furthermore,
Koirala et al. [9] summarized the overview of fruit detec-
tion. Sa et al. [1] reported a better fruit detection results
including rock-melon at F1 of 84.8% experimented on the
faster regional-convolutional neural network (Faster R-CNN)
[10] detector. Nevertheless, the detection of small fruits is
difficult and its speed still requires improvement for real-time
harvesting robot. Bargoti and Underwood et al. [11] obtained
the F1 of 90% on fruit detection in orchards using Faster R-
CNN model, but observed missed fruit detection within the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 15221

https://orcid.org/0000-0003-0011-6313
https://orcid.org/0000-0003-0261-4068


O. M. Lawal: YOLOMuskmelon: Quest for Fruit Detection Speed and Accuracy Using Deep Learning

FIGURE 1. ResNet structure [14].

tight clusters of fruits. Zheng et al. [12] reported an average
precision(AP) of 88.8% at detection speed of 40 frame per
second(fps) on muskmelon detection based on YOLOv3 [13]
and AP of 87.36% at 13fps based on ResNet50 model [14].
However, the muskmelons were not detected in highly
occluded condition, and detection speed need improvement
to support harvesting robots. According to Koirala et al. [15],
a single−stage deep learning detector such as You Only Look
Once (YOLO), Single Shot Detector (SSD) [16] is faster than
a two−stage detector such as Faster R-CNN with similar
accuracy. Therefore, the optimization of a single−stage deep
learning architecture for speed and accuracy is a contribution
to the development of robust fruit detection, to foster the
performance of harvesting robots.

YOLOv3 [13] and YOLOv4 [17] belonging to a
single−stage deep learning detector are popular real−time
object detectors in computer vision. They directly predict
the bounding boxes and their corresponding classes in a
single network. In comparison, YOLOv3 applied DarkNet53
backbone with Leaky ReLU [18] activation, feature pyramid
network (FPN) [19] as Neck, binary cross-entropy loss for
each label and predicts objects in three different scales, while
YOLOv4 is composed of CSPDarknet53 backbonewithMish
activation, spatial pyramid pooling (SPP) [20], path aggre-
gation network (PANet) as Neck [21] and YOLOv3 Head.
In addition, YOLOv3’s accuracy and speed were respec-
tively improved by 10% and 12% in YOLOv4. Neverthe-
less, there are few studies on muskmelon detection using
improved YOLOv3 with ResNet framework backbone, and
deep learning findings on fruit detection using YOLOv4 are
limited.

He et al. [14] proposed state-of-the-art ResNet. The skip
connection or shortcut connection introduced into Fig. 1 was
applied to solve drops off from saturated accuracy for deeper
neural network. The 1 × 1 convolution layers are added to
the beginning (conv layer1) and end (conv layer 3) of the
network, whereby reducing the number of parameters with-
out network performance degradation. ResNet is an excel-
lent object detection compared to VGGNet, SqueezeNet,
InceptionV4 and DenseNet according to Zheng et al. [12].

This paper proposed a robust YOLOMuskmelon model
that is accurate and fast to solve the challenges encoun-
tered by fruit detection. The method incorporated ResNet43

backbone [14] with new residual block 2,3,4,3,2 arrange-
ments into modified YOLOv3 [13] for deeper network
and rich features extraction. The backbone was activated
with rectified linear unit (ReLU) for non-linearity. Mean-
while, SPP, FPN, complete Intersection over Union (CIoU)
loss, and distance Intersection over Union−Non Maxi-
mum Suppression(DIoU−NMS) [22] were added to the
YOLOMuskmelon model to improve detection performance.
The exploratory studies on YOLOv3 and YOLOv4 for
muskmelon fruit detection was experimented and com-
pared with YOLOMuskmelon. The results showed that
YOLOMuskmelon can achieve an impressive detection accu-
racy and real−time detection speed compared to other state-
of-art detection algorithms. The main contributions of this
paper is to develop a robust fruit detection algorithm that
is accurate and fast to detect muskmelon under different
environments, and applicable for harvesting robots.

The remainder of this paper is organized as follows:
Section II proposes the muskmelon fruit detection model.
Section III describes the tested results and discussion of the
proposed method, and Section IV draws conclusions with
future work plan.

II. METHODOLOGY
A. DATASET DETAILS
The images used in this paper were captured using dig-
ital camera with resolution of 3968 × 2976 pixels and
collected from the greenhouse in wanghaizhuang village,
Houcheng township, Taigu county, Shanxi Province, China
under natural daylight conditions, including leaf occlusion,
stem occlusion, illumination variation, and overlap distur-
bances. Fig. 2 shows some images from the dataset under nat-
ural daylight. A total of 410 muskmelon images were taken,
stored in JPG format and randomly divided into 80% training
set and 20% test set. A graphical image annotation tool called
labelImg (https://github.com/tzutalin/labelImg) was applied
to hand label all the ground truth bounding boxes, and the
annotation files saved in YOLO format to complete dataset
construction. The YOLO format annotation contains object
class, coordinates, height and width. Meanwhile, the bound-
ing boxes were drawn by the supposed shape depending on
what the eyes can see as depicted in Fig. 3 without minding
the highly leaves occlusion and other disturbing nature of the
images. Fig. 3 displays samples of the annotation principle of
the images in the constructed dataset. Finally, the annotated
muskmelon images were checked thoroughly to ensure that
no unannotated class was missing out. A total of 838 bound-
ing boxes were derived from the 330 images in the training
set and 198 bounding boxes from 80 images in the test set.

B. YOLOMUSKMELON MODEL
The overview of the proposed YOLOMuskmelon model
is shown in Fig. 4. The 43−layers of ResNet43 is the
backbone of YOLOMuskmelon which replaces the Dark-
Net53 backbone of YOLOv3. The new residual block of
ResNet43 backbone was arranged as 2,3,4,3,2 in order to
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FIGURE 2. Sample of images in datasets (a) leaves occlusion, (b) stems occlusion, and (c) illumination variation.

FIGURE 3. Annotation principle of images in dataset (a) small, medium and large targets, (b) targets under occlusion, (c) targets
under occlusion and illumination variation.

improve the detection speed and promote deeper network
towards detection accuracy without vanishing gradient. The
main reason for the integration of ResNet43 backbone into
YOLOMuskmelon was to allow training of much deeper net-
works, solve network degradation problem, avoid overfitting,
accelerates the training speed, and promotes faster network
convergence. Meanwhile, shortcut connection of ResNet43 is
non−linear function which capture patterns in complicated
data before passing to the next layer for feature mapping,
while DarkNet53’ shortcut is linear activated. The designed
1×1 convolution bottleneck within the ResNet43 backbone is
used to reduce complexity and number of parameters without
performance degradation. ReLU [18] activation function was
applied to each layer of the ResNet43, because it is compu-
tationally efficient, overcomes vanishing gradient problem,
promote fast training and better performance. Generally, acti-
vation function plays a vital role in the performance of every
deep neural network by introducing non-linearity.

The non-maximum suppression (NMS) is a widely
used algorithm to select one entity (i.e. bounding boxes)
out of many overlapping entities by removing redundant
detections of multiple bounding boxes in order to find
the best match. The DIoU−NMS was applied to the
YOLOMuskmelon, because it considered overlap area and
distance between two central points of bounding boxes
according to Zheng et al. [22]. The original front detection

layers (FDL×3) of YOLOv3 [13] was pruned to FDL×2 in
the YOLOMuskmelon for speed detection enhancement. The
FPN was adopted as the Neck to get feature pyramids in
YOLOMuskmelon, which enables models to generalized
very well on object scaling. Furthermore, YOLOMuskmelon
used CIoU loss function [22] to address bounding boxes
regression loss for a faster convergence and better
performance.

The purpose of adding the SPP network [20] shown
in Fig. 4 to YOLOMuskmelon is for the optimization of
muskmelon fruit detection. SPP network is basically a feature
enhancement module, which extracts the main information
of the feature map and performs stitching. A situation of
extracted feature map being blurred, leading to inaccuracies
or loss of detection. The SPP network helps to avoid missed
target fruit detection and inaccuracies. SPP extract both the
multiscale global and local features of the same detection
stage.

C. EXPERIMENT SETUP AND EVALUATION
The models training and testing were implemented on
DarkNet platform, computer with the following specifica-
tions: Intel-Core i7-8700 CPU @ 64-bit 3.20 GHz, 16 GB
RAM, NVIDIA GeForce GTX 1080Ti GPU, CUDA v10.2,
cuDNN v7.6.5, OpenCV v4.2.0. The ablation studies on
different modification of YOLOMuskmelon was compared
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FIGURE 4. Overview of YOLOMuskmelon detection model.

TABLE 1. Details of Trained Model.

TABLE 2. Ablation studies’ results of YOLOMuskmelon.

with YOLOResNet50, YOLOv3, and YOLOv4. The dif-
ferent modifications of YOLOMuskmelon were represented
by model YOLOLeaky, YOLOMish, YOLOSwish, and
YOLOReLU, whose ResNet43 backbone were respectively
activated with Leaky, Mish, Swish, and ReLU. And all the
modified YOLOMuskmelon models incorporated the same
SPP network, FPN Neck and CIoU loss function. The models
were trained and tested according to details shown in Table 1.

The size of the anchor boxes was counted from the anno-
tated dataset using k-means clustering algorithm before mod-
els training. The generated nine anchor boxes were embedded
into the models according to the three scales of detection
layer (52 × 52, 26 × 26 and 13 × 13 feature). The anchors
were assigned to the model configuration files individually

FIGURE 5. P−R curves for different modification of YOLOMuskmelon.

in descending order of dimension, from the first scale to
the third scale in order to improve the muskmelon fruit
detection model. All the models receive an inputs images
of 416 × 416 pixels, learning rate of 0.001 to reduce train-
ing loss with iterations between 0 and 4000, and batch and
subdivision of 64 and 32 respectively to reduce the mem-
ory usage. The momentum and weight decay were set to
0.9 and 0.0005 respectively. Meanwhile, random initializa-
tion method was used to initialize the weights for training
YOLOMuskmelon and YOLOResNet50, while the official
pre-trained weights was used for training YOLOv3 and
YOLOv4 model.

The models were evaluated using Precision, Recall,
F1-score and AP. Precision is the ratio of the number of
correctly detected muskmelon to the total number of detected
muskmelon, Recall is the ratio of the number of correctly
detected muskmelon to the total number of muskmelon in
the dataset, and F1-score is simply the trade-off between
the Precision and Recall to show the performance of the
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FIGURE 6. Tested image result for different modification of YOLOMuskmelon (a) YOLOLeaky, (b) YOLOMish, (c) YOLOSwish, and (d) YOLOReLU.

FIGURE 7. SPP network added impact on (a) YOLOv3, (b) YOLOv4, (c) YOLOResNet50, and (d) YOLOMuskmelon.

trained models. The calculation parameters are shown in
Eq. (1)- (3).

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

F1 =
2× Recall× Precision
Recall+ Precision

(3)

where, TP is the True Positive (correct detections), FN is
False Negative (missed detections), and FP is the False
Positive (incorrect detections). AP is the Average Precision
that describes the overall performance of the model under
different confidence thresholds, defined in Eq. (4)

AP =
∑
n

(rn+1 − rn) max
r̃ :r̃3rn+1

p (r̃) (4)

where p (r̃) is the measured precision at recallr̃

III. RESULTS AND DISCUSSION
A. ABLATION STUDIES ON YOLOMUSKMELON
The obtained model weight size of different modification
of YOLOMuskmelon is 98.1MB. The ablation study is
necessary to determine the effect of different activation
functions on YOLOMuskmelon model. From the results
of ablation studies shown in Table 2, the F1 score of
YOLOLeaky activated with Leaky is 83%, YOLOMish
activated with Mish is 84%, YOLOSwish activated with
Swish is 84%, and YOLOReLU activated with ReLU
is 84%. With the F1 score showing no significant dif-
ference between the models, the AP of YOLOReLU at
89.6% is greater than YOLOSwish at 88.5%, YOLOMish
at 88.3% and YOLOLeaky at 86.3%. The AP is consid-
ered more accurate compared to the F1 score, because it
displays the Precision−Recall (P−R) relationship globally.

The P−R curves set at 50% IoU threshold for different
activations of YOLOMuskmelon is shown in Fig. 5. Mean-
while, P−R curve with a better performance is expected
to have a greater area under curve (AUC). YOLOReLU
model shows a remarkable performance than other models.
The level of AP performance among the models is measure
as YOLOReLU>YOLOSwish>YOLOMish>YOLOLeaky.
This is an indication that ReLU activation function
in YOLOReLU model is best compatible with the
ResNet43 backbone, which requires further investigation.
The visualization of the image tested under different mod-
ification of YOLOMuskmelon model is shown in Fig. 6 for
justification. Themodels were able to detect the same number
of muskmelon target in the image, except for some little
variation observed with their confidence percentages. Nev-
ertheless, YOLOMuskmelon showed robustness after being
tested on different environments.

The obtained detection speed in fps tested on differ-
ent modification of YOLOMuskmelon model shows no
significant difference, as the speed of YOLOLeaky is
96.6fps, YOLOMish is 96.3fps, YOLOSwish is 96.1fps and
YOLOReLU is 96.3fps. The obtained detection speed results
are due to no changes in their models’ weight size. Having
achieved an average IoU greater than 50% on all the tested
models shows that their detection performance is good, but
model YOLOReLU stands selected to represent the YOLO-
Muskmelon due to its AP result.

B. YOLOMUSKMELON AGAINST OTHER MODELS
Fig. 7 shows that the undetected target muskmelon
in Fig. 7(a) was found detected in Fig. 7(b), Fig. 7(c),
and Fig. 7(d). This is as a result of SPP network
added to YOLOv4, YOLOResNet50 and YOLOMuskmelon,
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TABLE 3. Compared performance difference between models.

FIGURE 8. P−R curves difference between models.

unlike YOLOv3. SPP enhancement support separate out
the most important features from the model backbone
[14]. The compared findings shown in Table 3 between
models indicated that YOLOMuskmelon hold the least
weight size of 98.1MB compared to YOLOv3 at 234MB,
YOLOv4 at 244MB, YOLOResNet50 at 158MB. For
this reason, YOLOMuskmelon detection speed of 96.3fps
is faster than YOLOv3 at 56.6fps, YOLOv4 at 54.1fps
and YOLOResNet50 at 71.2fps. This is an excellent
achievement. The obtained F1 score in Table 3 shows 1%
difference between the models as the measured value of
YOLOv4>YOLOMuskmelon>YOLOResNet50>YOLOv3.

Furthermore, the tested AP in Table 3 supported by P−R
curves shown in Fig. 8 indicated that YOLOv4 at 91.6% is

greater than YOLOMuskmelon at 89.6%, YOLOResNet50 at
85.5%, and YOLOv3 at 82.3%. With these results, YOLO-
Muskmelon outperformed YOLOv3 and YOLOResNet50,
but has AP of 2% less than YOLOv4 model. This is a case
of tradeoff between detection accuracy and speed. How-
ever, YOLOMuskmelon detection speed is 56.1% faster than
YOLOv4 through the calculated percentage difference. The
application of higher grade GPU or reduced image resolution
to YOLOMuskmelon would further improve the detection
speed.

In comparison against other reported work, our
YOLOMuskmelon detection model outperformed
YOLOv3−DarkNet53 at AP of 88.93%, detection speed
of 40fps and RetNet−ResNet50 at AP of 87.36%, detection
speed of 13fps [12], and rock−melon detection [1], in spite
of the model being tested under complicated environment.
Therefore, YOLOMuskmelon detection model could bet-
ter generalize and perform excellently well for real−time
detection, which is applicable for harvesting or picking
robots.

C. FEATURE MAP VISUALIZATION
Understanding the mechanism of the deep neural network
clearly tends to be very difficult. Nevertheless, some fea-
tures visual clues captured were presented in this section.
To study the effectiveness of YOLOMuskmelon detection
model, some of the feature maps obtained from different last
convolutional layers of 208 × 208, 104 × 104, 52 × 52,
26 × 26 and 13 × 13 are shown in Fig. 9(a)–(e) randomly,
and compared with YOLOResNet50 model. These layers
also correspond to different detection scales provided if all
is considered. The FPN embedded YOLOMuskmelon model
received the three scales detections from 52 × 52, 26 × 26
and 13 × 13 feature vector. The first feature map shows that
only the regions corresponding to the headmost muskmelon
was activated. As the network goes deeper from one acti-
vated feature map to another, the previous unseen regions are
present in the following activated featuremap. Combining the

FIGURE 9. Feature map of convolution layers at scale (a) 208 × 208, (b) 104 × 104, (c) 52 × 52, (d) 26 × 26, (e) 13 × 13.
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results from different scales as used in this paper, the targeted
muskmelons were detected by the model. Fig. 9 shows that
the YOLOMuskmelon model’s filters learned some infor-
mation of different directions, which is responsible for its
outstanding performance. It can better be explain using the
presented results in Table 2, Table 3, Fig. 5 and Fig. 8.

IV. CONCLUSION AND FUTURE WORK
The accurate and speed detection of muskmelon fruit is
of great significance to the harvesting and picking robots.
A robust YOLOMuskmelon model was proposed in this
paper to solve fruit detection challenges. The method incor-
porated 2,3,4,3,2 block arrangements of ResNet43 backbone
with ReLU activation for deeper network, in addition to
spatial pyramid pooling(SPP) network for detection accu-
racies, feature pyramid network(FPN) for feature pyramids
extraction, distance Intersection over Union−NonMaximum
Suppression(DIoU−NMS) for detection efficiency and accu-
racy, and complete Intersection over Union (CIoU) loss for
better performance and faster convergence. The ablation stud-
ies on different modification of YOLOMuskmelon showed
that ReLU activated function performed better than Leaky,
Mish and Swish with respect to average precision (AP). This
is an indication that ReLU activation is better compatible
with ResNet framework, call for future studies. The com-
pared AP findings showed that YOLOMuskmelon at 89.6%
is greater than YOLOv3 at 82.3%, YOLOResNet50 at 85.5%,
but not with YOLOv4 at 91.6%. However, the detection
speed of YOLOMuskmelon at 96.3 frame per second(fps)
outperformed YOLOv3 at 56.6fps, YOLOv4 at 54.1fps and
YOLOResNet50 at 71.2fps. From all indications, our YOLO-
Muskmelon is 56.1% faster than YOLOv4, which is highly
prospective for better generalization and real−time fruit
detection. This is applicable for the picking and harvesting
robots. Furthermore, our YOLOMuskmelon model can be
used for other fruits detection, as it also outperformed other
existing state of the art model. Nevertheless, further studies
are necessary to improve the accuracy performance of our
YOLOMuskmelon model.

In the future, backbones such as MobileNet, DenseNet
EfficientNet and so on would be experimented to study
reasons why the applied ReLU activation function per-
formed better than other activation functions in our
YOLOMuskmelon, and to also improve the fruit detection
performance.
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