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ABSTRACT This article proposes a disturbance observer-based Sliding Mode Control (SMC) approach
for the robust synchronization of uncertain delayed chaotic systems. This is done by, first, examining and
analyzing the electronic behavior of the master and slave Sprott chaotic systems. Then, synthesizing a robust
sliding mode control technique using a newly proposed sliding surface that encompasses the synchronization
error between the master and slave. The external disturbances affecting the system were estimated using
a disturbance observer. The proof of the semi-globally bounded synchronization between the master and
slave was established using the Lyapunov stability theory. The efficiency of the proposed approach was
first assessed using a simulation study, then, experimentally validated on a data security system. The
obtained results confirmed the robust synchronization properties of the proposed approach in the presence
of time-delays and external disturbances. The experimental validation also confirmed its ability to ensure
the secure transfer of data.

INDEX TERMS Sliding mode control, robust synchronization control, chaotic systems, disturbance
observer, data security.

I. INTRODUCTION
Due to their valuable characteristics, chaotic systems have
long attracted the consideration of investigators world-
wide [1]–[3]. The nonlinear, aperiodic and unstable character-
istics of these systems result in their widespread applications
in various fields, including secure communication [4], [5].
In chaos theory, the butterfly effect refers to the sensitive
dependence on initial conditions, in which a small variation
in one state can result in more bigger variations in the later
state. In many applications, the chaotic behavior is undesir-
able because of the fact that even small disturbances may
cause the states to diverge exponentially. Therefore, the chaos
phenomenon should be avoided or completely suppressed in
practice [6]–[9]. In the past two decades, chaos synchroniza-
tion has generated important interests in applied fields such
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as secure communication [10], [11], electronic circuits [12],
optical chaotic communication [13], chaotic CO2 lasers [14],
chaotic finance system [15], a periodically intermittent con-
trol [16], partial discharge in power cables [17], cryptosys-
tems [18] and image encryption [19]. As a result, various
control techniques have been proposed for the synchroniza-
tion of chaotic systems [20]–[23]. However, most of the above
mentioned approaches have neglected the effects of external
disturbances and modeling inaccuracies, thus making them
hard to implement in practice [24], [25].Whereas the external
disturbances always are entered to all of the practical sys-
tems in engineering, it is important to take into consideration
their effect in designing of the control methods. For this
reason, the disturbance-observer is adopted as an impera-
tive technique to approximate and compensate this external
influence, which can adversely affect the performance of the
system [26], [27]. Therefore, some significant disturbance
observers have been presented in [28]–[31].
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More recently, various control approaches such as adaptive
control, slidingmode control (SMC), active control, feedback
linearization control, fuzzy-logic control, output-feedback
control and backstepping control have been considered in
chaos control and synchronization [32]–[36]. For instance,
an algorithm for the synchronization of chaotic systems using
linear and nonlinear feedback control has been proposed
in [37]. In that approach, a nonlinear term is considered
to eliminates the nonlinear part of the syste’s error and a
linear term is used to stabilize the resultant linear system.
In [38], dynamical behavior of chaotic flow is examined
via eigenvalue, phase portraits, bifurcation figure and Lya-
punov exponents. Two nonlinear control approache have been
designedin [39]. The first method is a finite-time stability
active control considering certain parameters and the second
one is a finite-time boundless adaptive control technique
which is capable to accommodate parametric uncertainties.
A practical-link-based fuzzy brain emotional learning net-
work, where its parameters have been adjusted online by
adaptation laws, was proposed in [40] for the classifica-
tion and synchronization control of chaotic systems. In [41],
to synchronize the multi-scroll Chen chaotic systems with
external disturbances in secure communication, the polyno-
mial fuzzy-model-based procedure have been designed. A
disturbance observer based feedback linearization approach
has been proposed in [42] for the control of chaotic sys-
tems in the presence of external excitations. With the aim
of providing the safe communication of time-delay systems,
a control paradigm is suggested in [43] according to the
programmable micro-controllers with digital transmission
line.In [44], energy analysis of the Sprott chaotic system is
done based on transformation of the Sprott system into the
Kolmogorov-type system. Then, according to this analysis,
a new four-dimension chaotic system with hidden equilib-
rium is introduced. Although, it can be observed that no
control procedure is applied for synchronization of this
system. In [45], a new chaotic system with interesting char-
acteristic is derived from Sprott chaotic system, but, the syn-
chronization problem is ignored. Additionally, by analyz-
ing the researches [46]–[49] which are related to Sprott’s
chaotic system, it can be found that no comprehensive work is
investigated and proposed the synchronization problem in the
existence of parametric uncertainty, time-delay and external
disturbance for Sprott’s chaotic system.

To the best of the author’s knowledge, the problem of
semi-globally bounded synchronization control of Sprott
chaotic systems subject to external disturbances, time-delays
and parametric uncertainties, has received little consideration
in the literature. It is still an open and challenging research
problem. This article designs a disturbance observer-based
sliding mode control scheme for the synchronizationof the
Sprott chaotic system. Its mai contributions are as follows:

- A semi-globally robust sliding mode control to ensure
the synchronization between the master and slave of
the Sprott chaotic system in the presence of external
disturbances, time-delays and parametric uncertainties.

- A sliding mode approach synthesized using a novel slid-
ing surface that encompasses the synchronization error
between the master and slave.

- Experimental validation of the proposed approach using
a data security transmission system.

The remainder of the paper is organized as follows. The
Sprott chaotic system is introduced in section II. The pro-
posed disturbance observer-based sliding mode control is
detailed in section III. The performance of the proposed syn-
chronization approach is assessed using a simulation study in
section IV. Experimental validation on a data security system
is highlighted in section V. Some concluding remarks are
finally provided in section VI.

II. PRELIMINARIES AND ELECTRONIC CIRCUIT OF THE
SPROTT CHAOTIC SYSTEM
This section briefly describes the dynamic equations of the
Sprott chaotic system and presents its electronic circuit.
It also depicts the time histories of the state variables of
the Sprott chaotic system obtained from both the numerical
simulation and electronic circuit.

A. DESCRIPTION OF THE SPROTT CHAOTIC SYSTEMS
The Sprott chaotic system can be modeled with three-
dimensional autonomous differential equations as
follows [50]:

ẋ = y,

ẏ = z,

ż = −ax + y2 − bz. (1)

where [x(t), y(t), z(t)] are the state variables of the chaotic
system and a, b are constant parameters. In the above equa-
tion, the constant parameters are selected as a = 1, b = 2.02.
Also, the initial conditions are considered as x0 = 4, y0 = 2
and z0 = 0.5. The time responses and phase portraits of state
variables of system (1) using MATLAB/Simulink software
are shown in Figure 1 and Figure 2, respectively.

B. ELECTRONIC CIRCUIT OF THE SPROTT CHAOTIC
SYSTEM
The Electronic circuit of the Sprott chaotic system is shown
in Figure 3. The circuit is designed using the following elec-
tronic devices: resistors, capacitors, AD633 analog multiplier
ICs and TL081 OPAMPs.

The circuit equations are found as

ẋ =
1

R8C1
y,

ẏ =
1

R9C2
z,

ż = −
1

R6C3
x +

0.1
R5C3

y2 −
1

R7C3
z. (2)

The values of passive devices are chosen as Ci =
10nF(∀i = 1, 2, 3),R1 = 10k,R2 = 40k,R3 = 4k and
R4 = 19.802k . The TL081OPAMPs are powered by±12Vdc
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FIGURE 1. Time histories of the state variables: (a)x, (b)y, (c)z .

FIGURE 2. Phase portrait of the system: (a)x to y, (b)x to z,

(c) y to z, (d )x − y − z .

power supply. Equation (2) is obtained using the following
procedure:

1) Partitioning the circuit diagram into the three parts
depicted in Figure 4.

2) Obtaining the outputs x, y, z as follows:

x
y
=
−R3
R1
×
−1

(R8C1)s
R3=R1
−→

x
y

=
1

(R8C1)s
⇒ s× x =

1
R8C1

y (3)

y
z
=
−R4
R2
×
−1

(R9C2)s
R4=R2
−→

y
z

=
1

(R9C2)s
⇒ s× y =

1
R9C2

z (4)

FIGURE 3. Electronic circuit of the Sprott chaotic system.

FIGURE 4. Partitions of the electronic diagram of Sprott chaotic system.

z =
−1

(R5C3)s
w+

−1
(R6C3)s

x +
−1

(R7C3)s
z
w=−y2/10
−→

s× z =
0.1
R5C3

y2 +
−1
R6C3

x +
−1
R7C3

z (5)

3) Using the inverse Laplace transform to derive the circuit
equations (2).

The dynamics of the state variables of system (1) emanat-
ing from the designed circuit are depicted in Figure 5. Note
that the physical energy of capacitors Ci(∀i = 1, 2, 3) can be
calculated based on equations Ei = 1

2CiV
2
i (∀i = 1, 2, 3),

which are displayed in III-A. It is worth noting that the
op-amps are almost ideal, hence the capacitor energies can
be calculated as E1 = 1

2C1x2, E2 = 1
2C2y2 and E3 = 1

2C3z2.

III. DESIGN OF A DISTURBANCE OBSERVER-BASED
SEMI-GLOBALLY ROBUST SYNCHRONIZER FOR THE
SPROTT CHAOTIC SYSTEM
In what follows, a robust sliding mode synchronizer based
on the disturbance observer has been proposed for the Sprott
chaotic system (1) under time-delay in states, bounded exter-
nal disturbances and parametric uncertainty. For this reason,
the control procedure is divided into two steps. In the first
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FIGURE 5. Time histories of the state variables obtained from the circuit:
(a)x, (b)y, (c)z .

FIGURE 6. Time histories of the physical Energy of the capacitors: (a)
c1, (b)c2, (c) c3.

step, the synchronization problem is investigated. Therefore,
one disturbance observer for the estimation of the exterior
perturbation is designed.

A. PROBLEM DESCRIPTION AND PRELIMINARIES
In this part, the synchronization purpose between two identic
systems with distinct initial conditions are examined. The
first system is named master whereas the second system
is named as slave. The master system of the Sprott under
time-delay can be described as follows:

ẋm = ym (t) ,

ẏm = zm (t) ,

żm = −axm(t)+ y2m(t)− bzm(t − τ ), (6)

and the slave system of Sprott under time-delay and paramet-
ric uncertainty is determined as

ẋs = ys(t)+ d1 + u1,

ẏs = zs(t)+ d2 + u2,

żs = −(a+1a)xs(t)+ y2s (t)− (b+1b)

× zs(t − τ )+ d3 + u3, (7)

where [xm, ym, zm]T and [xs, ys, zs]T are the states of the
master and slave systems, respectively. d1, d2, d3 are the con-
strained disturbances, τ is time delay, the terms 1a and 1b
are the parametric uncertainties and u1, u2, u3 are the control
inputs to be designed. Defining D1 = d1, D2 = d2 and
D3 = d3 − 1axs (t) − 1bzs(t − τ ) and substituting those
expressions in Eq. (7), yields:

ẋs = ys(t)+ D1 + u1,

ẏs = zs(t)+ D2 + u2,

żs = −axs(t)+ y2s (t)− bzs(t − τ )+ D3 + u3, (8)

Assumption 1: For the external disturbances, without less
of generality, the following inequality exists [51]:∥∥Ḋi(x, t)∥∥ ≤ δi ∀i = 1, 2, 3 (9)

where δi′s are known and positive constants.
Lemma1: For the bounded initial conditions, if there exists

a continuous positive-definite Lyapunov function V (x) sat-
isfying π1(‖x‖) ≤ V (x) ≤ π2(‖x‖) such that V̇ (x) ≤
−κV (x) + c, where π1, π2: Rn

→ R are class K functions
and c is a positive constant, then the solution x(t) is uniformly
bounded [52].

B. DESIGN OF A DISTURBANCE OBSERVER-BASED
SEMI-GLOGALLY ROBUST SYNCHRONIZER CONTROL FOR
THE SPROTT CHAOTIC SYSTEM
In this section, a disturbance observer is developed to estimate
the exterior perturbations affecting the chaotic systems (6)
and (7). To this end, define the synchronization error between
the master and slave systems as follows:

e1 = xs − xm,

e2 = ys − ym,

e3 = zs − zm, (10)

Taking the time-derivative of the equation (10) yields

ė1 = ẋs − ẋm,

ė2 = ẏs − ẏm,

ė3 = żs − żm, (11)

where substituting (6) and (7) into (11), one obtains

ė1 = ys(t)+ D1 + u1 − ym(t),

ė2 = zs(t)+ D2 + u2 − zm(t),

ė3 = −axs (t)+ y2s (t)− bzs (t − τ)+ D3 + u3
+axm (t)− y2m (t)+ bzm(t − τ ), (12)

After simplifications and applying (10) in (12), one
achieves

ė1 = e2 + D1 + u1,

ė2 = e3 + D2 + u2,

ė3 = −ae1 − be3τ + y2s (t)− y
2
m (t)+ D3 + u3. (13)
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where e3τ = zs(t− τ )−zm(t− τ ). In order to design the dis-
turbance observer, a supporting variable has been introduced
as

ηi = Di − kiei. ∀i = 1, 2, 3 (14)

where ki > 1,∀i = 1, 2, 3. Taking the time-derivative of (14)
gives

η̇1 = Ḋ1 − k1ė1,

η̇2 = Ḋ2 − k2ė2,

η̇3 = Ḋ3 − k3ė3, (15)

Now, by substituting (13) into the above equation yields

η̇1 = Ḋ1 − k1ė1 = Ḋ1 − k1(e2 + D1 + u1),

η̇2 = Ḋ2 − k2ė2 = Ḋ2 − k2(e3 + D2 + u2),

η̇3 = Ḋ3 − k3ė3 = Ḋ3 − k3(−ae1 − be3τ + y2s (t)

−y2m (t)+ D3 + u3), (16)

By considering the equation (14), we have

Di = ηi + kiei ∀i = 1, 2, 3 (17)

where by substituting (17) into (16), it results

η̇1 = Ḋ1 − k1ė1 = Ḋ1 − k1(e2 + η1 + k1e1 + u1),

η̇2 = Ḋ2 − k2ė2 = Ḋ2 − k2(e3 + η2 + k2e2 + u2),

η̇3 = Ḋ3 − k3ė3 = Ḋ3 − k3(−ae1 − be3τ + y2s (t)

−y2m(t)+ η3 + k3e3 + u3). (18)

To design the nonlinear disturbance observer, the estima-
tion of the variable ηi,∀i = 1, 2, 3 is recommended as

˙̂η1 = −k1(e2 + η̂1 + k1e1 + u1),
˙̂η2 = −k2(e3 + η̂2 + k2e2 + u2),
˙̂η3 = −k3(−ae1 − be3τ + y2s (t)

−y2m(t)+ η̂3 + k3e3 + u3). (19)

where η̂i,∀i = 1, 2, 3 are the estimations of ηi,∀i = 1, 2, 3.
Then, the approximation of di(t)(∀i = 1, 2, 3) can be found
using equation (17). Define:

η̃i = ηi − η̂i = Di − D̂i = d̃i.∀i = 1, 2, 3 (20)

Differentiating (20) and considering (18) and (19) yields

˙̃η1 = Ḋ1 − k1(e2 + η1 + k1e1 + u1)

+k1(e2 + η̂1 + k1e1 + u1),
˙̃η2 = Ḋ2 − k2(e3 + η2 + k2e2 + u2)+ k2(e3 + η̂2

+k2e2 + u2),
˙̃η3 = Ḋ3 − k3(−ae1 − be3τ + y2s (t)− y

2
m(t)+ η3

+k3e3 + u3)+ k3(−ae1 − be3τ + y2s (t)

−y2m(t)+ η̂3 + k3e3 + u3), (21)

After some simplifications and removing the same expres-
sions form Eq. (21), one obtains

˙̃ηi = Ḋi − kiη̃i. ∀i = 1, 2, 3 (22)

Now, the PI sliding surfaces are defined as follow:

si = ei + kI

∫ t

0
ei. (23)

where kI is the a positive constant. Taking time-derivative of
(23), we have

ṡi = ėi + kI ei. (24)

where substituting (13) in (24), it yields:

ṡ1 = e2 + D1 + u1 + kI e1,

ṡ2 = e3 + D2 + u2+k I e2,

ṡ3 = −ae1 − be3τ + y2s (t)

−y2m (t)+ D3 + u3 + kI e3. (25)

Finally, the robust sliding mode synchronizer based on the
disturbance observer with semi-globally bounded of errors
(13) is designed as follow:

u1 = −e2 − D̂1 − A01s1−k I e1,

u2 = −e3 − D̂2 − A02s2−k I e2,

u3 = ae1 + be3τ − y2s (t)

+y2m (t)− D̂3 − A03s3−k I e3. (26)

where A0i > 0.5∀i = 1, 2, 3 are the design parameters. With
substituting the control inputs (26) in Eq.(25), one obtains:

ṡi = Di − D̂i − A0isi. (27)

Theorem 1: Let the master and slave chaotic systems be
defined as (6) and III-B. As well, the external disturbances
are estimated by (19) and the PI sliding surfaces are defined
as (23). Then, the sliding surface as well as synchronization-
error between master and slave systems arebounded using
the robust controller (26) based on the nonlinear disturbance
observer.
Proof: The Lyapunov function is defined as

Vi =
1
2
s2i +

1
2
η̃2i . ∀i = 1, 2, 3 (28)

where the time-derivative of Vi can be found as

V̇i = siṡi + η̃i ˙̃ηi, ∀i = 1, 2, 3 (29)

Substituting (22) and (27) in the above equation yields

V̇i = si
(
Di − D̂i − A0isi

)
+ η̃i(Ḋi − kiη̃i) (30)

or

V̇i = −A0is2i + si(Di − D̂i)+ η̃iḊi − kiη̃
2
i (31)

From assumption 1 and equation (20), we can get:

V̇i ≤ −A0is2i − kiη̃
2
i + siη̃i + η̃iδi (32)

where using Young’s inequality (c1c2 ≤
cα1
α
+

cβ2
β
), we have

siη̃i ≤ 0.5s2i + 0.5η̃2i
η̃iδi ≤ 0.5η̃2i + 0.5δ2i (33)
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while substituting (33) into (32), we have

V̇i ≤ −A0is2i − kiη̃
2
i + 0.5s2i + 0.5η̃2i + 0.5δ2i + 0.5η̃2i (34)

Now, by taking some simplifications, one can obtain

V̇i ≤ −(A0i − 0.5)s2i − (ki − 1)η̃2i + 0.5δ2i (35)

By considering the Lyapunov function, hence, it can be
concluded that

V̇i ≤ −σiVi + ci, (36)

where σi = min(λmin(A0i−0.5), λmin(ki−1)) and ci = 0.5δ2i .
Now, from Lemma 1, it is obvious that sliding surface si
and synchronization error ei are bounded. This completes the
proof. �

IV. SIMULATION RESULTS
To highlight the effectiveness of the proposed approach,
we carry out a set of simulations and comparison analysis
with the controller and observer proposed in [1]. Based on
the Sprott’s chaotic system, the constant parameters are given
as a = 1, b = 2.02 and the preliminary conditions for
master system are considered as [xm(0), ym(0), zm(0)]T =
[4, 2, 0.5]T . Moreover, the preliminary conditions for
the slave system are given as [xs(0), ys(0), zs(0)]T =

[−3.9,−1.9,−0.4]T . The design parameters are specified as
k1 = 20, k2 = 25, k3 = 30 and a0i = 50,∀i = 1, 2, 3.
It should be mentioned that the parameters of the control
strategy have been obtained by trial and error approach. The
external disturbances are considered as D1 (xs, t) =

1.5xs sin (t) ,D1 (ys, t) = 1.5ys sin (t) andD1 (zs, t) =

1.5zs sin (t)−1axs (t)−1bzs(t − τ ), where, 1a =

0.01sin(a) and 1b = 0.01sin(b), also, the time delay is
τ = 0.005. The tracking performance of the master and
slave systems is highlighted in Figure 7. Note the perfect
tracking performance of the proposed approach. The time
histories of the control inputs are depicted in Figure 8. Note
that these signals have suitable amplitudes without chattering.
The time responses of the errors between the master and
slave systems are displayed in Figure 9. These results confirm
the bounded of the synchronization errors around zero. The
estimations of exterior disturbances using the disturbance
observer are displayed in Figure 10, which shows that the
disturbance estimation can be accomplished properly. The
time responses of the sliding surfaces are shown in V-A. Note
the boundedness of switching surface around zero.

It can be concluded from the simulation results that the pro-
posed technique provides more accurate transient responses
than the method presented in [1]. These results prove the
efficiency and feasibility of the proposed technique.

V. IMPLEMENTATION TO A DATA SECURITY SYSTEM
In what follows, we implement the concept to ensure the
secure transfer of data from the origin to the destination. For
this aim, an encrypted signal is generated by adding the Sprott
chaotic signal to the data to be transferred. The encrypted

FIGURE 7. Tracking of master and slave systems using the proposed
controller.

FIGURE 8. Control inputs.

signal is the sent to the destination using a transmitter. At the
receiver end, the main signal is recovered by subtracting
the chaotic signal from the encrypted signal. In this work,
the pulse generator is considered as the main signal which is
supposed to be sent and yaxis of Sprott chaotic system which
has been introduced in the previous section is considered as
the chaotic signal to be added to the main signal to produce
the encrypted signal. The main steps of the proposed tech-
nique are illustrated as follows:

A. ADDING CHAOS TO THE MAIN SIGNAL
As mentioned above, for the creation of the encrypted signal,
the chaotic signal related to yaxis of Sprott chaotic system
which is shown in Figure 12 is added to the main signal
which is displayed in Figure 13. The block diagram of this
system is presented in Figure 14 and its schematic circuit is
displayed in V-B. The main part of this circuit is related to
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FIGURE 9. Time history of synchronization errors via recommended
controller.

FIGURE 10. Estimation of the external disturbances.

the adder including two resistors which have responsibility
for adding chaos to the main signal. The buffer circuit is used
for isolating the circuit of chaotic signal from adder circuit
and the amplifier is applied for amplification of adder output
signal with appropriate coefficient. The output signal voltage
of transmitter which has been shown in V-B can be written as

Vout,TX = (
Rc + Rd

Rc(Ra + Rb)
) [RaVmain + RbVch] (37)

where Vmain and Vch are the main and chaotic signals, respec-
tively. Assuming all resistors are equal, the transmitter output
is exactly equal to sum of these two signals.

B. SENDING THE ENCRYPTED SIGNAL WITH
TRANSMITTER
The encrypted signal is sent to the destination using the
transmitter system depicted in Figure 16.

FIGURE 11. Sliding surfaces.

FIGURE 12. Chaotic signal related to yaxis of Sprott chaotic system.

FIGURE 13. Main signal.

FIGURE 14. Block diagram of adder section.

Wireless transfer of the encrypted signal is per-
formed using the ESP8266 Module. Arduino software and
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FIGURE 15. Schematic circuit of adder section.

FIGURE 16. Schematic diagram of the transmitter.

FIGURE 17. Transmitter circuits.

FIGURE 18. Signal received at the destination.

FIGURE 19. Circuit boards for chaotic signal generator, transmitter and
programmer.

Module CH340 were considered in programming ESP8266
(Figure 17). Visual Studio, a programming software for

windows, was used to extract and display the data received
by the module on a computer.

The signal received at the destination is depicted in V-C.

C. RECOVERING THE MAIN SIGNAL FROM THE
ENCRYPTED SIGNAL
The final step consists on extracting the main signal from the
encrypted one. This is done by subtracting the chaotic signal
from the encrypted signal. Figure 19 depicts the circuit board
of the transmitter modules.

VI. CONCLUSION
This article proposes a disturbance observer-SMC approach
for the robust synchronization of uncertain delayed chaotic
systems. To this end, it first examined and analyzed the elec-
tronic behavior of the Sprott chaotic system. Then, proposed a
robust slidingmode control technique for the synchronization
of the master and slave Sprott chaotic systems subject to
external disturbances, time-delays and parametric uncertain-
ties. It also proposed a disturbance observer to accurately esti-
mate the external disturbances affecting the system. The proof
of the semi-globally bounded synchronization between the
master and slave systems was established using the Lyapunov
stability theory. The efficiency of the proposed approach was
first assessed using a simulation study, then, experimentally
validated on a data security system. The obtained results con-
firmed the robust synchronization properties of the proposed
approach in the presence of time-delays and external distur-
bances. The experimental validation also confirmed its ability
to ensure the secure transfer of data. Establishing finite-time
synchronization between the master and slave chaotic sys-
tems and design of an adaptive-tuning control scheme for the
unknown upper bounds of external disturbances are among
the topics that will be considered in our future research.

REFERENCES
[1] S. Wang, A. Yousefpour, A. Yusuf, H. Jahanshahi, R. Alcaraz, S. He,

and J. M. Munoz-Pacheco, ‘‘Synchronization of a non-equilibrium four-
dimensional chaotic system using a disturbance-observer-based adaptive
terminal sliding mode control method,’’ Entropy, vol. 22, no. 3, p. 271,
Feb. 2020.

[2] O. Mofid and S. Mobayen, ‘‘Adaptive synchronization of fractional-order
quadratic chaotic flows with nonhyperbolic equilibrium,’’ J. Vib. Control,
vol. 24, no. 21, pp. 4971–4987, 2018.

[3] E. G. Nepomuceno, A. M. Lima, J. Arias-García, M. Perc, and R. Repnik,
‘‘Minimal digital chaotic system,’’ Chaos, Solitons Fractals, vol. 120,
pp. 62–66, Mar. 2019.

[4] C. Wang, R. Chu, and J. Ma, ‘‘Controlling a chaotic resonator by means
of dynamic track control,’’ Complexity, vol. 21, no. 1, pp. 370–378,
Sep. 2015.

[5] O. Mofid, S. Mobayen, and M. H. Khooban, ‘‘Sliding mode disturbance
observer control based on adaptive synchronization in a class of fractional-
order chaotic systems,’’ Int. J. Adapt. Control Signal Process., vol. 33,
no. 3, pp. 462–474, 2019.

[6] L. Gao, Z. Wang, K. Zhou, W. Zhu, Z. Wu, and T. Ma, ‘‘Modified
slidingmode synchronization of typical three-dimensional fractional-order
chaotic systems,’’ Neurocomputing, vol. 166, pp. 53–58, Oct. 2015.

[7] A. Sambas, S. Vaidyanathan, S. Zhang, M. Mujiarto, M. Mamat,
Subiyanto, and W. S. M. Sanjaya, ‘‘A new 4-D chaotic system with self-
excited two-wing attractor, its dynamical analysis and circuit realization,’’
J. Phys., Conf. Ser., vol. 1179, Jul. 2019, Art. no. 012084.

VOLUME 9, 2021 16553



O. Mofid et al.: Disturbance-Observer-Based SMC for the Robust Synchronization of Uncertain Delayed Chaotic Systems

[8] Z. Hua, Y. Zhou, and H. Huang, ‘‘Cosine-transform-based chaotic system
for image encryption,’’ Inf. Sci., vol. 480, pp. 403–419, Apr. 2019.

[9] Y. Zhang, Z. Liu, H. Wu, S. Chen, and B. Bao, ‘‘Two-memristor-based
chaotic system and its extreme multistability reconstitution via dimension-
ality reduction analysis,’’ Chaos, Solitons Fractals, vol. 127, pp. 354–363,
Oct. 2019.

[10] S. Liu and F. Zhang, ‘‘Complex function projective synchronization of
complex chaotic system and its applications in secure communication,’’
Nonlinear Dyn., vol. 76, no. 2, pp. 1087–1097, Apr. 2014.

[11] J. Yang, Y. Chen, and F. Zhu, ‘‘Associated observer-based synchroniza-
tion for uncertain chaotic systems subject to channel noise and chaos-
based secure communication,’’ Neurocomputing, vol. 167, pp. 587–595,
Nov. 2015.

[12] H. Li, X. Liao, and M. Luo, ‘‘A novel non-equilibrium fractional-order
chaotic system and its complete synchronization by circuit implementa-
tion,’’ Nonlinear Dyn., vol. 68, nos. 1–2, pp. 137–149, Apr. 2012.

[13] A. N. Pisarchik and F. R. Ruiz-Oliveras, ‘‘Optical chaotic communication
using generalized and complete synchronization,’’ IEEE J. Quantum Elec-
tron., vol. 46, no. 3, pp. 279–284, Mar. 2010.

[14] I. P. Mariño, E. Allaria, M. A. F. Sanjuán, R. Meucci, and F. T. Arecchi,
‘‘Coupling scheme for complete synchronization of periodically forced
chaotic CO2 lasers,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 70, no. 3, Sep. 2004, Art. no. 036208.

[15] H. Kheiri, V. Vafaei, and E. Vafaei, ‘‘Coexistence of anti-phase and com-
plete synchronization in a chaotic finance system,’’ J. Dyn. Syst. Geometric
Theories, vol. 10, no. 1, pp. 33–45, May 2012.

[16] H. Sang and H. Nie, ‘‘H∞ switching synchronization for multiple time-
delay chaotic systems subject to controller failure and its application
to aperiodically intermittent control,’’ Nonlinear Dyn., vol. 92, no. 3,
pp. 869–883, May 2018.

[17] F.-C. Gu, H.-T. Yau, and H.-C. Chen, ‘‘Application of chaos synchro-
nization technique and pattern clustering for diagnosis analysis of partial
discharge in power cables,’’ IEEE Access, vol. 7, pp. 76185–76193, 2019.

[18] P.-Y. Wan, T.-L. Liao, J.-J. Yan, and H.-H. Tsai, ‘‘Discrete sliding mode
control for chaos synchronization and its application to an improved El-
Gamal cryptosystem,’’ Symmetry, vol. 11, no. 7, p. 843, Jul. 2019.

[19] Y. Huang, L. Huang, Y. Wang, Y. Peng, and F. Yu, ‘‘Shape synchronization
in driver-response of 4-D chaotic system and its application in image
encryption,’’ IEEE Access, vol. 8, pp. 135308–135319, 2020.

[20] A. Mohammadzadeh and S. Ghaemi, ‘‘A modified sliding mode approach
for synchronization of fractional-order chaotic/hyperchaotic systems by
using new self-structuring hierarchical type-2 fuzzy neural network,’’Neu-
rocomputing, vol. 191, pp. 200–213, May 2016.

[21] C. E. Castañeda, D. López-Mancilla, R. Chiu, E. Villafaña-Rauda,
O. Orozco-López, F. Casillas-Rodríguez, and R. Sevilla-Escoboza,
‘‘Discrete-time neural synchronization between an Arduino microcon-
troller and a compact development system using multiscroll chaotic sig-
nals,’’ Chaos, Solitons Fractals, vol. 119, pp. 269–275, Feb. 2019.

[22] L. P. Nguemkoua Nguenjou, G. H. Kom, J. R. Mboupda Pone, J. Kengne,
and A. B. Tiedeu, ‘‘A window of multistability in Genesio-Tesi chaotic
system, synchronization and application for securing information,’’ AEU-
Int. J. Electron. Commun., vol. 99, pp. 201–214, Feb. 2019.

[23] P. Tripathi, N. Aneja, and B. K. Sharma, ‘‘Stability of dynamical behavior
of a new hyper chaotic system in certain range and its hybrid projective
synchronization behavior,’’ Int. J. Dyn. Control, vol. 7, no. 1, pp. 157–166,
Mar. 2019.

[24] M. Ghamati and S. Balochian, ‘‘Design of adaptive sliding mode control
for synchronization Genesio–Tesi chaotic system,’’ Chaos, Solitons Frac-
tals, vol. 75, pp. 111–117, Jun. 2015.

[25] Y.-Y. Hou, T.-L. Liao, and J.-J. Yan, ‘‘H∞ synchronization of chaotic
systems using output feedback control design,’’ Phys. A, Stat. Mech. Appl.,
vol. 379, no. 1, pp. 81–89, 2007.

[26] W. Wang, H. Liang, Y. Pan, and T. Li, ‘‘Prescribed performance adaptive
fuzzy containment control for nonlinear multiagent systems using distur-
bance observer,’’ IEEE Trans. Cybern., vol. 50, no. 9, pp. 3879–3891,
Sep. 2020.

[27] M. Zheng, X. Lyu, X. Liang, and F. Zhang, ‘‘A generalized design method
for learning-based disturbance observer,’’ IEEE/ASME Trans. Mechatron-
ics, early access, Jun. 2, 2020, doi: 10.1109/TMECH.2020.2999340.

[28] G. Zhang, C. Zhang, T. Yang, and W. Zhang, ‘‘Disturbance observer-
based composite neural learning path following control of underactuated
ships subject to input saturation,’’ Ocean Eng., vol. 216, Nov. 2020,
Art. no. 108033.

[29] H. Yang, F. Deng, Y. He, D. Jiao, and Z. Han, ‘‘Robust nonlinear model pre-
dictive control for reference tracking of dynamic positioning ships based
on nonlinear disturbance observer,’’ Ocean Eng., vol. 215, Nov. 2020,
Art. no. 107885.

[30] T. Sun, L. Cheng, W. Wang, and Y. Pan, ‘‘Semiglobal exponential control
of Euler–Lagrange systems using a sliding-mode disturbance observer,’’
Automatica, vol. 112, Feb. 2020, Art. no. 108677.

[31] K. Shao, J. Zheng, H. Wang, F. Xu, X. Wang, and B. Liang, ‘‘Recur-
sive sliding mode control with adaptive disturbance observer for a lin-
ear motor positioner,’’ Mech. Syst. Signal Process., vol. 146, Jan. 2021,
Art. no. 107014.

[32] M.-C. Pai, ‘‘Chaotic sliding mode controllers for uncertain time-delay
chaotic systems with input nonlinearity,’’ Appl. Math. Comput., vol. 271,
pp. 757–767, Nov. 2015.

[33] H. Jahanshahi, A. Yousefpour, J. M. Munoz-Pacheco, I. Moroz, Z. Wei,
and O. Castillo, ‘‘A new multi-stable fractional-order four-dimensional
system with self-excited and hidden chaotic attractors: Dynamic analysis
and adaptive synchronization using a novel fuzzy adaptive sliding mode
control method,’’ Appl. Soft Comput., vol. 87, Feb. 2020, Art. no. 105943.

[34] F.Min, C. Li, L. Zhang, andC. Li, ‘‘Initial value-related dynamical analysis
of the memristor-based system with reduced dimensions and its chaotic
synchronization via adaptive sliding mode control method,’’Chin. J. Phys.,
vol. 58, pp. 117–131, Apr. 2019.

[35] A. Khan and R. K. Shikha, ‘‘Combination synchronization of Genesio time
delay chaotic system via robust adaptive sliding mode control,’’ Int. J. Dyn.
Control, vol. 6, no. 2, pp. 758–767, Jun. 2018.

[36] W. Tai, Q. Teng, Y. Zhou, J. Zhou, and Z. Wang, ‘‘Chaos synchronization
of stochastic reaction-diffusion time-delay neural networks via non-fragile
output-feedback control,’’ Appl. Math. Comput., vol. 354, pp. 115–127,
Aug. 2019.

[37] A. Ikhlef and N. Mansouri, ‘‘Synchronization of chaotic systems using
linear and nonlinear feedback control,’’ in Chaos and Complex Systems.
Berlin, Germany: Springer, 2013, pp. 307–314.

[38] S. Mobayen, S. T. Kingni, V.-T. Pham, F. Nazarimehr, and S. Jafari,
‘‘Analysis, synchronisation and circuit design of a new highly nonlinear
chaotic system,’’ Int. J. Syst. Sci., vol. 49, no. 3, pp. 617–630, Feb. 2018.

[39] W. Wei, M. Wang, D. Li, M. Zuo, and X. Wang, ‘‘Disturbance observer
based active and adaptive synchronization of energy resource chaotic
system,’’ ISA Trans., vol. 65, pp. 164–173, Nov. 2016.

[40] Q. Zhou, F. Chao, and C.-M. Lin, ‘‘A functional-link-based fuzzy brain
emotional learning network for breast tumor classification and chaotic
system synchronization,’’ Int. J. Fuzzy Syst., vol. 20, no. 2, pp. 349–365,
Feb. 2018.

[41] Y.-J. Chen, H.-G. Chou, W.-J. Wang, S.-H. Tsai, K. Tanaka, H. O. Wang,
and K.-C. Wang, ‘‘A polynomial-fuzzy-model-based synchronization
methodology for the multi-scroll chen chaotic secure communication sys-
tem,’’ Eng. Appl. Artif. Intell., vol. 87, Jan. 2020, Art. no. 103251.

[42] C.-C. Fuh, H.-H. Tsai, and W.-H. Yao, ‘‘Combining a feedback lineariza-
tion controller with a disturbance observer to control a chaotic system
under external excitation,’’Commun. Nonlinear Sci. Numer. Simul., vol. 17,
no. 3, pp. 1423–1429, Mar. 2012.

[43] V. I. Ponomarenko, M. D. Prokhorov, A. S. Karavaev, and
D. D. Kulminskiy, ‘‘An experimental digital communication scheme
based on chaotic time-delay system,’’ Nonlinear Dyn., vol. 74, no. 4,
pp. 1013–1020, Dec. 2013.

[44] H. Jia, W. Shi, L. Wang, and G. Qi, ‘‘Energy analysis of Sprott—
A system and generation of a newHamiltonian conservative chaotic system
with coexisting hidden attractors,’’ Chaos, Solitons Fractals, vol. 133,
Apr. 2020, Art. no. 109635.

[45] S. Cang, Y. Li, Z. Kang, and Z. Wang, ‘‘Generating multicluster conserva-
tive chaotic flows from a generalized Sprott—A system,’’ Chaos, Solitons
Fractals, vol. 133, Apr. 2020, Art. no. 109651.

[46] M. Messias and A. C. Reinol, ‘‘The occurrence of zero-Hopf bifurcation
in a generalized Sprott a system,’’ in Nonlinear Dynamics of Structures,
Systems and Devices. Cham, Switzerland: Springer, 2020, pp. 157–165.

[47] L. Barreira, J. Llibre, andC.Valls, ‘‘Integrability and zero-Hopf bifurcation
in the Sprott a system,’’ Bull. des Sci. Mathématiques, vol. 162, Sep. 2020,
Art. no. 102874.

[48] S. Cang, Y. Li, W. Xue, Z. Wang, and Z. Chen, ‘‘Conservative chaos and
invariant tori in the modified Sprott a system,’’ Nonlinear Dyn., vol. 99,
no. 2, pp. 1699–1708, Jan. 2020.

[49] G. Li, X. Zhang, and H. Yang, ‘‘Complexity analysis and synchronization
control of fractional-order Jafari-Sprott chaotic system,’’ IEEE Access,
vol. 8, pp. 53360–53373, 2020.

16554 VOLUME 9, 2021

http://dx.doi.org/10.1109/TMECH.2020.2999340


O. Mofid et al.: Disturbance-Observer-Based SMC for the Robust Synchronization of Uncertain Delayed Chaotic Systems

[50] J. C. Sprott, ‘‘Simplest dissipative chaotic flow,’’ Phys. Lett. A, vol. 228,
nos. 4–5, pp. 271–274, Apr. 1997.

[51] M. Chen, Q. Wu, and C. Jiang, ‘‘Disturbance-observer-based robust
synchronization control of uncertain chaotic systems,’’ Nonlinear Dyn.,
vol. 70, no. 4, pp. 2421–2432, Dec. 2012.

[52] S. S. Ge and C. Wang, ‘‘Adaptive neural control of uncertain
MIMO nonlinear systems,’’ IEEE Trans. Neural Netw., vol. 15, no. 3,
pp. 674–692, May 2004.

OMID MOFID was born in Saveh, Iran,
in October 1992. He received the B.S. degree
in mathematical science and applications from
the University of Tafresh, Tafresh, Iran, in 2015,
and the M.Sc. degree in control engineering from
the University of Zanjan. As an undergraduate,
he worked at the Control Research Laboratory.
He is focusing on the development and imple-
mentation of sliding mode control and adaptive
control techniques on quad-rotor UAV systems.

His research interests include mobile robots, adaptive control, sliding mode
control, and aerospace vehicles.

MAHDI MOMENI received the M.Sc. degree in
electrical engineering (IC design) from the Amirk-
abir University of Technology (Tehran Polytech-
nic), in 2018. His idea was one of the top five ideas
in the second idea market of biomedical engineer-
ing, held by the Amirkabir University of Technol-
ogy, in 2015. He is the Inventor of an automatic
screwdriver. His current research interests include
analog, mixed-signal, and RF integrated circuits
and systems design. He was awarded the title of

the Premier Young Researcher in Markazi province for his research works
in 2019.

SALEH MOBAYEN (Member, IEEE) received
the B.Sc. and M.Sc. degrees in control engi-
neering from the University of Tabriz, Tabriz,
Iran, in 2007 and 2009, respectively, and the
Ph.D. degree in control engineering from Tarbiat
Modares University, Tehran, Iran, in January 2013.
From February 2013 to December 2018, he was
as an Assistant Professor and a Faculty Member
with the Department of Electrical Engineering,
University of Zanjan, Zanjan, Iran, where he has

been an Associate Professor of control engineering since December 2018.
He currently collaborates with the Future Technology Research Center,
National Yunlin University of Science and Technology as an Associate
Professor. He has published several articles in the national and international
journals. His research interests include control theory, sliding mode control,
robust tracking, non-holonomic robots, and chaotic systems. He is a member
of the IEEE Control Systems Society and serves as a member for program
committee of several international conferences. He is an Associate Editor of
Artificial Intelligence Review, International Journal of Control, Automation
and Systems, Circuits, Systems, and Signal Processing, Simulation, Mea-
surement and Control, International Journal of Dynamics and Control, and
SN Applied Sciences, an Academic Editor of Complexity and Mathematical
Problems in Engineering, and other international journals.

AFEF FEKIH (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the National
Engineering School of Tunis, Tunisia, in 1995,
1998, and 2002, respectively, all in electrical engi-
neering. She is currently a Full Professor with
the Department of Electrical and Computer Engi-
neering and the Chevron/BORSF Professor in
engineering with the University of Louisiana at
Lafayette. Her research interests include control
theory and applications, including nonlinear and

robust control, optimal control, fault tolerant control with applications to
power systems, wind turbines, unmanned vehicles, and automotive engines.
She is a member of the IEEE Control Systems Society and the IEEEWomen
in Control Society.

VOLUME 9, 2021 16555


