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ABSTRACT This article recommends a practical technique to design full chip (FC) clock tree of a complex
system-on-chip (SoC). In the new business environment, the market prefers a highly integrated but low power
SoC with fast design productivity and low development cost. We observed that many techniques proposed in
the prior arts are no longer practical or enough. With that, we introduce a flexible FC Clock network topology
and a synthesis algorithm that utilize a hybrid meta-heuristic technique to search for near optimum solution
in shorter turn-around time. Our work on a 10nm SoC product showed that the topology and algorithm
managed to produce averagely 16.98% better global skew, 42.75% less divergence on critical clock paths
and with 64.5% shorter clock balancing phase compared to a conventional ASIC methodology.

INDEX TERMS System-on-a-chip (SoC), clock distribution, deep sub-micrometer, artificial intelligence,

hybrid meta-heuristic.

I. INTRODUCTION

Clock distribution uncertainty, which includes skew
and jitters, has always been one of the dominant
performance-limiting factors to a chip and thus many tech-
niques have been introduced to reduce clock uncertainty.
These techniques can be categorized into 2 solution groups,
i.e. topology and algorithm.

Before the advent of sub-micron process technology
and SoC, chips are relatively small, researchers have focused
more on local skew optimization algorithm. For examples,
the research work in [1] has introduced Deferred-Merge
Embedding (DME) algorithm to automate the skew mini-
mization process. Other researcher [2] recommended buffer
insertion and adjustment of wires width to further reduce the
skew. To further improve clock frequency, intended non-zero
localized clock skew could be applied on critical timing
paths to increase clock period as recommended by few
others [3], [4].
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However, as the chip size grow bigger with SoC
technology, the effort to fine tune the localized clock trees
is becoming increasingly significant. Thus, researches have
investigated the method of reducing clock skew topologically.
Many researchers have recommended a symmetrical clock
distribution topology such as full H-tree, grid or meshes as
shown in Fig. 1 to distribute clock signal across the whole
chip. These structurally symmetrical clock distribution net-
works are easily implemented and able to produce very low
skew as elaborated by previous group of researches [5]-[8].
However, these networks dissipate higher power [9].
To reduce power dissipation of grid and meshes network,
researcher [11] has recommended a reduced voltage swing
methodology and researcher [12] has recommended the use
of clock frequency multiplier circuitry. Both methods caused
an increase in the complexity of analysis and consequently
adding risk to the design yield. Furthermore, the grid and
meshes networks, which are shorted together at the outputs,
are harder to be back annotated into static timing analysis as
elaborated by researchers [10], [35].

With the advent of sub-micron technology, the On-
chip-variations (OCV), which includes process, voltage,
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FIGURE 1. Examples of structurally symmetrical clock distribution
networks [5], [9], [10], [35]-

and temperature (PVT) variations, have big impact on the
clock jitter [13], [14]. The impact is even more signifi-
cant for chip that operates at high clock frequency. As a
result, researchers have investigated jitters minimization on
top of reducing clock skew. To minimize jitter topologi-
cally, structurally symmetrical design [13], [15] and dynamic
de-skew circuit [16]-[18] have been recommended to com-
pensate the effect of PVT variations. An example of the
clock de-skew distribution networks is shown in Fig. 2. Even
though dynamic de-skew circuit can produce both low skew
and OCV induced jitters, to design and validate a dynamic
circuit, it requires high skillset and efforts that are not trivial.
Similar limitations happen to other complex topology solu-
tions such as differential signal circuitry [19], global resonant
H-tree [20], current-mode [68], and hybrid radio frequency
(RF)/Metal clock routing [21], [22].

(a) H-Tree De-skew

(b) Delay Detector

(c) Compensator

FIGURE 2. A dynamic clock de-skew distribution network [17].

In the new business environment, the market prefers
a highly integrated but low power SoC with fast design
productivity and low development cost as listed in chal-
lenges and possible solution Section of ITRS 2.0 2015 [23].
A highly integrated SoC usually consists of many lay-
outs of hardened intellectual properties (IP) and synthesiz-
able soft IP. The hardened IPs are usually obstacles to the
clock distribution network. Besides, different IPs may oper-
ate under different clock frequencies and power domains.
Thus, the complete topology-based solutions such as grid
or meshes networks are no longer a preferred solution for
a complex SoC, as on top of higher power dissipation,
they consume higher routing resources. As a result, many
researchers [7]-[9], [11], [33], [38]-[40], [67], have invested
into multi-hierarchy hybrid solutions, which combine topo-
logical solutions with clock tree synthesis (CTS) algorithm.
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An example of hybrid solutions is shown in Fig. 3. CTS is
an automation of Steiner tree construction. Compared to grid
and meshes, CTS requires lesser routing resources and has
faster turn-around-time as well as lower power dissipation.
However, it produces higher global skew [9], [35]. Therefore,
CTS is preferred for block level distribution while cus-
tom built topological symmetrical trees are preferred at top
level [39].

A Synthesized Tree at block level

Simple H-Tree at Top level

FIGURE 3. A hybrid solution which consist of Simple H-tree at top level
and synthesized tree [24] at block level.

As mentioned, hardened IPs and voltage islands can be
the obstacles to clock network and thus custom building of a
topologically symmetrical tree has become increasingly diffi-
cult for a complex SoC. Therefore, fully automated methods
are needed to address the complex top-level clock distribution
problem [39]. To address this challenge, obstacle aware algo-
rithms CTS [25]-[28] have been recommended. However,
OCYV induced jitters issue, which is one of the key challenges
in deep sub-micron technology with respect to chip design
as described in article [29], is not covered in the four above
mentioned works. Even though there are prior works that tried
to model the OCV hotspots and then pre-optimize the clock
design accordingly, many are not practical. For examples,
there is a research [30] which recommended algorithms that
re-structure an existing clock tree topology to compensate
for temperature effects. However, it is hard to obtain an
accurate temperature profiling without a fabricated chip.
Moreover, temperature changes whenever activity changes
and thus it is extremely difficult to alter the design struc-
turally to cover every possible scenario. Similar case happens
in the work proposed by researcher [31], in which clock
trees are synthesized based on supply voltage drop profile.
Clock buffer is one of the main factors of voltage drop.
It is a ““chicken and egg” situation as accurate voltage drop
profile will not be available without clock trees and volt-
age drop profile will change whenever clock tree changes.
Researchers [68] have recommended global current-mode
and local voltage-mode clock distribution networks to reduce
power consumption and jitter effects. However, it is not prac-
tical to implement and validate current-mode circuitries for
a complex SoC which has hundreds of clock domains with
each have from thousands to millions of sink points. Thus,
a more commonly practiced algorithm used to reduce OCV
effects on SoC nowadays is by maximizing the symmetrical
of the clock topology and minimizing the divergence of the
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clock trees [32], [33]. Nevertheless, the two above mentioned
works cover only a few minor optimizations on divergence
reduction algorithm but not solution for the other complex
challenges.

Clock design challenges for a complex SoC nowadays are
very different from center processing unit (CPU) and small
application specific integrated circuit (ASIC). On top of the
common quality challenges such as skew, jitter, slew rate,
power dissipation etc., there are other important challenges
such as newly emerged design complications of a very large
complex SoC as well as the tight schedule and resources
requirements. Of all the above-mentioned techniques, none
of them proposes a complete solution that practically address
both top and local levels clock design as well as FC clock
balancing challenges. In this article, we recommend a proven
practical FC clock distribution solution on a complex SoC.
Our key contributions include:

1. A flexible FC clock distribution topology that not only
able to handle the recent SoC design complexities
but enable parallel executions to align with the tight
SoC development schedule.

2. A hybrid-metaheuristic based global clock synthesis
algorithm that performs multiple objectives optimiza-
tion, including obstacle avoidance and OCV reduction,
at the same time.

The rest of this article is organized as follows:
In Section II, we explain the recent FC clock design
challenges for a complex SoC in the current business envi-
ronment. In Section III and IV, we elaborate the key contri-
butions abovementioned and in Section V, we will prove the
methodology with the real data extracted from a taped-out
SoC product. Finally, Section VI concludes the paper.

II. RECENT FC CLOCK DESIGN CHALLENGES

The commonly known design quality challenges of a clock
distribution are clock uncertainty which is an aggregation of
skew and OCV induced jitter, transition/slew, latency, duty
cycle, area, routing resources, signal integrity/crosstalk, relia-
bility, and power dissipation [34]. Among them, clock uncer-
tainty, which is the key performance limiting factor, is the
most focused area. Clock power consumption is also one of
the key challenges as it is often the largest portion of total chip
power. For example, the clock driver and pre-driver represent
about 40% of the total effective switching capacitance deter-
mined by power measurement in the Alpha processor which
runs at 200MHz [45].

Researchers [35] evaluated and compared quantitatively
different clock architectures such as mesh, tree and their
hybrids, on three industrial designs with respect to latency,
skew, timing uncertainty and power. As concluded by [35],
mesh architecture was more effective than a tree architecture
in obtaining very small maximum clock skew (below 1ps) on
all the designs. A finer mesh is more effective than a coarse
mesh. However, there can be an up to 30% power penalty
due to mesh. Power can be saved by employing the Tree +
Local meshes (TLM) architecture with multiple meshes, each
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of which could be independently disabled. A mesh-based
architecture is more robust to variations and can reduce the
timing uncertainty due to parameter variations in the global
tree by 18%.

Other than that, researcher [44] has also compared different
clock distribution techniques used in different processors as
shown in Table 1. Whereas Table 2 shows the skew, in which
it accounts on average for about 5% of the cycle time and is
trending higher as frequency increases [44].

TABLE 1. Comparison of Different Clock Distribution Techniques [44].

Technique Wire Cap Delay Skew Processors
Grid High-15x Low-sub100ps Low-Med SPARC, Alpha
Symmetrical Low-1x High-100’s ps Low IBM & Motorola Power-PC,
Trees HP PA-RISC
Serpentine Very High-30x  High-100’s ps Low Pentium-1I1
Spine High-10x Low-subl100ps Med Alpha, Pentium-4

TABLE 2. Industry Clock Skew Data [44].

Frequency Percentage of

Processor (MHz) Clock Skew(ps) Cycle Time (%) Process
Ttanium™ 800 110ps w/o de-skew 8.80 1 8um
28ps w/ de-skew 2.24
PowerPC 1000 15ps with Cu wires 1.50 .22um
UltraSPARC III 800 80ps Al wires, no de-skew 6.40 1 8um
Alpha 600 72ps Al wires, no de-skew 4.32 13um

Other than the design quality challenges above mentioned,
in the recent business environment, the following challenges
have also emerged as the primary concerns:

o Design Complexity - As mentioned by researchers [36],
in the 2013 ITRS roadmap, the die area of Consumer
Portable SoC (SOC-CP) is about 140mm? and transistor
count is about 2.4 billion transistors. Recent trends sug-
gest a factor of 1.26x scaling of logic transistor per core
with every process technology node.

o Design productivity and development cost — As
listed in challenges and possible solution Section
of ITRS 2.0 2015 23], the key system integration long
term (> 3 years) challenge is design productivity where
it is beneficial for faster design turn-around-time and
less design effort.

In recent years, the numbers of IP-cores integrated in a
SoC has continuously increased. In these complex SoCs,
multiple clock domains are required in order to feed dif-
ference frequency clock signals to individual IP-cores [41].
On top of engineering efforts, the routing resources that are
needed to distribute and shield the clocks have increased.
Early routing resource planning is required to prevent late
discovery of congestion issue which will impact the project
schedule consequently. Besides, in a large SoC, these clock
signals need more repeater stages to travel long distances
and their distribution patterns can be non-systematic as illus-
trated in Fig. 4. As the chip size continues to grow, more
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FIGURE 4. An example of multiple clock signals distributed in a
non-systematic pattern at top level of a complex SoC.

clock repeater stages will be needed and consequently OCV
induced period jitter will increase [14].

Besides, the IP-cores could be multiple instantiated blocks
(MIBs) at top level. Adding any global clock structure into a
MIB instance will cause all the other instances to duplicate
the same structure. Thus, MIBs are preferred to be treated as
obstacles to simplify FC integration in the later stage. On top
of that, some synthesized IP blocks could be either power
gated and/or having different power domains (multi-VDD).
They are usually being treated as obstacles to avoid insertion
of level shifter or self-isolated repeater on the clock networks,
which will add complexity into the implementation, balanc-
ing, and analysis works. With both MIB and multi-VDD in a
complex SoC, obstacles can be in a non-systematic formation
as illustrated in Fig. 5. As a result, different clock domains
may have different distribution patterns and routing paths.
Therefore, symmetrical networks such as grid and meshes
are no longer practical for top level clock distribution in a
complex SoC nowadays.

Legends :

Functional
Block

Multi-vDD
Block

Multiple
Instantiated
Blocks

Orientation
Marker

FIGURE 5. An example of FC floorplan of a SoC with flipped MIBs and
multi-vDD blocks.

As complex SoCs grow larger in size and higher in clock
frequency, the flop-repeaters, which are inserted to split a
timing path to gain additional timing margin, has become
almost a necessity [42]. These flop-repeaters will be inserted
into channel or non-obstacle blocks following the signal rout-
ing path as illustrated in Fig. 6. In a recent complex SoC,
the amount of timing paths that require flop-repeaters can be
large and up to hundred thousand of flop-repeaters may be
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FIGURE 6. An example of pipeline registers insertion at top level avoiding
the obstacle.

needed [43]. Furthermore, these paths are driven by different
clock domains from various source IPs to destination IPs.
In other words, the signal routes and flop-repeaters placement
are non-systematic. Therefore, clock distribution network of
these flop-repeaters has emerged as a new challenge to a
SoC design.

Other than design complexity, design productivity and
development cost are the recent challenges in a SoC. As pro-
posed by researcher [37], to ensure a predictable productivity,
a workflow that is cognizant of the maturing nature of a
design over time is needed. Logic and physical design are exe-
cuted in parallel. Milestones are defined by the maturity of the
netlist, IP, and layout. As a result, design cycle is commonly
divided into phases according to the design maturity model.
For example, design cycle has been divided into four phases,
i.e. setup, convergence, refinement as well as closing [37].
Every phase has different input requirements namely start-
of-phase deliverables, and end goals as shown in Table 3.
Clock specification and design maturity are important input
requirements to the phases. Thus, FC clock design workflow
must be planned properly to avoid gating the progress of both
top and block level physical implementations as well as the
FC timing convergence. Beside a realistic design productivity
plan, putting together the right resources (team skill compo-
sition, machines and licenses) and managing them efficiently
is also one of the four key issues that dictates the success
of a SoC project [37]. In other words, we need to manage
tradeoffs properly in order to come out with a FC clock
design methodology which is at the right complexity level
and achievable with the engineering resources allocated.

In summary, with the newly emerges design complexities,
fast design productivity and low development cost require-
ments, many prior FC clock design techniques that focus
on quality of result (QoR) improvement only are no longer
enough. In this article, we focus on development of a practical
FC Clock design methodology, which include both topol-
ogy and algorithm solutions, to solve the challenges above
mentioned.

Ill. A FLEXIBLE FC CLOCK TOPOLOGY
In this section, we introduce a flexible FC clock distribu-
tion topology, which is a hybrid trees that used to solve the
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TABLE 3. Deliverables and Goals for Each Phase of The Design Maturity
Workflow [37] (A Reduced Version).

Items Setup Convergence Refinement Closing

Stabilize design to build ~ Realize the final ~ Close the

the project the chip. Build FC from  SoC specification.  design.
Coordinate the deliverables. Expect Complete the
timing of specific  multiple netlist & IP project to tape
events. Assemble iterations out to the mask

Description | Setup the rest of

Resources ship
Start-of-Phase Deliverables
Netlist Initial Structurally Completed.  Almost Final. Final
All IPs in. Top level Final very minor
Stable tweaks.
IP, cell lib. | Initial Updated Final Version
& mem.
Spec. SoC Information  Updated (I/O, Clocks, Final I/O
Timing)
Constraints| Project (Die size, Final Timing
Power)
End-of- Project plan & Top Level Stable (Pads, — All blocks are Final GDSII
Phase Project setup Power Grid, Floorplan). routable. FC build. Minor
Goals completed. IP All blocks implemented.  timing closable. timing ECOs.
setup and checked. Initial timing run, timing Most DRC/LVS Final Analysis.
Netlist analyzed.  constraints, power rail ~ cleanable. Al RV Final tape out
Trial floorplan. analysis. Formal issues resolved. database

Trial block build.  verification passed. Top-level frozen.  created. Final
Block level DRC/LVS Initial FC layout  verification
runs. Die size checks. and fixes.
convergence.

recent SoC complexities as elaborated in Section II, i.e. high
frequency clocks design requirements, multiple widely dis-
tributed clock domains, many flipped MIBs, non-systematic
flop-repeaters insertion, as well as fast time-to-market and
low development cost requirements. The architecture of the
proposed FC clock topology, which is a hybrid solution,
is shown in Fig. 7a. The proposed topology consists of
3 key components, i.e. global clock trunk, local CTS, and
FC Clock Balancing Circuitry as in Fig. 7b. Basically, global
clock trunk is used to distribute clock signals evenly from
Clock Source (PLL) to regional drop-off-points (DOPs) while
local clock CTS is used within block level to distribute clocks
to the sequential logics such as latches, flops, and mem-
ory macros. In between them, FC Clock balancing circuitry
is used to balance the total clock latency between blocks.

Legends :
- Steiner Tree o Drop-off-points (DOP)
=T 4. Pre-build binary Tree [l Programmable Delay Module

% Clock Tree Synthesis (CTS) L]  Flip-Flops

Block A Block B ﬁ
IO e Y Global
‘o Clock
Ip———n : Trunk
Block C Block D N— % 3
FC Clock
Pi Balancing
Circuitry
T o
oca
Block F cTS
K

(a) Planar Layout View (b) Hierarchy View

FIGURE 7. The architecture overview of the proposed multi-hierarchy
hybrid FC clock topology.
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Explanation on how these components overcome the new
design complexities are in the next sub-sections.

High level of the FC clock design flow is shown in Fig. 8.
It is designed to align smoothly with the design phases as
illustrated in Table 3 and consequently ensure fast produc-
tivity and minimize reworks.

Netlist In
I : }
FC Clock Design Analysis & SPEC
N FCFP Definition
Early FC T

pmig | T ® @ $

Block Level Clock FC Clock
FC Pin le] Global Clock @ Design Balancing
Placement Trunk Building Specdification Modules
L Definition Construction
L (] ) ]

s T @

Channel & Blocks }‘

FC Clack ECO or
Balancing
Modules Tuning

FC Timing Closure

[ OASIS/GDSII OUT H FC Physical Design Closure

FIGURE 8. The proposed parallel FC clock design flow.

During “Setup” phase, based on the trial FC floorplan
(FP), the logical connectivity extracted from the initial netlist,
system level specifications, and the maximum clock fre-
quencies, we will propose the initial top-down clock imple-
mentation specifications, such as latency, skew and slope
targets for the three key components. The targets will be
fine-tuned based bottom up feedback after trial designs of the
components. To reduce the design turn-around-time (TAT),
the 3 components are designed in parallel. During
“Convergence” phase, multiple iterations of netlist and
IP releases will happen, especially block level netlist. Thus,
CTS, which trades off QoR for faster TAT, is recommended
for block level. The CTS engine is configured based on
specification defined through prior evaluation works which
will be explained in Sub-section B. Global clock connectivity
at top level, which is basically the connections between PLL
and blocks, will be relatively more stable compare to the local
clock connections at block level. Thus, we propose to build
the global clock trunk to achieve higher QoR as elaborated in
Sub-section A. Meanwhile, clock balancing module, which is
programmable with simple engineering change order (ECO)
effort, will be constructed in preparing for fast tuning in
the following phase. Detailed explanation of the modules is
in Sub-section C. During ‘“Refinement” phase when both
global and block level clocks are stable, we will focus mainly
on programming the balancing modules to ensure fast TAT
and minimum impact to the overall system.

A. HYBRID GLOBAL CLOCK TRUNK

The primary objective of the proposed global trunk is to
distribute clock from PLL to the regional DOPs with min-
imum clock latency and skew. Besides, slope, number of
diverged stages that impact the OCV, maximum capacitance
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that impact the reliability, and duty cycle distortion need to
be considered during construction to reduce design reworks
which slow down the design productivity. A complex SoC
may have non-systematic obstacles as shown in Fig. 5,
in which grid and meshes based networks are not easily
implemented. CTS is more flexible in handling design with
non-systematic obstacles but with trade off on skew and
jitters. To solve the dilemma, we proposed to use a hybrid
global clock structure in which it combines DOP trees that are
built based on symmetrical binary/H-trees with a synthesized
Steiner tree as shown in Fig. 7.

As mentioned in Section II, one of the recent challenges in
a complex SoC is the clocking of flop-repeaters. A timing
path with flop-repeaters is naturally a source synchronous
path where a dedicated clock signal is traveling side-by-
side with the data bus from source to the destination as
illustrated in Fig. 9a. However, in a complex SoC, hun-
dred thousand of timing paths may need flop-repeaters and
these flops are inserted into non-obstacle blocks or chan-
nels in non-systematic patterns. If every flop-repeated path
has its own dedicated clock signal traveling side-by-side,
there will be massive amount of clock nets introduced.
This will not only increase the complexity of clock mod-
eling in static timing analysis (STA) but also the routing
resources and power dissipation significantly. On top of that,
the timing path driven by the last stage of flop-repeater will
become critical due to large clock skew as shown in Fig. 9a.
To simplify the clocking of these non-systematic flop-
repeaters and avoid the critical timing path, we propose to use
a Balance Clocking Scheme (BCS) as shown in Fig. 9b or a
Useful-Skew Clocking Scheme (UCS) as in Fig. 9¢. BCS has
the benefits of simplicity but longer total clock latency com-
pare to UCS. This is because, both blocks and flop-repeaters
in BCS are driven by DOPs but clock latency within blocks
are usually larger. To balance the latency between the twos,
we will need to add clock delay into path of the flop-repeaters.
The added delay can be large in order to balance with a larger
block. In contrast, with UCS, blocks will not be driven by
DOPs but the earlier clock brunches. Useful skew can be
applied between DOPs and input clock pin of the blocks to
compensate the latency gap between flop-repeaters and the
blocks. As a result, latency from DOPs to flop-repeaters can
be reduced and consequently reduce the total diverged latency
which directly contributes to the OCV induced jitter [14].
In conclusion, it is recommended to use the simpler BCS by
default for faster design productivity but UCS for the large
blocks.

The proposed global clock trunk design flow is shown
in Fig. 10. First, an optimum clock repeater recipe will be
identified using metaheuristic technique as proposed in our
previous work [43], where a Genetic Algorithm (GA) based
flow will perform global search through auto mixing and
matching the input variables (aka “Genes’) such as repeater
types, wire layer/width/spacing, and repeater interval dis-
tances to perform layout constructions (aka “‘reproduction),
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FIGURE 9. Comparison of proposed clocking schemes for flop repeaters
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FIGURE 10. The proposed global clock trunk design flow. (Note: Refer to
Fig. 8 for definition of number 1, 4, and 5).

and performance analysis (aka ‘““Selection’). Based on the
data paths information provided by logic designers, partitions
physical location provided by FC floorplan, and the repeater
latency recommended by the GA based recipe finder flow,
critical FC timing paths will be identified, and higher weigh-
tage will be applied on the cost of clock divergence point
of these paths during top level Steiner tree synthesis later.
With the information of MIB and power well information,
non-obstacle blocks, which clock feedthrough is allowed,
will be identified. The non-obstacle blocks together should
form continuous routes which allow clock to distribute from
sources to every functional block. At the same time, clock
pins of functional blocks should always be planned to face
the non-obstacle blocks. Based on the clustering of the clock
pins, DOP tree location will be planned. At this stage, clock
latency data should have been extracted from the earlier
block which run with an automated place and route (APR)
flow. Based on the data, synchronous points which offset
the block level latency will be modeled. With the critical
paths, obstacle, and synchronous point information, we will
perform a top level OCV aware Steiner tree synthesis using a
k-mean meta-heuristic technique [55] which will be elabo-
rated in Section IV. After implementation and balancing of
the trunk to below 50ps skew target, the trunk and the pre-built
programmable delay modules, which will be discussed in
Sub-section C, will be pushed down into block level.

B. MINIMUM LATENCY TARGETED LOCAL CTS

Larger clock latency from a divergence point will cause
larger OCV induced clock jitter. Thus, to reduce jitter, it is
recommended to minimize the clock latency at block level.
To achieve that, an evaluation phase in the design cycle has
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been initiated to collect the minimum latency achievable by
each block. The flow used in the proposed block level CTS
evaluation phase abovementioned is shown in Fig. 11. During
the evaluation, CTS will begin with default top-down clock
design specification, pin locations, and configuration which
prioritizes on minimizing of clock latency. Then, multiple
iterations of CTS trial run, QoR analysis, and tool configura-
tion tuning will be performed until acceptable skew has been
achieved. The clock latency data collected from each block
will be set as the clock design target for its future APR. At the
same time, balancing modules will be pre-built/pre-inserted
to offset gross latency gaps between blocks.

@—I Default Specification l
¥

Quick Trial Runs of Block Level CTS
(with minimum latency as target)

Clock Pin
@~ Locations [

—

I Clock Data Extraction from all blocks |

Skiwhl ~10 ] Update CTS
s Tool Setting

YES

Definition of Block Clock Design Specification
(Max transition, skew, output capacitance, HEr
fan-out, metal layers and Clock Cell Choices)

FIGURE 11. The proposed minimum latency targeted block level local
CTS flow. (Note: Refer to Fig. 8 for definition of number 2, 4, and 5).

One of the new clock design complexities is related to
the challenges of clock balancing for blocks that have the
concurrent clock data (CCD) optimization feature turned on.
CCD feature uses ‘useful” skew, which is a clock skew
intentionally added to meet timing, to optimize critical timing
path as shown in Fig. 12. Additional delay buffers are added
into clock paths of receiving flops to skew clock intentionally
in order to gain more timing margin and consequently resolve
setup violations. Noted that we must specially configure the
APR tool and flow to avoid adding delay into clock path of
the input/output (I0) flops, as it will complicate the cross
blocks clock balancing and FC timing convergence tasks.
Besides, the APR tool may not able to identify 10 flops
accurately using its built-in command, as it could be confused
by design for test (DFT) signals that connect ports to every
flop. To mitigate the issue, we must filter out the 10 flops from
other flops with automation scripts based on special naming
convention.

To further minimize the clock latency especially in non-
obstacle blocks where flop-repeaters could be widely and
randomly distributed, multi-source CTS (msCTS) with low
latency pre-built trunk/mesh is used as shown in Fig. 13.
msCTS is a hybrid method of conventional CTS and Clock
mesh. Multisource drivers connect to the trunk/mesh at a
limited number of locations referred to as tap points. A multi-
source clock tree structure driven by the mesh consists of sub-
trees, each driven by a tap point [56]. By using low skew and
latency pre-built trunk/mesh, we can reduce the total clock
skew, latency and OCV effects.
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FIGURE 12. Designs with CCD feature, in which useful skew is
automatically applied by CTS engine to improve timing.

Legends :
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FIGURE 13. Structure of proposed multisource CTS network which is
meant to reduce clock latency.

C. FC CLOCK BALANCING CIRCUITRY

FC clock balancing usually happen after the global and block
level local CTS clocks are stable. However, it is proposed
to preemptively reduce the gross skew since the “Setup”
phase (see Table 3) during trial block build process. Clock
delay modules and insertion flow are pre-built based on the
data collected from block level CTS evaluation phase as
mentioned in Sub-section IIIB. There are 2 types of balancing
modules proposed in this article: (1) Zig-zag buffer Chain
(ZZB) and (2) Programmable Delay Module (PDM). ZZB is
used for preemptive balancing while PDM is used for final
clock latency fine tuning.

Z7B, as shown in Fig. 14, is basically a simple clock
repeater chain which is designed to mimic the structure of
CTS clock tree in block level, where the most commonly
used clock repeater types, wire layers, and interval distance
between clock repeaters are chosen. With the similar clock
structure, it can help to preserve similar net delay to cell
delay ratio across clock branches and consequently reduce the
global clock skew as process, voltage, and temperature (PVT)
changes. ZZB is used to offset gross latency gap of smaller
blocks. Each ZZB will provide approximately 450ps delay
per instantiation. An automation script has been developed
to parse the data collected from the block CTS evaluation
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FIGURE 14. Proposed Zig-Zag Buffer (ZZB) chain that is having similar net
delay to cell delay ratio as in block level CTS.

phase as described in Sub-section IIIB and auto generate
Z7B insertion Engineering Change Order (ECO) scripts for
non-obstacle blocks or channel partitions to source in during
APR of block.

The proposed PDM, as shown in Fig. 15, is basically a
simple chain of multiplexers which is carefully designed to
produce balance duty cycle.

IN Block A Block B
[o—T—3 2
{ Block C ‘Block D
CONTROL 3.
a
ey Tied-Low ot———iall_% llot—x——)o0
ke son g4\ Block F
Tied-High
“Ther “code via progr bl
(From ~40ps to ~450ps)

FIGURE 15. Basic design concept of the proposed programmable delay
module (PDM).

PDM controlled with thermometer code (TC) format as
shown in Table 4, where the value of each number is
expressed as the number of ones in a string of bits [62].
PDMs are meant for clock latency fine tuning after stabi-
lization of both global and local clock tree. In our work,
they can be programed to provide approximately 40ps to
450ps delay with 40ps of granularity at typical PVT corner.

TABLE 4. Delay versus Thermometer Code (TC).

Regular . Approximate Output
Representation Control Bits Delay Range(ps)

00 0000 0000 40-50

00 0000 0001 80-90

00 0000 0011 120-130
0000000111 160-170
0000001111 200-210
000001 1111 240-250

0000111111
0001111111
0011111111
0111111111
1111111111

280-290
320-330
360-270
400-410
440-450

SeNAURWN~D
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The programming can be achieved either with via pro-
grammable scripts or routing ECO feature of the APR tool to
tie the select signals of the multiplexers to the corresponding
logic ones or zeros.

Some of the non-obstacle blocks or channel partitions
may contain tap points or DOPs, where global trunks have
distributed clock signals from PLL across chip to the regional
stations for functional blocks to connect to for clock source.
PDMs are proposed to be inserted for each clock domain of
each block at tap points, which are basically the leaf nodes
of DOP trees, as shown in Fig. 16. This will increase OCV
jitter on timing paths across blocks but to have better control
during final clock balancing phase, which is critical to the
overall design converging schedule, the tradeoff is highly
recommended. Every clock domains of every blocks will
have their own PDMs but not ZZB. ZZB is inserted on need
basis. Thus, ZZBs are recommended to be placed after PDMs
to preserve consistency of capacitance load driven by tap
points.

Legends :

e -
1 Functional Block Programmable Delay Module *y CTS Tree @ Tap Points

@ Zig-zag Buffer Tree

I:l Non-obstacle Blocks .5+ Drop-off-point Tree

|

I —

l—
b

FIGURE 16. Topological view of the proposed clock balancing circuitry.

IV. HYBRID METAHEURISTIC BASED GLOBAL CLOCK
SYNTHESIS ALGORITHM

As elaborated in Section I, most of the prior global
clock synthesis techniques did not consider performance-
power-area (PPA) and OCV at the same time. To achieve
global optima solution, global clock synthesis of a complex
SoC can be a non-deterministic polynomial-time hardness
(NP-Hardness) optimization problem, where no algorithm
exists to solve it in polynomial time. The usage of exact
algorithms, such as mathematical based approaches, to give
exact or complete solutions is impractical. In approximation
or namely heuristic methods, the guarantee of finding optimal
solutions is sacrificed in order to get near-optimum solu-
tions in reasonable and practical computational times [61].
In global clock synthesis context, an example of heuristic
method is to configure constraints of a layout computer aid
design (CAD) tool and then rely on its CTS algorithm to
build the solution. CTS deploys its built-in meta-heuristic
algorithm, which is defined as an iterative generation process
which guides a subordinate heuristic by combining intelli-
gently different concepts for exploring and exploiting the
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search space [57], to search for solution which focuses on
minimizing skew and latency. However, without awareness of
the contents within the block level and the timing relationship
between blocks, CTS is just a local search algorithm which
has no means by which it can search extensively and exploit
global and optimum solutions found in the neighborhood
existing in distances of the solution space [59]. Therefore,
local search algorithm will simply get caught in the local
optima [61]. Some CAD tools have provided feature to
include full or partial blocks’ content into the CTS. However,
not all contents will be available in time and even they are,
the run-time of global CTS may not be acceptable, especially
for complex SoC that has more than millions of flops. Fur-
thermore, the complex on-chip clock controllers (OCC) built
within the blocks will deteriorate the CTS QoR if they are
not properly configured. To overcome the challenges, we pro-
pose to use the hybrid meta-heuristic algorithm [60] which
combines meta-heuristic with some other exact or heuristic or
meta-heuristic algorithms to remove each other’s weaknesses
and merge their strengths.

High level of the proposed overall global clock imple-
mentation flow is shown in Fig. 17. In this flow, we intro-
duce an enhanced hybrid meta-heuristic (HMH) based global
CTS algorithm to perform thousands of quick search, which
able to analyzed based on incomplete design data set, for
a near global optimized design recipe before passing the
solution to the standard design flow which requires longer
turn-around-time to physically implement the distribution
network.

Subject Matter

Expert (SME) The Proposed Hybrid Meta-

heuristic Algorithm

Inputs
Global Inputs P
—_

. Generators

Experiment Deck

Gobal || SEanclard
optimized [*| Design
Meta-Heuristic Design Flow
Algorithms Recipe

1

1

'

'

'

i

!

E Heuristic Flow
Death ;

i

1

Lock Exact Algorithm
i ' for Solution
Solving b il e Selection

FIGURE 17. Overview of the proposed global clock synthesis flow.

The proposed HMH based global CTS algorithm consists
of three key components:

(1) K-mean metaheuristic algorithm, which takes in sim-
plified global inputs that defines the floorplan, pins
location, block level estimated clock latency and rela-
tionship information to perform global search for the
branching points of the distribution network.

(2) Fast heuristic algorithm, which deploys industry CAD
tool to perform local search for implementation solu-
tion, such as repeater insertion, place, routing as well
as shielding, and then estimates the QoR.
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(3) Exactalgorithm, which models Subject Matter Expert’s
(SME) solution to control selection process, to avoid
death lock, and to solve multi-objectives optimization
problem.

Detailed explanation of the three components are in the fol-
lowing sub-sections.

A. K-MEAN BASED GLOBAL CLOCK SYNTHESIS
ALGORITHM

K-mean has been used for sink points clustering by
researchers [68] and branching points identification by
researchers [69]. In this article, the algorithm has been
extended to enable global CTS for a hierarchical design that is
obstacle dominant at top level. Basically, the proposed global
CTS flow constructs tree by identifying branching points and
their locations in a stacking format as shown in a simplified
model in Fig. 18. After identifying branching points for the
first stage of clock end points, the branching points will
become pseudo end points for the following stage. After that,
it will become a recursive process until only one pseudo end
point left in one stage. Then the end point will be connected
to input clock pin. Upon completion of the recursive flow,
balance stages of clock repeaters will be inserted as shown
in Fig. 18(f). After that, the tree is ready to be detail-routed
and fine-tuned to improve skew.

(a) Clock End Points (b) stage 1 Branch (c) stage 2 Branch

o o o © o..__i_..,o o050

o o oa®

(f) Repeater Insertion

Legends :
B Input Pin
v Branching Points

(e) Connect to Input Pin (d) stage 3 Branch

O Clock End Points
V Pseudo End Points

- Connectivity

V Repeaters

FIGURE 18. A simple model of the proposed global CTS flow.

Branching points finding is basically a clustering process.
In this work, the k-means algorithm is chosen for this purpose
as it is one of the most widely used clustering heuristics [55].
The k-means algorithm solves the problem of clustering to
minimize the sum of squared errors (SSE). In global CTS,
we are given a set of end points, which are basically the clock
end points PeR? in a Euclidean space, and the goal is to
find a set of branching points, or centers CeR? of k points
(not necessarily included in P) such that the sum of squared
distances of the points in P to their nearest center in C in
minimized. Thus, the objective function to be minimized is
min

2
o lip-cl (1)

cost (P, C) := Zp
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where |.||% is the squared Euclidean distance. The points
in C are called centers or centroids. The above problem
formulation assumes that the number of centers & is known in
advance [55]. However, in global CTS case, k is not apparent
from the application thus we will have to search for the
correct number of k. To achieve that, since the number of
end points at top level are a lot smaller, we apply brute-force
search [63], which systematically enumerating all possible
candidates for the solution and a QoR measurement method,
which is elaborated in Sub-section C, for selection.

In order to solve the SSE problem heuristically, the
k-means algorithm starts with an initial candidate solution
{c1,...,cr} ¢R?, which can be chosen arbitrarily (often,
it is chosen as a random subset of P). Then, two steps are
alternated until convergence: First, for each c;, the algorithm
calculates the set P; of all points in P that are closest to c;
(where ties are broken arbitrarily). Then, for each 1 < i < k,
it replaces c; by the mean of P; [55]. In the proposed global
CTS case, the locations of objects are modeled in Cartesian
coordinate system, thus the Euclidean distance calculation
will be based on P;(x;, y;) € R4 values. The proposed k-mean
algorithm is modeled in Algorithm 1 in Fig. 19.

Legalization of center point is needed to avoid overlap
with clock obstacles. It is basically performed by moving
any overlapped point to the closest non-obstacle region which
identified using Boolean operation on polygons, which is a
computational geometry technique [64], as shown in Fig. 20.
To achieve that, all the non-obstacle regions adjacent to the
obstacle region which overlapped with the center point will
be modeled as combination of rectangular boxes. Lower
left (LL) point, (x0, y0) and upper right (UR) point, (x1,y1) of
all boxes will be extracted as shown in Fig. 20a. For each box,
by combining with the coordinates of the center point (X, yc¢),
two new virtual boxes, as labelled A and B in Fig. 20b, will
be generated with coordinates:

Box A : LL point = (x0 — A, y0 — A)
UR point = (Xc + A, y. + A)
Box B : LL point = (x; — A,yl — A)
UR point = (x1 + A,y + A) 2)

where A = 1 um, which is a simple place holder value for
overlap region calculation. The overlap region, which is the
legal region that is the nearest to the center point, will be
calculated using the “AND” Boolean operation on the two
virtual boxes. Upon completion of overlap regions identifi-
cation for all the rectangular boxes of adjacent non-obstacle
regions, the region with the shortest distance to the center
point will be selected for adjustment as in Fig. 20c.

By default, for cluster with only one member, k-mean
algorithm will always set its center point exactly on top of
the member itself. This is referred as back-to-back (B2B)
point in this article. This will cause large global clock skew
as shown in Fig. 21a. To overcome this dead-lock issue, first,
the overall average Euclidean distance, D), of all other end
points to their respective center points, exclude any cluster
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Algorithm: 1
Inputs:
End point set, P(x,3)= {p:(x1,y1), p2(x2y3), ...} S RY
Integer number of centers, k£ € Z where k < |P(x,y)|
Initial center point set, ¢;= {C;(Xc1, Vei)s --r Ck(Xckr Yer)} € RY
Outputs:
Clusters Sets P, € P(x,y) wherei=1tok
Cluster center point Set, C(x,y) = {¢1(Xct, Vei)s - CilXe Yai)} € RY
Score, SE€ R
repeat
Empty Set definition for clusters P;, ..., Py «— @
For each end point p(x,, y,) € P(x,y) do
For each center point ¢;(x.;, Vo) € RY wherei=I, ..., kdo
Calculate the Euclidean distance, d,,= [(x,,—xa)zJr (Vp')’a)z]o's
End for
Identify the i which has the minimum d,; where 1 <i <k
Set p(x,, y,) as a member of cluster P;
End for
For each cluster P;, where i = [ to k do

If P, # O then calculate new center point Ci(x,;, ye) € RY,
L
Xei = = Yy Xn Where {p(xs, y), ..., p(3, y)} € Pi
/.
Yei = 7Z{1=1 Yo Where {p(x;,y1), ..., p(x; y)} € P;
Legalize the new center point (see Fig. 20)
Else P; = @ then
Abort flow and flag as death lock
End if
End for
until the centers do not change

Calculate the overall average Euclidean distance, D, of all end points
to their respective center points.

For each cluster P; where i = I to k do
if member count of the cluster, |P;)|=/ then
Adjust the back-to-back (B2B) center point to a location which is
the D, distance away from the end point (see Fig. 21).
End if
End for
Calculate and Record the Score, S (see Sub-Section C)

FIGURE 19. The proposed k-mean algorithm to find center points based
on predefined initial center points and value of k.

Legends :
@ center point @ Legalized Center Point
Obstacle Obstacle Obstacle
(%o Vo) Bl =
IS L B ;
UR(x1,y1)| || Overlap t -
LL(x0,y0) i A |

(c) Adjust Point to the
overlap region

(a) Identifying the non- (b) Calculate overlap
obstacle region region

FIGURE 20. The proposed legalization algorithm using Boolean operation
on polygons.

with single member, will be calculated. Then, an exact search-
ing algorithm, which is based on a computational geometry
technique [64], has been used to find a legal region that is D),
distance from the end points leaning toward center point of
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the chip as shown in Fig. 21b. The B2B center point will be
auto adjusted to the legal region to reduce global skew.

Legends :

O End Points @ oOriginal B2B point A center of Chip

@ center point @ Adjusted B2B point _———. Pre-build binary Tree
Block (| Block D

Block A [Block B|Block C| Block D
fé _l__é

AT o A

BlockeE O Block F & Blocke U Block F ?

Block A Block B

(b) After adjustment

(a) Before adjustment

FIGURE 21. Adjustment of back-to-back point towards center of chip to
reduce skew.

The algorithm to find the correct k value and the respective
center point set {C1(x1,y1)s- - .-,Ck (X, k) } S R? for a set of
input end points P(x,y) is modeled in Algorithm 2 in Fig. 22.
Basically, based on predefined minimum and maximum val-
ues of variables k and E seeds, it will run Algorithm 1
with different combinational the variables values and then
compare the returned score S to select the best recipe.

A mathematic approach is used to assign the initial cen-
ter points ¢; of the k-mean algorithm. To improve distribu-
tion coverage, floorplan will be partitioned into windows,
in which one of the end points enclosed within each window
could be assigned as an initial center point. The number of
searching windows Sy, as illustrated in Fig. 23a, is defined
as:

S, = [ceil (\/%)]2 3)

where ceil («/%) is the least integer greater than or equal

to vk Sw >k

Ey and E, are basically Y-axis and X-axis offset values of
the searching windows. They are used to shift the searching
window as illustrated in Fig. 23b and Fig. 23c. One initial
center point is assigned per window by default. If default
method is not enough to fully cover k initial points, random
points will be selected to cover the remainders.

The proposed global CTS algorithm, which involves
searching for multiple stages of center points to form a clock
distribution tree, is modeled in Algorithm 3 in Fig. 24.

Different blocks may have different clock latencies which
mainly depend on their floorplan size, sequential logic
counts, and complexity of the clock control logics. For a com-
plex SoC, it is not feasible to perform global clock synthesis
with considering the massive number of clock end points
within blocks. Thus, in the proposed global CTS algorithm,
blocks will be treated as black boxes and input clock pins
to the blocks are set as initial end points. Then, for each
initial end point, it will be driven by a pre-inserted anchor
buffer. These anchor buffer will be treated as new end points
which will be pre-adjusted as shown in Fig. 25 to offset clock
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Algorithm: 2

Inputs:
End point set, P(x,y)= {pi(x1.y1), p2(x22), ..} S R?
Minimum number of centers, k., € 7, where k> 0
Maximum number of centers, k. € 7 where k < |P(xy)|
Minimum value of Seed at X-axis, Euin where 0 < Eyin < 1

Maximum value of Seed at X-axis, Ey,, where 0 < Epp < 1

Granularity of Seed Value at X-axis, ., where 0 < Eyg < 1

Minimum value of Seed at Y-axis, £, where 0 < E,,,;,< 1

Maximum value of Seed at Y-axis, E,.c where 0 < E,, < 1

Granularity of Seed Value at Y-axis, E,g,, where 0 < Eg, < 1
Outputs:

Clusters Sets P; € P(x,y) wherei =1to k

Cluster center point Set, C(x,)= {Ci(Xc1, Ve1), +vr CilXeks V) S R?

Set S, € R to a large number.
For k = ki, to k.. do
For Ey = Eymin to Eymax d()
For E. = Ein to E0r do
Define the initial center points set ¢; (see Fig. 23)
Run k-mean Algorithm 1 (see Fig. 19) with P(x,y), k, and c¢;
If S returned is less than S, then
Update S, with value of §
Record the clusters P;
Record the center point Set, C(x,y)
End if
Increase E by E.g4
End for
Increase E, by E,ga
End for
Increase k by 1
End for

FIGURE 22. The algorithm used to search for the best scored center point
set for single stage by varying the value of k and seed E.

Legends :
earching Window @ End point /\ Initial Center point
oo B a o S 01N\ un®
i :
N 15 @ A [ A / A
3
&f ° Q |:> p oy
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3 5 N A
°jo P of {TATTER o |o -
Ceil (k~05) = 3
(a) Floorplan Partitioning (b) Seed E, = -0.5 (c) Seed E, = +0.5
for k=5 case Seed E, = -0.5 Seed E, = +0.5

FIGURE 23. The algorithm to assign the initial center points based on
seeds.

latencies within the blocks according to a prebuilt latency per
distance Lookup table. In certain special case, multiple clock
pins, which are placed close to each other, are created on a
block for the same signal. This will cause k-mean algorithm
to have an inaccurate clustering result. Thus, anchor buffer
should be used to combine these multiple pins into single end
point up front.

Algorithm 3 will define the values of n,ax, kmin> Kmaxs
Egray Epin, and Ey,, using exact algorithm that extracted
from SMEs’ experiences in previous projects and training
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Algorithm: 3

Inputs:
Initial end point set, P(x,y)= {pi(x1,y1), p2(X2y3),...} S RY
Outputs:
For each stage index n € Z.:
End point set Pn(x,y) S R? of stage n
Clusters Sets P.; S Pn(X,y) where i = [ to k,

Cluster center point Set, C,(X,,,) € R4
Initialization of a floorplan layout database
Adjust end points location based on block level Latency (see Fig. 25)
Define max stage count, 7, based on |P,(x,y)| (see Sub-Section C)
set stage index n = /
set current end point set, P,(x,y) = P(x,y)
repeat
Define ki, and k.. (see Sub-Section C)
Define Egy4, Enin and E, for both X and Y axis (see Sub-Section C)
Run algorithm 2 (see Fig. 22) with P,(x,y), kin, kmax, Emine Emas, Egra
Saved returned C(x,y) as C,(x,y)
Convert C,(x,y) to become new P,(x,y) for next stage
Increase n by 1
until the numbers of returned centers |C(x,y)|=1 OF 74 is met

FIGURE 24. The proposed global CTS algorithm.

Legends :
P
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FIGURE 25. Adjustment of the initial end points towards center of chip to
offset the clock latency differences in block level.

experiments which will be briefly explained in Sub-section C.
Basically, values of k;,;;, and k4 are defined based on the
number of end points |Py(x,y)| while Egq, Epin, and Epqy are
based on distribution of P,(x,y). Then, based on the current
end point set, the global CTS algorithm will run Algorithm 2
to search for center point set with the best score and convert
them to become end points for the next stage. The process
repeats until only one point remains in current center point set
or the pre-defined maximum stage, which is meant to avoid
dead lock, is met.

B. FAST HEURISTIC FLOW

Industry CAD tool is used to heuristically implement the
synthesized global clock tree and measure the quality of
results. Implementation includes insertion of clock cells at
the center points, connecting to the respective end points,
repeater insertion, placement, routing and shielding while
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measurements includes checking the latency, transition time,
skew, and jitter. However, detailed physical implementation
is taking longer time to complete especially for large and
complex SoC. To speed up turn-around-time, which is very
important for metaheuristic algorithm to cover larger search-
ing space in an acceptable timeframe, a fast heuristic flow is
proposed. There are two key components in the flow:

(1) Lookup Table (LUT) of latency per distance for the
best know clock repeater recipe, which defines repeater
types, metal layers, interval distance, and shielding that
produce the global optimized QoR, as covered in our
previous GA based HMH flow [43].

(2) A computational geometry technique base fast
global-route technique.

Basically, the flow will use a fast-global route technique
to estimate Manhattans distance of route that avoid obstacles
between two points. Then it calculates the latency of the path
by referring to the LUT abovementioned. The proposed fast
global-route technique uses Boolean operation on polygons,
which is a computational geometry technique [64], as illus-
trated in Fig. 26. First, it converts input data, including the
two center points, non-obstacle and obstacle regions into
polygons. After that, for each polygon point of the obstacle
regions, two virtual rectangular boxes, i.e. A and B as shown
in Fig. 26a and 26b will be formed. The LL and UR points
of the boxes are expanded by A = 1um as in formula (2)
for overlap calculation. After obtaining the overlap polygons
between the boxes with the non-obstacle (6), the overlaps
regions will be geometry Boolean OR to form a routing
path as in Fig. 26¢c. The Manhattans distance of the path
is estimated by dividing the perimeter of the routing path
polygons by 2 as shown in Fig. 26d.

(a)Ane (byBne
Non Obstacle z ) Non Obstacle (06, ). L e ge n ds H
Obstacle (0) A |:|‘:":| Obstacle (0) @ center point
© Polygon Point
® =~ Signal Route

Non Obstacle (6)

?
Obstacle (0) <:|

Non Obstacle (6)

Obstacle (0)

—

(d) **Distance=P/2 (c)[Anolu [Bno]
**p js the Perimeter of [An 8] U [Bn 6]

FIGURE 26. The proposed computational geometry technique based fast
global-route technique.

By performing the geometry computation as in Fig. 26
for all polygon points of the obstacle and then comparing
perimeters of the output polygons, we can quickly determine
the shortest routing path for two points as in Fig. 27.
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(a) Point 1 (b) Point 2
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FIGURE 27. The proposed shortest path finding procedure.

To speed up further the global CTS flow, Euclidean dis-
tance (Fig. 28a) and simple Manhattans distance (Fig. 28b),
which are not obstacle aware, can be used. However, compare
to an obstacle aware Manhattans distance (Fig. 28c), these
distances are less accurate for the clock QoR estimation,
especially for design with larger obstacles.

Non Obstacle Non Obstacle Non Obstacle

Obstacle Obstacle Obstacle

¢ @ et ®

(a) Euclidean Distance (b) Manhattans Distance (c) Manhattans Distance
(non-obstacle avoidance) (obstacle avoidance)

FIGURE 28. Different distance estimation techniques.

C. EXACT ALGORITHM FOR DEAD LOCK SOLVING AND
SELECTION
Mathematic approach based exact algorithms [61] are used to
model the SME solution selection process, to avoid death lock
and solve multi-objectives optimization problem. These algo-
rithms have been fine-tuned based on learning from previous
projects and experiments. The following are the key formula
used in the proposed global CTS algorithm.

(1) Maximum stage count 7,y

logyo|P;
———— (M) + An (4)
log2

where initial end point set, P; = {p1(x1,y1),
p2(x2,2),...}1C R and An € Z is user configurable
integer for extra stages if needed. ceil( ) is operation of
“the least integer greater than or equal to”

Equation (4) is derived from |P;| = 2"7e in which
the number of times |P;| could be divided by 2. 4 1S
used to control the stage count which directly impact
the total clock jitter and latency.
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(2) Minimum (k,;;,) and maximum (k;,qy ) of center points:

kpin = ceil (ﬂ)
4

+ Akimins kmin € Z; 1= kypin < |P| (5)

kmax = ceil <ﬂ>
2

+ Akpax; kmax € Zs kin < kg < |P] (6)

where current end point set, P = {pi(x1,y1),
pr(x2,32),...}C R? and Akyip, € Z and Akpar € Z
are user configurable integers. ky;;, and k;,, are used
to avoid dead lock as well as reduce searching space
and turn -around-time.

(3) Enins Emax, and Eg,, for both X and Y-axis:

mean(Py) — Cyx

Eypin = ——————— Exmin € R @)
Wy
Exmax = Exmin + 1; Exmax € R ()
where chip center point at X-axis, ¢, = M +
origin, Mean of end points at X-axis, mean(P,) =
L5 p, window width size, w, = chipwidih
1P| ceil (Vk)
Exgra =0.25; Exgra eR 9

Similar formula (7), (8), and (9) are used for Y-axis.
Enins Emax, and Egpq are meant to offset the windows
that select the initial center points according to the dis-
tribution of the end points. E,,can be more accurately
estimated with standard deviation value of the P, but in
this article, to simplify the calculation, we have set it to
a fixed 0.25 value.

Different SoCs may have different priorities on PPA.
To solve this multi-objective problem, a cost based mathe-
matic algorithm, which is like our previous work [43], is used
for rank-based selection. We can use a simple method to
aggregate all the criteria into one criterion using a weighted
summation [65], as in formula (10).

CostS. = mygD + miL +mgG + mpP +miJ +mpB  (10)

where D is the total latency cost; L is the total local skew
cost; G is the global skew cost; P is the power consumption
cost; J is the jitter cost; B is the back-to-back point cost. my,
my, mg, my, m; and my, are user defined weightages as per the
SoC priority with all m>0; m € R.

Cost in this article is an aggregated value which is meant
for relative comparison only. The formulas of calculation
used in the work for each cost are explained below based on
a simple example illustrated in Fig. 29.

Latency cost is the sum of all the Manhattan distances from
center points to end points, which is:

— — — — —
LatenCy COSt, D :ClEl +C1E2 +C2E3 +C2E4+C3E5

Local skew is referred to the latency gap between the
longest and the shortest center-to-endpoint paths, which is
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(a) 1<t Stage Costs
Calculation

(b) 1st Stage Jitter Cost
Calculation

FIGURE 29. Examples of costs calculation for 15t stage.

driven by the same center point. Total local skew cost is the
sum of local skews of each center point. In this example:

Total Local skew Cost, L
= [M“X(EEJ ’aEz )= Min(aEl ’aEz ]

+[Max(€2]g3 »(3]34 ) — Min(aE3 ’E;E4 )]

Global skew is referred to the latency gap between the
longest and the shortest of all center-to-endpoint paths,
regardless of center points. In this example:

Global Skew Cost, G = [Ma)c(E)lEl ’aEz ,E’ZE3 ,E;E3 ’(_?;ES )]
_[Min(aﬂ ’E)lEz ’E;E3 ’6)253 ’E;Es)]
Local and global skew will be minimum in the case if all
end points fall under back-to-back (B2B) case, in which every
end point has its own dedicated center point. To avoid bias
in the selection algorithm, B2B point cost is added. In this
example:

Back-to-back point Cost, B = number of point % 1000
= 1% 1000

Jitter cost is calculated by first, summing up the Euclidean
distances of center-to-endpoint paths of two end points that
have timing relationship, and then add on the Euclidean
distances of each endpoint to its counterpart center, even they
have no direct connection. For the example in Fig. 29b:

With end point pair, (E1, E3) that have timing relationship

. _ — — — —
Jitter Cost,J = Kpcl|E, || HE,c,| TiEsCyl TiEsCy]

where Kgpc is the designer defined timing criticalness weigh-
tage for relationship of timing path between blocks B and C.

Similar formulas are used in the 2" stage and so on. For a
2" stage example in Fig. 30b:

Latency Cost, D =p, ¢, +p,c,tD;c;

Since there is only one center point in this example, global
skew cost, G will be equal to the total local skew cost, L. and
there will be no B2B cost added.

Total Local skew Cost, L

— — — . — —
= [Max(DlQ ’D1C2’D1C3) o Mm(D1C1 ’D1C2’D1C3)]
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FIGURE 30. Examples of costs calculation for 2" stage.

To calculate the jitter cost of the 2" stage onwards, similar
formula which sum up the Euclidean distances for endpoint
pair that has timing relationship will be used. However, addi-
tional script is needed to trace the connectivity to identify the
correct center for calculation. In this example:

. — -
Jitter Cost,J = Kgclig,p,| +E;p, ]

V. RESULTS AND DISCUSSION

A 10nm complex SoC, which consists of 132 blocks with
more than 600millions gates and 17k memory macros, is used
for result discussion. It has total 108 clock domains with 56 of
them need to be balanced across the chip. The highest system
clock frequency is 1.2GHz. The largest clock domain which
distributes clock signal to 4.25million sink points is running
at 800MHz. The SoC consists of many MIBs and multi-VDD
blocks as shown in Fig. 5 and these special blocks are non-
systematic obstacles to clock distribution as shown in Fig. 6.
The chipis 142mm? in die size. Due to the large die size, more
than 500k flop repeaters have been inserted into different
none-obstacle blocks to meet setup time for different clock
domains. To stay competitive in the market, the design of
the SoC is planned to complete within 1.5 years. Schedule
and performance are the highest priority for this SoC. Thus,
area and power consumption have been reprioritized in the
analysis.

The complex SoC has two design versions, namely AQ
and BO. In AO version, clock trees are mainly built with
a common ASIC technique, which uses state-of-the-Art
msCTS engines of a commercial tool as illustrated in Fig 31a.
Basically, an in-house synthesis tool is used to build global
clock trunk from PLL to DOPs in non-obstacle blocks. Then,
different latency targets are set for the CAD msCTS engine
to build clock trees from DOP trees to clock pins of blocks
nearby, on top of sequential logics within the non-obstacle
blocks. The latency target values are pre-extracted from CTS
results of all blocks and block level CTS are performed
with CCD fully enabled including to the IO flops. This is a
common ASIC technique which focuses on fast-turn-around
time. However, with the emerging challenges of a complex
SoC as described in Section III, the clock QoR is hardly
controllable. Consequently, significant amount of effort and
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FIGURE 31. Comparison of the clock distribution approaches used
in A0 and BO.

time is spent to patch the FC clock design before it was barely
acceptable for timing convergence.

As mitigation plan, the proposed FC clock distribution
techniques as illustrated in Fig. 31b have been used in BO.
Global clock trunk is built with both BCS and UCS, whereby
BCS is used by default but UCS is used on clock domain that
must drive large block. An example of the global clock tree in
B0 is shown in Fig. 32. On top of that, ZZB and PDM are also
used for fast clock balancing. With that approach deployed on
all the 56 clocks in the SoC, acceptable FC clock design has
been achieved within five weeks, saved nine weeks compared
to AO. The comparison of the FC clock balancing duration
for 5 of the key clock domains is shown in Table 5.

Legends :

Steiner Tree DOP Tree

FIGURE 32. An example of a global clock tree implemented with the
proposed FC clock distribution design techniques.

Note that due to process technology confidentiality, total
clock latency will not be shared in this article. Besides, com-
mercial tools used in the work will not be disclosed.

Comparison of FC clock skew for key clock domains,
which include global clock trunk, block level tree, and
balancing modules, is shown in in Table 6. We see averagely
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TABLE 5. Comparison of Clock Balancing Duration Between A0 and BO.

CI"C{( Blocks Total Sinks Duration
Domains Count A0 (week) | BO (week) | Delta (%)
CLK_A 50 4252184 14 5 -64.3
CLK_B 17 4075819 8 3 -62.5
CLK C 21 3323599 9 3 -66.7
CLK D 5 812973 8 3 -62.5
CLK E 25 804516 12 4 -66.7
Average -64.5

16.98% of FC skew improvement in BO compare to AO in this
SoC. The improvement is mainly due to better controllability
of delay tweaking with the introduction of PDM and ZZB,
as compare to CAD CTS. However, PDM and ZZB will not
improve local skew within a block. A few clock domains have
worse global skews in BO due to larger local skews within a
few blocks as highlighted in red color in Table 6. These skews
are intendedly added to close some critical timing paths as
B0 design has more stringent timing requirements to improve
yield in mass production. These useful skews are applied
mainly on the on-chip clock controller logics.

TABLE 6. FC Level Clock QoR of A0 vs BO.

Clock Blocks Average Skew on 10 Flops
. Total Sinks
Domains Count A0 (ps) BO (ps) Delta (%)
CLK A 50 4252184 308 244 -20.78
CLK_B 17 4075819 318 255 -19.81
CLK_C 21 3323599 346 224 -35.26
CLK_D 5 812973 505 282 -44.16
CLK E 25 804516 209 243 16.27
CLK F 2 650080 757 675 -10.83
CLK G 6 293952 265 157 -40.75
CLK_H 4 236992 281 156 -44.48
CLK_I 22 226058 267 313 17.23
CLK_J 27 94934 151 153 1.32
CLKK 16 57858 225 149 -33.78
CLK L 15 24130 248 209 -15.73
CLK M 10 23551 2159 1591 -26.31
CLK_N 14 19910 124 148 19.35
Average -16.98

Besides, by disabling CCD on IO flops and set minimum
target latency in block level CTS, we can improve clock skew
on 10 flops significantly. This has also helped to reduce the
effort and time in FC balancing phase. For blocks that are
driven by one of the main system clocks shown in Table 7,
averagely 45.59% of clock skew improvement has been
achieved. However, latency improvement is not obvious in
these case studies as skew is set to have higher priority over
latency in the CAD CTS algorithm even though the target
latency is already set to minimum. Note that a few outlier
sink-points, such as on chip clock controller logics that have
large intended/useful skew added to solve timing violations,
have been filtered from the results.

Skew comparison of the global clock trunk of the key clock
domains is shown in Table 8. These measurements are on
trees from PLL to DOPs excluding the branches with UCS.
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TABLE 7. Block Level Clock QoR for Main system Clock of A0 vs BO.

TABLE 8. Comparison of SKEW of Global Trunk only for A0 vs Bo.

Clock Block Global Trunk Skew (From PLL to DOPs)

Domains Counts A0 (py) BO 9 Delta
CLKA 21 143 40 -103ps (-72%)
CLKB 17 75 31 -44ps (-58%)
CLKC 50 233 45 -188ps (-81%)
CLKD 27 136 2 94ps (-69%)

With the proposed technique, faster clock design turn-around-
time can be achieved and consequently more iterations of
skew fine-tuning can be performed. Thus, significant skew
improvement on BCS clock trunk has been achieved in BO.

In AO, global clock tree is CTS without OCV aware. In BO,
the proposed OCV aware BCS algorithm is used for the
global clock trunk by default and for clock domains with
large blocks, OCV aware UCS algorithm is used to reduce
divergence effectively. An example of non OVC aware clock
tree vs OVC aware is shown in Fig. 33. Comparison of
diverged repeater stage between A0 vs BO for the critical
clock domains is shown in Table 9. We believe the improve-
ment is vary by design. In these critical clock domains,
we can achieve averagely up to 42.75% reduction of diverged
repeater stages. The magnitude of improvement is significant
due to the large SoC size which requires more stages of clock
repeaters and non-systematic placement of IP blocks.

The proposed HMH global CTS flow can operate with
different route distance estimation techniques, which trade off
accuracy for runtime, as described in Section IVB. To eval-
uate the trade off, smaller SoC testcases (TC) with different
die sizes have been used. Snapshot of a k-mean algorithm
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Block Total Sinks lf atency Average Skew on 10 Flops
elta (%) A0 (ps) BO (ps) Delta (%) —
BLK 4 569 -31.96 130 64 -50.77
BLK B 13788 -6.16 185 124 -32.97 E> TH
BLK C 87481 36.14 349 114 -67.34 L
BLK D 13788 21.68 142 141 -0.70
BLKE 28661 -21.61 240 148 -38.33
BLK F 30462 25.12 288 136 -52.78 (a) Non OCV Aware (a) OCV Aware
BLK G 76615 -19.40 415 204 -50.84
BLK H 119845 -34.25 202 106 -47.52
T, 150297 5757 378 27 7074 FIGURE 33. An example of non OCV aware vs OCV aware global tree.
BLKJ 174969 -23.50 306 120 -60.78
BLKK 217828 25.83 256 148 -42.19 TABLE 9. Comparison of Divergence Stages for A0 vs BO Scheme.
BLKL 55403 -2.42 259 140 -45.95
BLK M 126409 -41.10 544 437 -19.67
BLKN 18755 21453 264 132 _50 Maximum Diverged Repeater Stages
Clocks
BLK O 455737 -19.16 407 185 -54.55 A0 (Non OCV Aware) B0 (OCV Aware) Delta (%)
BLK P 192736 -35.49 356 150 -57.87
BLK Q 244515 -14.29 246 151 -38.62 L = = #
BLK R 248760 -6.17 246 160 -34.96 CLKB 28 14 -50
BLK S 84056 22.05 374 127 -66.04 CLKC 50 30 40
BLKT 33464 -12.54 373 132 -64.61
BLK U 24367 2.07 247 148 -40.08 LA - - .
Average -8.79 -45.59 Average 4275

built global tree from one of the TCs is shown in Fig. 34.
It shows how a simple global clock tree is built with three
stages of centroids with the proposed fast global route tech-
nique. Runtime and skew comparison between non-obstacle
Manhattans (NoM), fast global route (FGR) and actual global
route (AGR) are shown in Table 10. For apple-to-apple com-
parison, experiments were performed using the same pre-
built floorplans, CAD tool version and machine resources
specification for each TC.

(a) Centroid #1

(b) Centroid #2 (c) Centroid #3

FIGURE 34. A snapshot of k-mean algorithm built global clock tree.

TABLE 10. Run time comparison between different distance estimation
techniques.

Die Machine Run Time (Hour) Skew (ps)
S0C | Size f’:’;’;

(mn) ° NoM FGR AGR NoM FGR AGR
ICl1 31.7 11 04 1 36 1505 55 543
2 4.7 19 058 333 4 143.7 61.3 60.4
7C3 134 35 125 7 288 189.6 1227 1279

From these case studies, we noticed that runtime of the
HMH flow increases as die size and block count increase.
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Among the techniques, NoM has the fastest turn-around-time
but its skew estimation is not accurate especially if any signal
has accidentally feedthrough large obstacle blocks. By using
FGR or AGR, obstacles can be avoided as shown on one of the
runs of TC2 in Fig. 35. FGR and AGR produce design with
close skew results as they are used just to estimate the route
distance, in which obstacles are avoided, to help the exact
algorithm in selection process. The selection process is basi-
cally a relative comparison algorithm, thus minor inaccuracy
of FGR will not change the final decision in most of the time.
However, with the proposed FGR technique, run time of the
proposed HMH flow can be reduced up to 41.1 times for the
larger TC3 if compare to the AGR which route with CAD
tool. We believe this is because AGR consider more variables
such as every possible routing track available [66] while the
proposed FGR considers only the corner points of obstacles.

FIGURE 35. A snapshot of obstacle aware global clock synthesis.

Similar to the analysis method used by researchers [69],
we have further evaluated the effectiveness the proposed
approach by comparing to a state-of-the-Art CTS of a com-
mercial tool. A smaller hierarchical design, which is built
based on 7nm technology node, have been used in the exper-
iment. The design consists of multiple instantiated IP blocks
as well as flattened standard cells at top level. There are
2 system clock domains in the design and the highest fre-
quency is running at 1GHz. The clock trees have been built
with both the proposed approach (PA) and a state-of-the-Art
CTS of a commercial tool. Analysis is performed using the
static timing analysis and clock QoR reporting engines of
the same tool. Fig. 36 shows the clock tree snapshots of the
experiment and Fig. 37 shows the normalized skew results.
In this experiment, we achieved 28.89% better global skew
with PA compare to the CTS.

Clock re-convergence pessimism (CRP) is a difference in
delay along the common part of the launching and capturing
clock paths which models the impact of variation on skew that
causes inaccuracy in timing [53] while clock re-convergence
pessimism removal (CRPR) is an automated correction of
this inaccuracy in timing calculation which is available in
most of the design tools. Higher CRPR value in a timing
path directly indicates lower OCV induced jitter effects on the
clock distribution network of the path. Therefore, to measure
the jitter reduction effectiveness, we have calculated average
CRPR values of 100 thousand worst timing paths, which
excluded block level internal timing paths, for each clock
domains. The result in Table 11 shows that PA produces
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(a) Binary Tree +

(b) Local CTS + (c) Proposed
Global CTS msCTS

approach

(d) Hierarchical CTS

FIGURE 36. A snapshot the trees built with the proposed approach vs a
state-of-the-art hierarchical CTS.

(a) Proposed Approach (a) A state-of-the-Art CTS

FIGURE 37. Comparison of normalized clock latency and global skew
between the proposed approach versus a state-of-the-Art CTS.

averagely 31.15ps less jitter, which is 3.115% of 1GHz clock
period, compare to the state-of-the-Art CTS of the tool in this
experiment.

TABLE 11. Comparison of CRPR values of PA vs CTS.

Clock g{ ‘Zf””" Clock _ ]

Domains | sinks | pyoo | crsgy D;Za Delta a(o/z)k l}),\;;r OZGHz
CLKN 24 201945 | 535 27 308 308
CLKS 2 199509 | 529 214 315 315

AVERAGE 532 2205 3115 3115

VI. CONCLUSION

On top of tighter design requirements due to many higher fre-
quency clock domains, there are emerging design challenges
of a complex SoC, such as none systematically placed obsta-
cles as well as repeater flops, CCD features, and high OCV
effects due to sub-nano technology. Furthermore, to stay
competitive in the current dynamic market environment, it is
a necessity for a complex SoC to be designed with high
productivity and low development cost.

In this article, we present a practical full chip clock design
technique that solves the emerging challenges of a complex
SoC. It includes a flexible topology and flow that not only
solves the new design complexities but aligns with actual SoC
design milestones requirements. Besides, an HMH algorithm
is introduced to overcome CAD capacity and runtime issues

VOLUME 9, 2021



E. K. Teh et al.: Practical FC Clock Distribution Design With a Flexible Topology and Hybrid Metaheuristic Technique

IEEE Access

for a complex SoC and subsequently enable fast obstacle and
OCYV aware global clock synthesis. With these techniques,

the

team managed to achieve better QoR with averagely

64.5% shorter time to clock frozen milestone compare to the
prior SoC which uses conventional ASIC technique.

Besides, we are pursuing extensions of the hybrid
meta-heuristic technique into multi-hierarchical clock design
optimization, which allows global and block level HMH
algorithms to collaborate automatically using Particle Swarm
Optimization (PSO) algorithm [67].
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