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ABSTRACT Dedicated infrastructures are commonly used for urgent computations. However, using dedi-
cated resources is not always affordable due to budget constraints. As a result, utilizing shared infrastructures
becomes an alternative solution for urgent computations. Since the infrastructures are meant to serve many
users, the urgent jobs may arrive when regular jobs are using the necessary resources. In such a case, it is
necessary to preempt the regular jobs so that urgent jobs can be executed immediately. Most conventional
methods for job scheduling have focused on reducing the response times and waiting times of all jobs.
However, these methods can delay urgent jobs and hinder them from being completed within a stipulated
deadline. Furthermore, in heterogeneous systems with coprocessors, preemption becomes more difficult
because coprocessors rely on several system software functionalities provided by the host processor. In
this paper, we propose a parallel job scheduling method to effectively use shared heterogeneous systems
for urgent computations. Our method employs an in-memory process swapping mechanism to preempt
jobs running on the coprocessor devices. The results of our simulations show that our method can achieve
a significant reduction in the response time and slowdown of regular jobs without substantial delays of
urgent jobs.

INDEX TERMS Job scheduling, urgent computing, heterogeneous systems, preemption, process swapping.

I. INTRODUCTION
Large-scale scientific computing has played an important
role in critical decision-making systems. For example, when
disasters such as earthquakes, tsunamis, storms, and floods
happen, making timely decisions for mitigating the dam-
ages and reducing casualties is of vital importance. Urgent
computing (UC) is a class of computing to support such
computations [1], [2]. In UC, a computation operates under a
strict deadline after which the computation results are useless.

The most widely used and reliable approach for support-
ing UC is to use dedicated resources [3], [4]. The main
advantage of using dedicated resources is that it can provide
immediate and dedicated accesses to urgent computations.
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Despite this advantage, it also has limitations. Setting up
dedicated resources for each specific urgent computation
is not economically viable, especially if the computations
occur rarely and require vast amounts of resources.Moreover,
the damage to the dedicated resources can make it impossible
to perform urgent computations that can help to mitigate the
damages [5]. Due to these limitations, using existing shared
infrastructures becomes an invaluable approach to supporting
UC [6].

Several studies [1], [6] have shown that several challenges
must be addressed to enable shared infrastructures for UC.
One important challenge is to provide job scheduling meth-
ods that can handle urgent jobs. However, since the shared
infrastructures also serve regular uses of the resource, urgent
jobs can be significantly delayed by regular jobs. On the other
hand, considering only urgent jobs may also greatly increase
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the response time of regular jobs. Therefore, in shared infras-
tructures supporting UC, it is important to prevent delays of
urgent jobs while also decreasing the response time of regular
jobs.

Not only at the research level but also at the practical
operation level, efficient use of shared resources is strongly
demanded. In fact, some major HPC centers have their daily
workloads and respond to urgent jobs if necessary by tem-
porarily suspending daily jobs. The Deutscher Wetterdienst
(DWD) is one such center, and punctual calculations of
weather forecasts are its daily urgent jobs. Other urgent jobs
are the rapid provision of radionuclide dispersion forecasts
for emergency situations. All the urgent jobs preempt regular
jobs of scientific workloads. Therefore, there is a strong
demand for using shared infrastructures for urgent jobs as
well as other jobs.

To support UC, various job scheduling methods have been
recommended by a previous study [1]. This study also dis-
cussed the importance of preemption for guaranteeing the
immediate execution of urgent jobs. However, most of the
previous job scheduling methods do not support preemp-
tion [6]. Preemption is particularly hard to realize in shared
infrastructures because the job scheduling methods rely on
preemption mechanisms supported by the resource providers.
Furthermore, preemption can delay the execution of urgent
jobs because it needs to save the intermediate state of the
preempted jobs. Hence, in shared infrastructures for UC,
reducing the preemption delay is necessary.

At present, coprocessors, such as graphics processing
units (GPUs) and vector processors, have been successfully
used in shared infrastructures to accelerate various scientific
applications [7]. In this work, a system equipped with dif-
ferent kinds of processors is referred to as a heterogeneous
system. Typically, a CPU hosts other kind of processors,
such as the vector processors considered in this paper. For
this kind of system, resource providers need to handle the
preemption of jobs running on coprocessor devices. However,
preemption becomes more challenging due to integration
between coprocessor devices and the host processor [8]. To
preempt a job running on the device, the memory used by
all processes of the job must be moved from the device to
the host memory because coprocessors do not fully support
system software functionalities in general and thus rely on
the host processor. Moving process memory from device to
host memory and vice versa is called process swapping [9].
Therefore, process swapping is crucial for job scheduling
methods in heterogeneous systems supporting UC.

In this work, we propose a job scheduling method for
shared infrastructures supporting UC. The proposed method
consists of a preemption mechanism for heterogeneous sys-
tems using in-memory process swapping, named partial pro-
cess swapping (PPS), and a preemption-based job scheduling
algorithm, named urgent job first with backfilling (UJFB),
that can prevent significant delays of urgent jobs while
decreasing the response time and slowdown of regular jobs.
By swapping processes to memory, the proposed method can

FIGURE 1. SX-AT architecture.

achieve low preemption delays, and thus, it can avoid the
slowdown of urgent jobs. Moreover, it decreases the response
time and slowdown by backfilling regular and urgent jobs.

PPS has been evaluated on a real system of host CPUs
and vector processors, called NEC SX-Aurora TSUBASA
(SX-AT) [10]. As illustrated in Figure 1, SX-AT is a hetero-
geneous system consisting of a vector host (VH) and one or
more vector engines (VEs) as coprocessors. The VH is an
x86-based CPU featuring a standard x86 Linux kernel that
provides standard operating system functions, and each VE is
implemented as a PCI express (PCIe) card equipped with the
vector processor. VEs that run on a VH are controlled by
a sub-operating system called VEOS. However, a VE runs
only user processes, not a fully featured OS. Some system
functions need the data to be on VH memory because, for
OS, the VE process appears to be running on the VH. There-
fore, if a job running on the VE needs an OS functionality,
the job data on VE memory need to be transferred to the host
memory.

The evaluation results show that PPS can achieve negligi-
ble preemption delays, indicating the importance of themech-
anism in preventing delays of urgent jobs. UJFB has been
extensively evaluated with four workloads of real systems
on a job scheduling simulator. The evaluation results show
that it can achieve almost no slowdown of urgent jobs and
a response time and slowdown of regular jobs comparable to
those of existing backfilling-based job scheduling algorithms.
These results demonstrate the importance of the proposed
method in enabling shared infrastructures for supporting UC.

In this paper, we provide the following contributions:
• A low-delay preemption mechanism for heterogeneous
systems supporting UC.

• A metric for evaluating the effects of job scheduling
methods on the delays of urgent jobs.

• A preemption-based job scheduling algorithm for
preventing the delays of urgent jobs while decreasing the
response time and slowdown of regular jobs.

To the best of our knowledge, this work is the first to consider
a new job scheduling method and a preemption mechanism
for shared heterogeneous systems supporting UC.

The remainder of this paper is organized as follows.
The related studies and problem description are presented
in Sections II and III, respectively. Then, we describe the
proposed method in Section IV. To validate the proposed
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method, we discuss our evaluation results in Section V.
Finally, Section VI gives the conclusions and future work of
this paper.

II. RELATED WORK
This section reviews related work. First, several studies
on urgent computing are reviewed. Then, this section dis-
cusses parallel job scheduling methods, which include
nonpreemptive and preemptive job scheduling algorithms
and job scheduling methods considering deadlines. Finally,
it discusses preemption mechanisms for heterogeneous
systems.

A related study [2] provided a definition of UC and identi-
fied unique challenges and requirements of UC systems. One
important requirement is that a UC system must be able to
guarantee immediate executions of urgent jobs. The previous
work also discusses the necessity of preemption-based job
scheduling in UC systems. A system, called SPRUCE [1],
was proposed for supporting UC. The system aims to provide
resources quickly and efficiently to high-priority applications
that must be executed without delay. However, a more recent
study [6] shows that enabling shared infrastructures for UC
remains challenging. One important challenge is that no exist-
ing job scheduling policies are suitable for shared infrastruc-
tures supporting UC. In job scheduling policies targeting UC,
the preemption is mandatory for preventing delays of urgent
jobs. In this work, we propose a job scheduling method to
address this challenge. To the best of our knowledge, this
work is the first to develop a preemption-based UC system
for heterogeneous shared infrastructures while considering a
new job scheduling method and a preemption mechanism.

Parallel job scheduling methods have been widely stud-
ied [11]–[14]. Most conventional studies on parallel job
scheduling have focused on reducing the average response
time and slowdown among jobs. First come first serve (FCFS)
is the simplest method for scheduling jobs. Although it
is predictable, it suffers from low system utilization [15].
Thus, many related studies have focused on backfilling-based
job scheduling methods. A job scheduling method called
EASY [14] has been proposed to improve the performance
of backfilling for smaller jobs. Another related study [16]
focused on improving the EASY scheduler using job runtime
predictions. Although the previous studies have shown the
effectiveness of backfilling-based methods in reducing the
response time and slowdown, all the previous methods do not
guarantee immediate executions of urgent jobs. In contrast
to these studies, this work proposes a preemptive backfilling
method that prevents delays of urgent jobs while reducing the
response time and slowdown of regular jobs.

Some recent studies have proposed job schedulingmethods
considering the deadlines of jobs. Deadline-based backfilling
(DBF) [17] reduces the average wait time of jobs by consider-
ing the deadlines of jobs. By distinguishing deadline-driven
jobs from regular jobs, it can execute a deadline-driven job
earlier by delaying the regular jobs. A related study [18]
has proposed an algorithm for guaranteeing the deadlines

of jobs in cloud computing systems. However, all these
studies do not assume unpredictability of arrival times of
urgent jobs. Moreover, they do not support preemption, and
thus they cannot guarantee immediate execution of urgent
jobs.

The popularity of GPU-CPU heterogeneous systems has
led to many studies focusing on preemption mechanisms for
GPU. CheCUDA [19] and CheCL [20] have been proposed
for checkpointing CUDA and OpenCL applications, respec-
tively. However, these mechanisms have several limitations.
CheCL suffers from large runtime overheads when manag-
ing the GPU states, while CheCUDA is no longer available
in the recent CUDA environment. Moreover, checkpointing
overheads are not acceptable for UC because they can signifi-
cantly increase the preemption delay. Amore recent study has
proposed a preemption mechanism to schedule multiprocess
applications on heterogeneous clusters with GPUs [8]. How-
ever, the mechanism focuses on improving GPU utilization
and does not consider the unpredictability of arrival times of
urgent jobs. Therefore, these previous mechanisms are not
applicable to heterogeneous systems supporting UC.

In addition to GPUs and vector processors, field-
programmable gate arrays (FPGAs) are now commonly used
in HPC centers [21]. However, a recent study has shown
that FPGAs are currently not suitable for preemptive exe-
cutions [22]. Furthermore, preempting a job running on an
FPGA results in significant performance penalties and imple-
mentation difficulties because saving and restoring the job
state can be a very complex operation [23], [24]. Cooperative
scheduling mechanisms [22], [25] have been proposed to
reduce the performance penalties. However, in these mech-
anisms, a job can only be preempted if a predefined state
is met. In UC, these mechanisms can delay an urgent job
because it may need to wait until regular jobs can be pre-
empted. Due to these limitations, our proposed preemption
mechanism does not consider process swapping between an
FPGA and host processors.

III. PROBLEM DESCRIPTION
This section describes the problem of job scheduling for
shared infrastructures supporting UC. First, we describe two
scheduling metrics that are commonly used to evaluate par-
allel job scheduling methods. Then, we use these metrics to
discuss a motivating example with tsunami simulations.

A. PARALLEL JOB SCHEDULING METRICS
This paper considers the workload as the data regarding
each job submitted to a HPC center during a certain time
period. The workload contains the arrival time, the number
of requested processors, the estimated runtime, and the actual
runtime of each job during the period. This workload is
then processed by a scheduler to evaluate the scheduling
performance using the job scheduling metrics. The metrics
are measured by analyzing the job trace of the evaluation.
This trace contains information that is not provided in the
workload, such as the starting time and completion time of
each job during the evaluation.
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Two job scheduling metrics, the response time and
slowdown, have been used extensively in related studies
[26]–[28]. Slowdown is defined as the response time of
the job normalized by the running time. Thus, slowdown
represents the job response time proportional to its running
time. The running time is the wall clock time from when
the job is started until it completes its execution, while the
response time is the total wall clock time from when the job
is submitted to the system until it completes its execution.
Hence, the response time considers the running time and the
time spent by the job in waiting before execution, as shown
by Equation (1).

Response = Tw + Tr , (1)

Slowdown =
Response

Tr
, (2)

where Tw and Tr are the waiting time and running time of
the job, respectively. Then, slowdown can be calculated using
Equation (2). A slowdown equal to 1 means that the job
executes without any delays. Therefore, when an urgent job
is executed, a slowdown higher than 1 can cause it to miss the
deadline.

B. A MOTIVATING EXAMPLE WITH TSUNAMI
SIMULATIONS
As a motivating example, we evaluate the performance of
regular and urgent jobs with the SDSC-DS workload [29].
It is composed of 96,089 jobs, which are executed on the
DataStar cluster of the San Diego Supercomputer Center
between March 2004 and March 2005. The cluster consists
of 184 nodes, with a total of 1,664 processors. We run sim-
ulations with the workload using a job scheduling simulator,
called Alea [30], which is based on the GridSim toolkit [31].

Since no urgent jobs are defined in the workload, we ran-
domly inject an urgent job at busy times in different simulated
months. The busy time is when the resources utilization is
equal to or higher than 75%. The urgent jobs are injected at
busy times to simulate the cases in which urgent jobs arrive
when most of the resources are used by regular jobs. Thus,
these cases will likely delay executions of urgent jobs. Table 1
shows job configurations that are used for injecting urgent
jobs. Each configuration consists of the number of CPUs
required by the job and the job length, which is the running
time of the job. These values are adopted from the empirical
results of tsunami simulations obtained in related studies [32],
[33]. As shown in these studies, the tsunami simulation is
expected to finish with a 10-minute deadline to mitigate the
loss caused by the tsunami event.

Figure 2 shows the arrival times of the urgent jobs injected
in the SDSC workload with the FCFS algorithm. The x-axis
shows the hours in a period of three months after the first job
arrival, while the y-axis shows resource utilizations during
that period. The vertical red lines indicate the hours at which
the urgent jobs arrive. As shown in the figure, three urgent
jobs are injected at busy times in different simulated months.
Each urgent job is injected at the hour when the resources
utilization is at least 75%. Thus, to avoid delaying the urgent

FIGURE 2. Arrival times of injected urgent jobs.

TABLE 1. The number of processors and lengths of urgent jobs for the
tsunami simulation.

FIGURE 3. Slowdowns of regular and urgent jobs.

job that arrives at that hour, it is necessary to preempt the
regular jobs that are still running.

This evaluation compares two widely used job scheduling
algorithms, FCFS and conservative backfilling [34], [35]. In
the backfilling algorithm, the actual runtime is used as the
estimated runtime. Thus, it assumes accurate estimates of the
runtime. For the evaluation, we measure the average slow-
down of regular and urgent jobs. Table 1 shows the maximum
slowdown with which a system can satisfy the 10-minute
deadline requirement of tsunami simulations. As shown in
this table, the running time of an urgent job with 128 proces-
sors is 10minutes, which is equal to the deadline requirement.
This result means that this job does not allow any delays to its
execution, i.e., the slowdown is equal to 1. On the other hand,
the running times of jobs with 256 and 512 processors are less
than 10 minutes. Therefore, slowdowns less than or equal to
their maximum slowdowns remain acceptable for these jobs.

Figure 3 shows the slowdown results of the two algo-
rithms for regular and urgent jobs. As shown in the figure,
the conservative backfill algorithm shows smaller slowdowns
than FCFS, indicating that backfilling can reduce the wait
times of regular and urgent jobs. For both methods, the slow-
down of urgent jobs is smaller than that of regular jobs.
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However, urgent jobs still suffer from significant delays
because they need to wait for regular jobs to complete their
execution. In the figure, these two algorithms delay urgent
jobs with slowdown factors higher than 10, which are much
higher than the maximum slowdowns allowed for the urgent
jobs of the tsunami simulation.

The lateness of urgent jobs not only wastes computa-
tional resources but also implies that no damage mitigation
effort can be performed. In the case of a tsunami simulation,
an early deadline is preferred because the most important
indicator occurs within a fewminutes after the first detectable
urgent event [36]. These results show that these conventional
methods are not applicable to UC. Therefore, to support
UC, shared infrastructures require scheduling algorithms that
can reduce the slowdown of not only regular jobs but also
urgent jobs.

Since urgent events usually occur unexpectedly at any
time, an urgent job may arrive when the necessary resources
are used by regular jobs. In this case, urgent jobs need to
wait for the regular jobs to finish their executions. However,
this will indeed delay the urgent job and may prevent it
from finishing within its deadline. To prevent this occurrence,
preempting the running regular jobs is a mandatory step for
reallocating resources so that the urgent job can commence
immediately. Therefore, preemption is vital for achieving job
scheduling that can support urgent computations in shared
infrastructures.

IV. PREEMPTIVE JOB SCHEDULING FOR URGENT
COMPUTING
In this section, we describe the proposed job scheduling
method that addresses the problems in enabling shared het-
erogeneous systems for UC. The proposed method consists
of two parts:

1) A preemption mechanism using in-memory process
swapping.

2) A preemption-based job scheduling algorithm for
preventing significant delays of urgent jobs.

In addition to the two mechanisms, we also describe the
metric for evaluating the lateness of urgent jobs.

A. PREEMPTION USING IN-MEMORY PROCESS
SWAPPING
Several types of preemption have been used in related studies
[37], [38]. The first type is kill/restart. In this type, preempt-
ing a job will kill the job and start it again at a later time. Once
the job has been killed, it will return to the scheduler queue.
Any partial results will be lost, and the time spent running
the preempted job is wasted. Due to this waste, the actual
running time of the preempted job will be longer than normal.
Therefore, this type of preemption can significantly increase
the response time of the system if there are many preempted
jobs.

The second type of preemption is suspend/resume. In this
type of preemption, a job is suspended and then resumed at
a later time. All the processes associated with the job are

stopped, but the state of each process is retained so that the
job can continue when it is resumed. When preempting a job
to execute an urgent job, the operating system will need to
transfer the states to a swap memory space before the new
job can start. The time spent for swapping the memory space
is referred to as the swapping time [39], [40].
The main advantage of the suspend/resume mechanism

is that it can significantly decrease response times of pre-
empted regular jobs comparedwith the kill/restart mechanism
because the jobs do not need to restart their execution from
the beginning. Due to this advantage, this work focuses on
a suspend/resume mechanism for preempting jobs. However,
the swapping time may cause additional delays in the start
time of the urgent job compared with the kill/restart mech-
anism. Therefore, it is important to achieve short swapping
times to prevent significant delays of urgent jobs.

Since a job can have multiple processes, preempting the
job must wait until all the processes have been swapped out.
Thus, preemption delay depends on the swapping time of
each process and the number of processes to be swapped. The
swapping time can vary depending on several factors, such as
the process size and the bandwidths of the memory and inter-
connect. Several studies have shown that swapping multiple
processes simultaneously can significantly reduce the total
swapping time of the processes because it can increase the
bandwidth utilization [41]–[43]. Therefore, in UC, simulta-
neously swapping the job processes is crucial for reducing
the preemption delay. In this case, the preemption delay
(PD) is determined by the longest swapping time among the
processes, as shown in Equation (3). In this equation, Sp is the
swapping time of the process p, and Np is the total number of
processes of the job.

PD = max
1≤p≤Np

Sp. (3)

Many operating systems, such as Linux, provide sus-
pend/resume mechanisms for jobs running on host CPUs.
However, these mechanisms are often not applicable for jobs
running on coprocessors. As an example of heterogeneous
systemswith coprocessors, this work focuses on a preemption
mechanism for SX-AT [10]. Linux uses a demand paging
mechanism that copies data from the disk into the main
memory only when a page fault occurs, in which case an
attempt is made to access the data [44]. Thismechanism relies
on in-order executions of instructions for proper timing of
the swapping. However, in vector processors such as SX-AT,
instructions can be executed in an out-of-order fashion [45].
Thus, the demand paging mechanism cannot be applied to
vector processors. Therefore, to achieve suspend/resume pre-
emption in SX-AT, we propose a memory swapping mecha-
nism, called PPS. It swaps memory on a per process basis,
as opposed to a per instruction basis. PPS has already been
incorporated into the VEOS and is available on SX-AT [46].

PPS provides two system-level functions that save and
restore the VE memory of a suspended VE process. The
functions work at the system level because they need to save
and restore the address space of the process between the
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FIGURE 4. Preemption using PPS.

VE and VH. These two functions are illustrated in Figure 4.
The first function, named swap out, releases VE memory
by saving a part of the memory of one or more temporarily
stopped VE processes to VH side memory. For this function,
a memory space, named swap area [47], is allocated in the
VH. The second function, named swap in, restores the mem-
ory saved in the VH memory to the VE memory so that the
execution of the original process can be resumed.

When multiple processes are running on different VEs on a
host, each process can transfer data to other processes through
the interconnect between VEs using the message passing
interface (MPI) [48] library. Consequently, each process
needs to access data on VEmemory during the transfer. Since
different processes can asynchronously access VE memory,
it is difficult to guarantee that no process will access the data
on the VE memory that is swapped out. Swapping out all the
data on VE memory will cause data transfer errors because
the VE memory might be accessed after the swapping. PPS
retains only a part of VE memory that could potentially
be accessed by the MPI library, while all the other data in
VE memory are swapped out.

The red lines in Figure 4 show the flow of preempting a job
process using PPS. First, the process is stopped by sending
the kernel SIGSTOP signal to the process. Then, PPS is used
to swap out the process memory to the swap area. After the
memory has been swapped out, the VE memory is released
and another process can be executed on the VE using the
memory. In amultiprocess job, PPS simultaneously swaps the
processes running on different VEs to reduce the preemption
delay. The same flow is executed for each process, and PPS
will wait until all the processes have been swapped out. In
practical uses of SX-AT, the swapping time also depends on
contentions on the PCIe interconnect between VEs and the
VH. In the case of simultaneous swapping, a contention will
occur when swapping all the processes needs a data transfer
larger than the bandwidth of the interconnect [43], which is
approximately 40 GB/s for SX-AT [49]. When the contention
occurs, the swapping time of each process could be longer
than usual. In Equation 3, this effect is subsumed into the
Sp of each process. Consequently, the preemption delay will
increase in this case. Therefore, to accurately measure the

preemption delay of the job, it is necessary to consider the
swapping times of all processes altogether when the job is
executed on the VE.

After a job is preempted, it can be resumed using the flow
shown by the blue lines in Figure 4. First, PPS is used to swap
in the process memory from the swap area to VE memory.
After the process has been swapped in, it will release the
memory on the VH. The process then can be resumed by
sending the kernel SIGCONT signal to the process. Similar
with the preemption flow, the resume flow is executed for all
the processes in a multiprocess job. However, a preempted
job needs to be resumed on the same VE and host from
which it was preempted for two reasons. First, PPS swaps
data from VE memory to the host memory, and thus, the data
are available only on the same host. An important advantage
of this mechanism is that it avoids longer preemption delays
from migrating data across hosts [50]. Second, PPS partially
swaps the VE memory. Therefore, resuming the execution of
the process requires the data previously kept on the same VE.

B. UJFB: A PREEMPTIVE JOB SCHEDULING ALGORITHM
CONSIDERING URGENT JOBS
As previously mentioned in Section III, the main purpose of
UJFB is to simultaneously prevent urgent jobs from being
delayed by regular jobs while also reducing the response time
and slowdown of regular jobs. The UJFB algorithm is sum-
marized as follows. It executes an urgent job by performing
one of the following three subtasks.

1) Prioritize urgent jobs to be executed before regular
jobs.

2) Backfill urgent jobs.
3) Preempt regular jobs to give resources to urgent jobs.
Figure 5 shows the proposed UJFB algorithm for executing

urgent jobs. First, it evaluates if an urgent job can be exe-
cuted using the currently available resources. If the available
resources are sufficient for the execution, it will directly
commence the urgent job. However, there is a possibility that
the resources are previously reserved for regular jobs. In this
case, UJFB will backfill the urgent job so that it can be exe-
cuted immediately. If the available resources are insufficient
for executing the urgent and regular jobs, the urgent job will
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FIGURE 5. UJFB algorithm for executing urgent jobs.

precede the regular jobs. On the other hand, if the resources
available for executing the urgent job are insufficient, UJFB
will preempt the regular jobs that are currently running. In
this case, the regular jobs are preempted using the flow shown
in Figure 4. If the number of running jobs is higher than that
required by the urgent job, UJFB will prioritize jobs that have
longer remaining running times to be preempted. After the
regular jobs are suspended, it can submit the urgent job for
execution.

For backfilling, UJFB uses an approach similar to that of
the conservative backfill algorithm [14]. However, in con-
trast to the conservative backfill algorithm, UJFB prioritizes
urgent jobs to be backfilled before regular jobs. As a result,
an urgent job can be executed immediately without preemp-
tion when the available resources are sufficient for the job
execution.

As shown in Figure 5, it is possible that the urgent job
cannot be executed even with preemption. This situation
occurs when previous urgent jobs are currently running and
using the necessary resources. In this case, UJFB moves the
urgent job to a separate scheduler queue that is dedicated for
urgent jobs, named urgent-queue. Thus, for this step, UJFB
maintains two scheduler queues, one for regular jobs and the
other for urgent jobs. Using these two queues, it can prioritize
urgent jobs to be scheduled prior to regular jobs.

In UJFB, urgent jobs are executed under three cases. First,
the urgent job is executed by preceding regular jobs that are
waiting in the queue. Figure 6 shows an example of this case.
In this figure, job 2 is preceded to execute the urgent job. In
this case, although the urgent job can be executed immedi-
ately without preemption, the preceded job will be delayed.
Second, the urgent job is executed by backfilling, as shown
in Figure 7. In this case, the urgent job can be executed
not only without preemption but also without preceding any
regular jobs if they cannot be backfilled. However, this case
only occurs if executing regular jobs does not delay the urgent
job. In the example shown in the figure, the urgent job can be
executed while executing jobs 6 and 7. Thus, UJFB does not
delay all of these jobs in this case.

Third, UJFB executes the urgent job by preempting reg-
ular jobs. As shown in Figure 5, this occurs only if the
urgent job cannot be executed under the previous two cases.

Figure 8 shows an example of this case. In this example,
the urgent job cannot be executed because all the necessary
resources are used by regular jobs. Thus, to prevent delaying
the urgent job, UJFB preempts jobs 9 and 10 that are cur-
rently running to provide the resources to the urgent job. The
preempted jobs are then put back to the head of the regular
queue. They are put at the head of the queue so that they
can be immediately resumed after the urgent job finishes its
execution. The resume flow in Figure 4 is used to resume
these jobs. Therefore, among the three cases, only this case
causes a preemption delay to execution of the urgent job.

Algorithm 1 shows the procedure of UJFB when a new
job is submitted to the system. First, it determines if the job
is regular or urgent (Line 2). If the job is urgent, the flow
shown in Figure 5 is used to execute the job. Otherwise,
the algorithmwill put the job into the regular queue (Line 17).
The complexity of UJFB is determined by the complexities
of the backfill (Line 5) and the selectJobs (Line 10)
functions. As with the conservative backfill algorithm, UJFB
scans all jobs in the regular queue for each new job.
Therefore, the complexity of the backfill function is
also linear in the number of jobs [14]. The selectJobs
function selects the regular jobs to be preempted by sorting
the jobs based on their remaining running times. Therefore,
its complexity is determined by the complexity of the sort-
ing algorithm. In the case of Quicksort, the complexity is
O(n log n) on average [51], where n is the number of regular
jobs currently running.

C. THE URGENT LATENESS METRIC
In the case of regular jobs, the wait time and response time
metrics are useful for showing how fast the system responds
to a user. However, in the case of urgent jobs, these two
metrics are not sufficient because urgent jobs are expected
to finish as close as possible to their deadlines. Thus, for
job scheduling algorithms that target UC, it is necessary
to evaluate the maximum slowdown of the urgent jobs. To
evaluate the effects of a job scheduling method on urgent
jobs, we proposed a metric, named Urgent Lateness (UL). To
measure this metric, we first calculate the slowdown of each
urgent job using Equation (2).

Then, UL is defined as the maximum slowdown among
urgent jobs, as shown in Equation (4).

UL = max
1≤u≤NU

Slowdownu, (4)

where Nu is the number of urgent jobs. A higher value
of UL indicates a longer maximum slowdown of urgent
jobs.

V. EXPERIMENTAL EVALUATION
In this section, we present the experimental setup and discuss
the performance results on the Alea simulator. First, we dis-
cuss the performance results of PPS using OpenMP imple-
mentations of NAS parallel benchmarks (NPB) [52]. The
results are obtained by measuring the swapping times during
the executions of the applications. Then, we use the swapping
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FIGURE 6. Urgent job execution by preceding regular jobs.

FIGURE 7. Urgent job execution by backfilling.

FIGURE 8. Urgent job execution by preemption.

Algorithm 1 The UJFB Algorithm
Input: urgentQ F Queue of urgent jobs
Input: regularQ F Queue of regular jobs
Input: runningJobs F Currently running jobs
1: procedure onArrival(job)
2: if job is urgent then F An urgent job
3: if canExecute(job) then F Resources are

available
4: if canBackfill(job) then F Backfilling
5: backfill(job)
6: else F Precede regular jobs
7: execute(job)
8: end if
9: else if canRunWithPreempt(job) then

10: pJobs← selectJobs(runningJobs)
11: preempt(pJobs) F Preemption
12: execute(job)
13: else
14: enqueue(urgentQ, job)
15: end if
16: else F A regular job
17: enqueue(regularQ, job)
18: end if
19: end procedure

time results to evaluate the performance of the proposed
scheduling method on the simulator. We also evaluate the

performance with longer swapping times and the workload
of a real UC system.

A. PROCESS SWAPPING PERFORMANCE
We evaluate the performance of PPS on an SX-AT system,
which consists of an Intel Xeon 6126 processor as a VH and
an 8-core VE processor as a coprocessor. As a workload,
we execute each application of the NPB on the VE with
8 threads using all cores of the VE. In each application,
PPS considers multiple threads from their parent processes
because a thread shares the memory space with the parent
process. Thus, PPS swaps only the parent processes for each
application. The performance results are obtained by measur-
ing the time spent by PPS to swap the application from the
VE to the VH.

The performance of process swapping depends on the
process size, that is, the amount of memory used by the
application process. To evaluate the effects of process swap-
ping on different process sizes, we execute the applications
with different input sizes, which are A, B, C, and D classes.
However, even with the same input size, the process size can
change during the application runtime. Thus, to measure the
swapping time, we swap out each application from the VE to
the VH at random times during its execution.

Figure 9 shows the swapping time results with different
swap sizes. The swap size is the size of swappable memory
of each process. Since PPS partially swaps the VE memory,
only the swappable memory is swapped from the VE to
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FIGURE 9. Performance of PPS.

the VH. Therefore, the swapping time is significantly affected
by the swap size. The swapping times and swap sizes are
the averages obtained from the executions with all the NPB
applications with each input size. The x-axis represents the
swap size, while the y-axis represents the swapping time cor-
responding to the swap size. We also show the extrapolated
values of the swapping times for larger swap sizes. All of the
swap sizes and swapping times of NPB applications are listed
in the Appendix. The figure shows that the swapping time
increases linearly with the swap size. However, for most of
the observed swap sizes, the swapping times are less than or
equal to 0.3 seconds.

The linear relationship between swapping time and swap
size in Figure 9 indicates that the swapping time of each
application is primarily affected by swap size. The reason
is that the swapping time is dominated by the time needed
for the data transfer between the VE and VH. For most of
the NPB applications, the total swap size is smaller than
the bandwidth of the PCIe interconnect. Thus, no contention
occurs on the interconnect while swapping these applications.
However, for the NPB applications that have much larger
swap sizes, such as FT, the longest swapping time remains
below 1 second. These performance results indicate that using
PPS can achieve preemption with a negligible delay com-
pared to the deadline at common UC.

B. JOB SCHEDULING PERFORMANCE
To evaluate the job scheduling performance, we run simula-
tions on the Alea simulator and analyze the simulation results
using three metrics. The first two metrics are the response
time and slowdown. These two metrics are used to evaluate
the effects of the job scheduling methods on regular jobs. The
third metric is UL , which is used to evaluate the effects of the
job scheduling methods on urgent jobs.

For this evaluation, we randomly inject urgent jobs with
the same configuration used in the previous evaluation of
Section III. UJFB is compared with four job scheduling algo-
rithms, the urgent job first (UJF), FCFS, backfill, and EASY
scheduling algorithms. Backfill corresponds to the conserva-
tive backfill algorithm used in the previous evaluation. Thus,
UJFB, backfill, and EASY are backfilling-based algorithms.
For all these backfilling-based algorithms, the actual runtime
is used as the estimated runtime. On the other hand, the UJF
algorithm is similar to FCFS. However, it prioritizes urgent
jobs to be executed before regular jobs. We implemented

UJFB and UJF on the Alea simulator, while the other
three algorithms are originally available in the simulator. In
addition, we extend the simulator to support preemption.

The evaluation uses three workloads of real systems,
SDSC-DS, LANL-CM5, and SX-ACE. The first two work-
loads are obtained from the parallel workloads archive [29],
[53], while the SX-ACE workload is obtained from the
SX-ACE supercomputer of Tohoku University [32]. The
LANL-CM5 workload is composed of 201,387 jobs, which
are executed on the CM-5 cluster. This cluster consists
of 1,024 nodes, with a total of 1,024 processors. On the
other hand, the SX-ACE workload comprises 54,123 jobs,
which are executed on the SX-ACE cluster consisting of
1,024 processors.

For the evaluation, the preemption delay caused by pre-
empting a job is obtained by calculating the swapping times
for the process sizes of the job using the function derived
from the PPS results. All of the workloads do not provide
information about the swap size. Thus, the evaluation uses
the process size as the swap size of each job. Since no infor-
mation about the memory usage in the SDSC and SX-ACE
workloads is available, we randomly set the process sizes of
each job between 500 megabytes and 1.25 gigabytes only for
these twoworkloads. The same random seed is used for all the
simulations of each workload. Thus, the simulations with dif-
ferent algorithms use the same swapping time configuration
for each job.

The range of process sizes is chosen for three empirical
reasons. First, most of the NPB applications have a process
size smaller than 1.25 gigabytes. Second, as shown in the
LANL workload [54] and three real-world workloads of a
related study [55], each of the majority of jobs, not a process,
uses no more than 1 gigabyte of memory. In Table 1 of [55],
the total percentage of the small memory jobs is much higher
than that of the large memory jobs. Third, the results of a
previous study [56] show that 10 of the 13 production HPC
applications under investigation have process sizes in the
range of hundreds of megabytes. In Figure 8 of [56], only
three of the applications have a process size larger than 1 giga-
byte. Therefore, we can discuss the effects of preemption
delay on the SDSC and SX-ACE workloads using this range.

Figure 10 shows the results of the SDSC workload. For
regular jobs, the three backfilling-based algorithms show sim-
ilar response times and slowdowns. On the other hand, FCFS
and UJF show much longer response times and slowdowns.
This fact indicates that backfilling has a significant impact
on reducing the response time and slowdown of regular jobs.
Accordingly, UJFB can achieve a comparable response time
and slowdown of regular jobs.

Figure 10(c) presents the UL results of the algorithms.
As shown in the figure, all the algorithms except UJFB exhibit
significant delays of urgent jobs. UJF shows a lower UL than
FCFS, indicating that prioritizing urgent jobs has a significant
impact on reducing the urgent lateness. However, the lateness
of UJF is a 62-fold slowdown, which means that it cannot
satisfy the deadline requirement of UC. On the other hand,
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FIGURE 10. The results of the SDSC workload.

FIGURE 11. The results of the LANL workload.

FIGURE 12. The results of the SX-ACE workload.

UJFB shows only a 1.01-fold slowdown of urgent jobs, which
is the lowest urgent lateness among the algorithms. For the
urgent jobs shown in Table 1, UJFB can satisfy the deadline
requirement of tsunami simulations. These results show the
effectiveness of the proposed method in preventing the delay
of urgent jobs.

Figure 11 shows the results of the LANL workload. The
results of this workload are similar to those of the SDSC.
FCFS and UJF show a much longer response time and slow-
down of regular jobs than those of the three backfill-based
algorithms. This fact suggests that backfilling is also effective
for reducing the response time and slowdown of regular jobs
in this workload. As shown in Figure 11(b), all the algo-
rithms except UJFB show significant delays of urgent jobs.
In contrast to the results of the SDSC, UJF shows a lower UL
than those of all other algorithms except UJFB, indicating
that UJF can reduce the urgent lateness. Moreover, backfill
and EASY show much higher UL values than that of UJF.

This result means that in this workload, backfilling can cause
significant delays of urgent jobs. On the other hand, UJFB
shows a 1.02-fold slowdown, and thus, it can allow urgent
jobs to finish within the deadline.

The results of the SX-ACE workload are shown in
Figure 12. The response times and slowdowns of the regular
jobs of SX-ACE are higher than those of the SDSC and LANL
workloads. We observe that this is because the average num-
ber of jobs waiting in the queue of SX-ACE is much higher
than those of the other workloads. In this workload, UJFB
shows a lower slowdown and UL , which means that using
preemption and backfilling can also reduce the slowdown of
regular jobs. By preempting regular jobs, it can execute urgent
jobs immediately and backfill more regular jobs during the
execution of urgent jobs.

Figure 12(c) shows that UJF and UJFB achieve a much
lower UL than the other algorithms. However, as shown
in Table 2, the difference inUL between these two algorithms
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TABLE 2. SX-ACE results for urgent jobs.

is large. UJF shows a 641-fold slowdown of urgent lateness,
while UJFB shows an only 1.05-fold slowdown. These results
show that although UJF can achieve a significantly lower
UL , it still cannot allow urgent jobs to finish within the
deadline. Moreover, although UJFB preempts regular jobs to
execute urgent jobs, it can still achieve a response time and
slowdown of regular jobs comparable to those of the other
two backfilling-based algorithms. The results of the SX-ACE
workload suggest that by using backfilling and preemption,
the proposed method can effectively reduce the urgent late-
ness without increasing the response time and slowdown of
regular jobs.

The results of the SDSC, LANL, and SX-ACE workloads
show that the proposed method can satisfy the deadline
requirement of UC, while the response time and slowdown
of regular jobs are unchanged. Accordingly, this fact also
demonstrates the effectiveness of PPS in reducing the pre-
emption delays, and thus, UJFB can achieve negligible results
of UL for all the tested workloads.

C. EVALUATION WITH LONGER SWAPPING TIMES
As previously described in Section I, a longer swapping
time will increase the preemption delay, and thus it can
have significant impacts on the job scheduling performance.
To evaluate the effects, we run simulations with the LANL
workload and different swapping time configurations. Three
ranges of swapping times are used for this evaluation. The
first range is the range of swapping times of PPS, which is
used in the previous evaluation. The other two ranges are from
1.8 to 40 seconds and from 3.6 to 80 seconds. We use the
latter two ranges to simulate the swapping time with slower
storage devices, such as in disk-based swapping mechanisms.
As shown in previous studies [57], [58], longer times are
expected when using disk-based mechanisms. We obtain the
latter two ranges by multiplying the range of PPS by factors
of 20 and 40. These factors are adopted from the empirical
results of the related work [58].

Figure 13 shows the results of the response time, slow-
down, and urgent lateness with different swapping time con-
figurations. The results are normalized to the results of PPS.
This figure shows similar response times and slowdowns
among the swapping time configurations, indicating that
longer swapping times do not affect the performance of reg-
ular jobs. The reason is that the swapping times are too short
comparedwith the running times of the jobs. However, theUL
results show a significant difference among the swapping
time configurations. The figure shows that for the latter two
ranges, the UL value is up to 1.95-fold longer than that of

FIGURE 13. The LANL results with longer swapping times.

the range of PPS. For the urgent jobs shown in Table 1,
these longer swapping times can prevent the urgent jobs from
finishing within the 10-minute deadline. These results show
that although longer swapping times barely affect the perfor-
mance of regular jobs, they can significantly delay urgent
jobs. This fact also shows the advantage of using the pro-
posed method PPS, which can achieve negligible preemption
delays.

In the proposed PPS, job processes are swapped from the
VE to the swap area that is located in the VH memory.
PPS needs to preallocate the swap area for the swapping.
As a result, this allocation will reduce the memory that is
available for processes running on the host processor. Several
studies have proposed hybrid memory/disk mechanisms to
overcome this limitation [58], [59]. However, the evaluations
of the related studies have shown that the hybrid mechanisms
incur significant overheads compared with the in-memory
mechanisms. These overheads can significantly increase the
swapping time. As suggested by the results for the LANL
workload, higher swapping times can significantly increase
preemption delays and consequently increase the lateness of
urgent jobs. Therefore, to avoid significant delays of urgent
jobs, this work uses the in-memory swapping mechanism to
preempt regular jobs. In practice, an appropriate selection
of swapping mechanisms would depend on various factors
such as the system operation policy and deadline requirement,
i.e., putting a higher priority on either the available memory
capacities for regular jobs or the short preemption delay.

D. EVALUATION WITH THE WORKLOAD OF A REAL UC
SYSTEM
To evaluate the proposed method on the job scheduling per-
formance of a real UC system, we run simulations with
the workload from the UC system at DWD. The workload
consists of 13,807 jobs, which are executed on the system on
September 17, 2020. Figures 14 and 15 show the frequency
distributions of job arrivals and number of nodes required by
jobs in theworkload. As shown in Figure 14, regular jobs have
the highest number of arrivals among the hours. However,
compared to the workloads with injected urgent jobs, this
workload has a much higher number of arrivals of urgent
jobs. At some hours, such as hours 1, 4 and 16, more than
500 urgent jobs were submitted to the system.

Figure 15 shows that urgent jobs require a higher number
of nodes than regular jobs. Most of the urgent jobs require
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FIGURE 14. Job arrival times.

FIGURE 15. Number of nodes required by jobs.

8 nodes for their execution. Thus, during the hours when
many urgent jobs are submitted to the system, there is a high
possibility that one or more urgent jobs cannot be executed
immediately due to insufficient resources. This possibility
becomes higher when there are also regular jobs running on
the system. Thus, preventing urgent jobs from being delayed
by the regular jobs becomes more important.

Figure 16 shows the simulation results with the DWD
workload. These results are obtained from the simulations of
a system with a total of 1,024 nodes. We have also conducted
simulations with more nodes. However, we observed that
the slowdown results of the job scheduling algorithms are
small with larger simulated systems, indicating that these
systems are too large for the workload. Thus, we only show

FIGURE 17. DWD slowdowns with UJFB.

the simulation results with the 1024-node system to discuss
the effects of the proposed method on the DWD workload.

Figures 16(a) and 16(b) show similar response times and
slowdowns of regular jobs among the algorithms. Moreover,
the results of these two metrics are much lower than those
of the SDSC, LANL, and SX-ACE workloads. These results
indicate that the simulated system is far from being a bot-
tleneck for regular jobs. However, Figure 16(c) shows much
higher values of UL , indicating that the effects of urgent
jobs on the job scheduling performance are much higher
than those of regular jobs. As shown in Figure 15, this is
because urgent jobs demandmore resources than regular jobs.
Accordingly, theUL result of UJFB in this workload is higher
than those of the SDSC, LANL, and SX-ACE workloads,
which is because some urgent jobs need to wait in the urgent-
queue. However, as shown in the UL results, UJFB can still
achieve the smallest lateness of urgent jobs, suggesting that
the proposed method remains effective in reducing delays of
urgent jobs.

To further investigate the effects of UJFB on the urgent
lateness, we analyze the frequency distribution of the slow-
downs of all jobs, which is shown in Figure 17. In this figure,
the x-axis represents the ranges of the slowdowns, while the
y-axis represents the frequencies of the slowdowns of all jobs.
The figure shows that most of the jobs have small slowdowns,
that is, a less than 1.1-fold slowdown. For the higher ranges
of slowdowns, the frequencies are low and decreasing with
the higher ranges. For urgent jobs, only 5.9% of all jobs
show slowdowns higher than 2, which explains the results

FIGURE 16. The results of DWD workload.
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TABLE 3. Swapping time results of the NPB applications.

in Figure 16(c) that UJFB can achieve the lowest UL among
the algorithms. For weather forecast simulations, UJFB can
satisfy the deadline requirement for most of urgent jobs.
These results also demonstrate the effectiveness of the pro-
posed method in reducing slowdowns of urgent and regular
jobs in the DWD workload.

VI. CONCLUSIONS AND FUTURE WORK
Due to the limitations of dedicated infrastructures, use of
shared infrastructures becomes an alternative solution for
supporting UC. However, in shared infrastructures, it is
important not only to avoid delaying urgent jobs but also to
prevent increasing the response time and slowdown of regular
jobs. In this paper, we proposed a parallel job scheduling
method for shared infrastructures supporting UC. It consists
of an in-memory process swapping mechanism for hetero-
geneous systems and a preemption-based backfill scheduling
algorithm. The process swapping mechanism is employed to

reduce the delays caused by preempting regular jobs. On the
other hand, the scheduling algorithm is proposed to prevent
delaying urgent jobs while reducing the response time and
slowdown of regular jobs. In addition, we propose a metric
for evaluating the effects of job scheduling methods on the
lateness of urgent jobs.

The process swapping mechanism has been evaluated on a
heterogeneous system with vector processors, called SX-AT.
The results show that the process swapping mechanism can
achieve negligible swapping times, indicating the importance
of this mechanism in reducing the preemption delay. The
job scheduling algorithm has been evaluated on a simulation
environment with three workloads of real systems. It has been
compared with four conventional job scheduling algorithms.
The simulation results show that the proposed algorithm can
achieve almost no lateness of urgent jobs without significant
increases in the response time and slowdown of regular jobs.
The evaluation with larger swapping times suggests that min-
imizing the preemption delay is crucial in shared infrastruc-
tures supporting UC. In addition, the proposed method has
been evaluated with the workload of a real UC system at
DWD. The evaluation results demonstrate the effectiveness of
the method in reducing the slowdowns of regular and urgent
jobs when urgent jobs frequently arrive.

One important future work is to use the proposed method
for the operation of a real system and to establish the oper-
ation policy. We are now planning to apply the method to
actual UC operation of the tsunami simulation system at the
Cyberscience Center, Tohoku University.

APPENDIX
SWAPPING TIME RESULTS
See Table 3.
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