
Received December 27, 2020, accepted January 7, 2021, date of publication January 19, 2021, date of current version February 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3052465

An Adaptive-Tunable-Based Hybrid RBF Network
for EGTM Prediction
YUAN LIU1, XIANPING ZENG2, YANYUN TIAN1, YISHOU WANG 2,
AND HANLIN SHENG 3, (Member, IEEE)
1AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412000, China
2School of Aerospace Engineering, Xiamen University, Xiamen 361000, China
3College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Corresponding authors: Xianping Zeng (mrszxp@163.com) and Hanlin Sheng (dreamshl@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51975494, and in part by the
Fundamental Research Funds for the Central Universities under Grant 20720180120.

ABSTRACT Aero-engine exhaust gas temperature margin (EGTM) is one of the main indexes of engine
replacement; however, the application of existing methods in EGTM forecasting is restricted because of the
limited prediction accuracy and many non-linearities. In this study, an adaptive-tunable-based hybrid radial
basis function (RBF) network is proposed to improve the prediction accuracy of aero-engine EGTM. Firstly,
a hybrid RBF network consisting of a RBF network and a linear regression model is built as a fundamental
EGTM predictive algorithm. Secondly, to increase the network’s adaptation capabilities, the structural
parameters of the proposed network are adaptively modulated by Brownian motion modeling and particle
filter without physics-based models. Finally, multiple sets of EGTM data from a certain type aero-engines
in an airline company is selected for engine removal time prediction. Experiment results demonstrate that
the proposed adaptive-tunable-based hybrid RBF network with a high prediction accuracy, and can reflect
the characteristics of EGTM well and truly, which can capture the dynamic nature of EGTM in time during
the forecasting process.

INDEX TERMS Aero-engine, exhaust gas temperature margin prediction, hybrid RBF network, Brownian
motion, particle filter.

I. INTRODUCTION
The predictive replacement of aero-engine is an important
means to improve the economics and safety of the entire fleet.
The decrease of exhaust gas temperature margin (EGTM) in
the take-off phase of an aero-engine is one of themain reasons
for engine replacement [1], [2], that is, to replace engine
when EGTM decays to a given threshold [3]. Therefore, it is
possible to evaluate the reliability of the engine and predict
the engine replacement time by analyzing the declining trend
of the take-off EGTM.Unless otherwise specified, the EGTM
mentioned below refers to the EGTM in the take-off phase.

The aero-engine is a complex nonlinear system and EGTM
presents complex and variability as the engine’s working
state changes [4]. A lot of researches on EGTM prediction
[5]–[15] had been conducted by many scholars. Generally,
the modeling methods of the degradation statistical model
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can be divided: methods based on data-driven, methods based
on product failure mechanisms, and methods based on the
combination of data-driven and failure mechanisms [5], [6].
Themethod based on data-driven is to analyze and process the
real-time monitoring data during the operation of the engine
without the need to establish an accurate mathematical model
of the engine, which is simple and practical, has been widely
used. For example, Kumar et al. [7] applied autoregressive
and moving average techniques to predict EGTM of aero-
engine. Ren [8] and Gao and Wang [9] adopted Kalman filter
approach to monitor an aero-engine health and condition by
building prediction models of the EGTM and other key per-
formance parameters, which well addressed the randomness
problem of performance parameter variation. These methods
are carried out under the assumption of linear model, whereas
in general, the performance parameter variation of aero-
engine is nonlinear. Besides, neural networks have gained
popularity in the research of EGTM prediction due to the
good nonlinear mapping capabilities. Ilbas and Turkmen [10]
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had considered artificial neural networks to predict the EGT
of the CFM56-7B engine; while Iman et al. [11] combined
polynomial regression and neural network methods to predict
and evaluate EGT of the aero-engine; Rai et al. [12] pro-
posed an adaptive neuro-fuzzy inference system to establish
a prediction model of EGTM of the engine, brake specific
energy consumption and other performance parameters; lit-
erature [13] and [14] adopted long and short term mem-
ory network(LSTM) to build aero-engine EGTM prediction
model, using the time-based back-propagation algorithm for
forwarding calculation and error back-propagation to update
and train the prediction model to realize the prediction of
EGTM data at the future time; Pi et al. [15] had applied
an improved fruit fly algorithm to optimize the generalized
regression neural network (GRNN), and used the optimized
GRNN to predict the EGT of the aero-engine. The predicted
values using these models agreed well with measurements
data; however, the nonlinear mapping capabilities of most
neural networks are related to adjustment parameters, such
as the network’s nuclear parameters and penalty parameters,
the number of neurons in some neural networks, and the
input matrix settings, which will have a greater impact on
the prediction model. What’s more, the degraded state of
the engine will change with changes in operating conditions,
and the engine dispatch prediction method based on a fixed
structure can’t capture the dynamic nature and pattern of the
time series in time.

In view of aforementioned issues, this work focuses on
EGTM forecasting by adopting a novel surrogate model
based on an adaptive tunable hybrid neural network, which
can adaptively modulate the structural parameters of the
model. Considering the Radial Basis Function (RBF) neural
network with the preponderance of strong nonlinear fitting
ability, simple structure,.etc. For example, Mao et al. [16]
used back-propagation(BP), Elman network, RBF and gen-
eralized regression neural network (GRNN) to predict the
performance of the target engine, according to the results
of the four network assessments, RBF with the best predic-
tion effect. The RBF is very precise and practical method
to perform the prediction and model nonlinear phenomena
of engine performance. Accordingly, based on RBF neu-
ral network, this study proposes a hybrid RBF neural net-
work prediction model with a variable online structure. The
structure and parameters of the hybrid RBF neural network
change dynamically, which is as new samples are continu-
ously added, the network structure and parameters can be
adjusted dynamically to capture the dynamic nature of the
time series in time. Firstly, a hybrid RBF network consisting
of a RBF network and a linear regression model is built as
a fundamental EGTM predictive algorithm. And then the
structural parameters of the proposed network are adaptively
modulated by Brownian motion modeling and particle filter.
Finally, the EGTM data of multiple engines of a certain type
of an aviation company is selected for real-time distribution
prediction to verify the feasibility of the method in the pre-
diction of aero-engine performance parameters.

FIGURE 1. Hybrid RBF network model.

The remainder of this article is arranged as follows:
Section II presents a detailed description of the adaptive
tunable hybrid RBF network prediction methodology. Exper-
imental investigation and comparison are given in Section III.
Section IV summarizes the conclusions.

II. HYBRID RBF NEURAL NETWORK METHOD BASED ON
ONLINE VARIABLE STRUCTURE
A. HYBRID RBF NEURAL NETWORK
The characteristics of non-linearity, atypicality, and non-
equivalence of gas path performance changes during aero-
engine operation make the EGTM data analysis inherently
complex. And the hybrid RBF model composed of a single
RBF network and linear regression term, not only with the
advantage of the RBF network in function approximation, but
also possess the preponderance of the autoregressivemodel in
linear characteristics [17]. Hence, the hybrid RBF model can
be better used to solve the EGTM prediction problem.

Suppose a training sample set {(X t , yt)} consisting of a
group of data D, where c is the input vector, m represents the
feature dimension of the input; yt is the corresponding EGTM
value.

As shown in Figure 1, a hybrid RBF network model con-
sisting of Nt (Nt < D) hidden layer nodes and linear regres-
sion terms are initially constructed, and its mathematical
expression is:

yt =
Nt∑
s=1

βs,tg
(∥∥Xt − cs,t∥∥)+ ϕ0,t +8

T
t X̄t , 1 ≤ t ≤ D

(1)

wherein, ‖·‖ is the distance measurement value, usu-
ally Euclidean norm; g(·) is the radial basis function,
where a Gaussian radial basis function of form g(x) =
exp(−x2/2σ 2

s,t ) is selected, wherein σs,t is the variance
(width) parameter of the network, and s = 1,2, · · · ,Nt .
βs,t represents the connection weight between the s hidden
layer node and the output node, which is the center of the
s hidden layer node cs,t = [cs,1,t , cs,2,t , · · · , cs,m,t ]T in the
RBF network. ϕ0,t and 8t = [ϕ1,t , · · · , ϕRt ,t ]

T represent
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the linear regression coefficient, where Rt is the order of the
autoregressive model, X̄ t = [xm−Rt+1,t , · · · , xm,t ]

T at this
time.

simplify (1) into matrix form:

yt = Htβt (2)

where, Ht = [1, xm−Rt+1, · · · , xm, g(Xt , c1,t , σ1,t ), · · · ,
g(Xt , cNt ,t , σNt ,t )],βt= [ϕ0,t , ϕ1,t , · · ·, ϕRt ,t , β1,t , · · ·, βNt ,t ]

T .
Because of the problem that the neural network structure

is too large or too small, this paper uses particle filter-
ing to dynamically adjust the hybrid RBF network, that is,
as new samples are continuously added, the network struc-
ture parameters Nt ,Rt , cs,t , σs,t , βt are dynamically adjusted
online to capture the dynamics nature’s change of aero-engine
EGTM in time.

B. ONLINE VARIABLE STRUCTURE HYBRID RBF BASED
ON PARTICLE FILTER PREDICTOR
The particle filter predictor is based on the Monte Carlo
method [18], which mainly includes the steps of state tran-
sition, structural parameter update and online prediction.

1) STATE TRANSFER EQUATION
The Brownian with drift and scale parameters are particularly
suitable for modeling the dynamic behavior of equipment
aging, so it is widely used in the related fields of equipment
remaining life prediction [19]. In this study, the structural
parameters TheNt and Rt are respectively evolved by random
walks according to a certain probability distribution (Brown-
ian motion).

Let Bt represents the parameters at time t , the parametric
transfer equation based on Brownianmotion can be expressed
as:

Kt = Kt−1 + λ
∫ t

t−1
κ(τ, θ)dτ + σBBt−(t−1) + vt (3)

wherein, λ is the drift coefficient, σB is the scale coefficient.
Bt is a random process subject to Brownian motion, and
satisfies Bt−(t−1) = εt

√
1t in the time increment 1t , εt is a

standard normal random process. vt is Gaussian white noise
with a mean value of 0 and a variance of Qv. κ(τ, θ) is the
function of θ , which can be either a linear function or a non-
linear function. In this study, let κ(τ, θ) = 1, so Equation (3)
can be simplified to:

Kt = Kt−1 + λ1t + σBεt
√
1t + vt (4)

Let the network structure parametersNt ,Rt time increment
1t = 1, and let the structural parameter cs,t , σs,t , βt add a
random Gaussian disturbance term to evolve based on the
previous moment. Therefore, the state transfer equation of the
online structure variable RBF network prediction model is as

follows:

Nt = round(Nt−1 + λN + σBN εN ,t + vN ,t )
Rt = round(Rt−1 + λR + σBRεR,t + vR,t )
cs,t = cs,t−1 + εc, s = 1, 2, · · · ,Nt
σs,t = σs,t−1 + εσ , s = 1, 2, · · · ,Nt
βt = βt−1 + εβ

(5)

wherein, round(·) means rounding, and assuming εσ ∼

N (0, δ2σ INt×Nt ), εc ∼ N (0, δ2c I(Nt∗m)×(Nt∗m)), εβ ∼

N (0, δ2β I(Nt+Rt+1)×(Nt+Rt+1)), where m represents the fea-
tural dimension of the input, and δ2c , δ

2
σ , δ

2
β is all con-

stant, I(Nt∗m)×(Nt∗m), INt×Nt , I(Nt+Rt+1)×(Nt+Rt+1) is the unity
matrix.

2) STRUCTURAL PARAMETER UPDATE
The changes of the dimensionality of parameters cs,t , σs,t , βt
that are caused by the changes of the structural parameters Nt
and Rt , which in turn causes Ht , βt to change, can be seen
from Equation (1)-(5).

To display the parameter changes intuitively,Ht−1, βt−1 at
time t − 1 in Equation (2) are decomposed as follows:

Ht−1 = [Ht−1,1,Ht−1,2,Ht−1,3]
Ht−1,1 = 1,Ht−1,2 = [xm−Rt−1+1, · · · , xm]
Ht−1,3 = [g(Xt−1, c1,t−1, σ1,t−1), · · · ,

g(Xt−1, cNt−1,t−1, σNt−1,t−1)]
βt−1 = [βt−1,1, βt−1,2, βt−1,3]T

βt−1,1 = ϕ0,t−1, βt−1,2 = [ϕ1,t−1, · · · , ϕRt−1,t−1]
βt−1,3 = [β1,t−1, · · · , βNt−1,t−1]

(6)

3) IMPACT OF Nt CHANGE ON MODEL PARAMETERS
In this study first adjusts network parameters for Nt changes.
Nt has only the following three possible variations: (1) Nt =
Nt−1; (2)Nt = Nt−1+M1 (M1 > 0); (3)Nt = Nt−1−M2 (0 <
M2 < Nt−1). WhereM1,M2 ∈ Z and Z represent integers.
For case (1), the parameters do not need to be adjusted.
For case (2), the parameters Ht , βt are adjusted as follows:

Ht,1 = Ht−1,1,Ht,2 = Ht−1,2
Ht,3 = [Ht−1,3, g(Xt , cNt−1+1,t , σNt−1+1,t ), · · · ,
g(Xt , cNt−1+M1,t , σNt−1+M1,t )]
βt,1 = βt−1,1, βt,2 = βt−1,2

βt,3 = [βt−1,3, βNt−1+1,t , · · · , βNt−1+M1,t ]

(7)

where, cNt−1+i,t = Xt + εi,X t = [x1,t , x2,t , · · · , xm,t ]T

(m represents the input feature dimension), εi is the random
Gaussian disturbance term; σNt−1+i,t , βNt−1+i,t is the random
number, and i = 1, 2, · · · ,M1.
For case (3), firstly, the hidden layer neurons are sorted

by using the multi-response sparse regression algorithm
[20]; secondly, the position before sorting corresponding
to the neuron with the smaller error M2 is recorded;
finally, the recorded neurons are cut out related parame-
ters corresponding to neurons. Assuming that the corre-
sponding positions of the deleted neurons are respectively
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th1, th2, · · · , thM2 , and 1 ≤ th1 < th2 < · · · < thM2 ≤ Nt−1.
The parameters Ht , βt are adjusted as follows:

Ht,1 = Ht−1,1,Ht,2 = Ht−1,2
Ht,3 = [g(Xt , c1,t , σ1,t ), · · · , g(Xt , cth1−1,t , σth1−1,t ),
g(Xt , cth1+1,t , σth1+1,t ), · · · , g(Xt , cthM2−1,t

, σthM2−1,t
),

g(Xt , cthM2+1,t
, σthM2+1,t

), · · · , g(Xt , cNt−1,t , σNt−1,t )]

βt,1 = βt−1,1, βt,2 = βt−1,2

βt,3 = [β1,t , · · · , βth1−1,t , βth1+1,t ,
· · · , βthM2−1,t

, βthM2+1,t
, · · · , βNt−1,t ]

(8)

4) THE INFLUENCE OF Rt CHANGE ON MODEL
PARAMETERS
After the model structure adjustment which is caused by the
Nt change, the model parameters after the Rt change are
adjusted.
Rt also has only the following three possible variations:

(1)Rt = Rt−1; (2)Rt = Rt−1 +M3 (M3 > 0 & Rt ≤ m); (3)
Rt = Rt−1 − M4 (0 < M4 < Rt−1). Where M3,M4 ∈ Z , Z
represents an integer.

For case (1), the parameters do not need to be adjusted.
For case (2), the parameters are adjusted as follows:

H (2)
t,1 = H (1)

t,1 ,H
(2)
t,3 = H (1)

t,3

H (2)
t,2 = [xm−(Rt−1+M3−1), xm−(Rt−1+M3−2),

· · · , xm−Rt−1 ,H
(1)
t,2 ]

β
(2)
t,1 = β

(1)
t,1 , β

(2)
t,3 = β

(1)
t,3

β
(2)
t,2 = [ϕ′1,t , · · · , ϕ

′
M3,t

, β
(1)
t,2 ]

(9)

wherein, (·)(2), (·)(1) respectively indicate the parameters after
adjustment and before adjustment. ϕ′1,t , · · · , ϕ

′
M3,t

is a ran-
dom number.

For case (3), the parameters are adjusted as follows:

H (2)
t,1 = H (1)

t,1 ,H
(2)
t,3 = H (1)

t,3

H (2)
t,2 = [xm−(Rt−1−M4−1), xm−(Rt−1−M4−2),

· · · , xm−1, xm]

β
(2)
t,1 = β

(1)
t,1 , β

(2)
t,3 = β

(1)
t,3

β
(2)
t,2 = [ϕRt−1−(Rt−1−M4−1),

ϕRt−1−(Rt−1−M4−2), · · · , ϕRt−1−1, ϕRt−1 ]

(10)

5) OVERALL FORECASTING PROCESS
The flowchart of the proposed approach can be seen in Fig-
ure 2. For significantly restricting the search space of the
structural parameters of the network, a set of initial param-
eters �0 = {N0,R0, c0, σ0, β0} are obtained by pre-training
the hybrid RBF network. And then the structural parameters
of the hybrid network are adaptively modulated by Brownian
motion modeling and particle filter predictor. The pseudo
code of the detailed process is presented in Algorithm1.

First, a set of initial parameters can be obtained by using
the hybrid RBF network: �0 = {N0,R0, c0, σ0, β0}, where
c0 = {cs,0|cs,0 = {cs,i,0i = 1, 2, · · · ,m}, σ0 = {σs,0}, s =
1, 2, · · · ,N0;β0 = [ϕ0,0, ϕ1,0, · · · , ϕR0,0, β1,0, · · · , βN0,0]

T .

FIGURE 2. Flow chart of variable structure hybrid RBF based on particle
filter predictor.

And then the initial state particle set
{
�

(k)
0 ,w

(k)
0

}
is estab-

lished, where �(k)
0 = �0 + ε�, k = 1, 2, · · · , l, l is the

number of particles, ε� obey the standard normal distribution,
and w(k)

0 represents the particle weights.
Sampling according to the state transfer probability

p(�(k)
t |�

(k)
t−1), which according to the particle state transfer

equation of Equation (5), the particle set
{
�̃

(k)
t

}
at time t is

obtained, and k = 1, 2, · · · , l.
The preliminary prediction value at time t can be obtained

by using Equation (2) as the observation equation:

ŷ(k)t|t−1 = f (�̃(k)
t ) = H (k)

t β
(k)
t (11)

Assuming that the measured value at time t is yt , then
the importance weight update formula can be determined
by combination of the likelihood function p(yt |�̃

(k)
t ), state

transfer probability p(�̃(k)
t |�̃

(k)
t−1) and posterior probability

q(�̃(k)
t |�̃

(k)
t−1, yt ) as follows:

w̃(k)
t ∝ w̃(k)

t−1

p(yt |�̃
(k)
t )p(�̃(k)

t |�̃
(k)
t−1)

q(�̃(k)
t |�̃

(k)
t−1, yt )

∝ w̃(k)
t−1p(yt |�̃

(k)
t ) (12)

wherein q(�̃(k)
t |�̃

(k)
t−1, yt ) = p(�̃(k)

t |�̃
(k)
t−1) as the function of

particle importance density. In this study, based on the simi-
larity measurement the particle weights are updated accord-
ing to:

w̃(k)
t =

1
√
2πσ 2

exp

(
−

e2k
2σ 2

)
(13)

wherein, σ represents the Gaussian distribution variance, e2k
represents the residual error between the initial estimated
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value ŷ(k)t|t−1 of the k particle and the measured value yt . The
weight after normalization is:

w̄(k)
t = w̃(k)

t /

l∑
k=1

w̃(k)
t (14)

Then a new particle set
{
�

(k)
t ,

1/l
}
is established by using

polynomial resampling method for resampling, which re-
extracts l particles

{
�

(k)
t

}
from the particle set

{
�̃

(k)
t , w̄

(k)
t

}
.

The change of dimensionality of c(k)s,t , σ
(k)
s,t , β

(k)
t are caused

by the change of the parameters N (k)
t , R(k)t in particle{

�
(k)
t

}
, which in turn causes H (k)

t , β
(k)
t to change. Therefore,

the parameter corresponding to the maximum weight is used
to determine the final predicted value ŷt|t−1, namely:{

Pmax = max pos{w̄(k)
t , k = 1, 2, · · · , l}

ŷt|t−1 = f (�(Pmax)
t ) = H (Pmax)

t β
(Pmax)
t

(15)

wherein, max pos(·) represents the function that takes the
position of the maximum value in the set.

III. EGTM PREDICTION VERIFICATION BASED ON
VARIABLE STRUCTURE HYBRID RBF NETWORK
A. EGTM DATA PREPROCESSING
In this study, the EGTM data obtained from 30 aero-engines
of a certain type in an airline company from 1999 to 2008
[8] is selected for engine removal time prediction. Since the
actual EGTM data of each engine obtained through EHM
monitoring software is irregular data. In the selection of
sample observation values, data preprocessing methods such
as abnormal point analysis, noise processing and missing
value supplementation [8] are adopted to preprocess the
actual irregular EGTM data. The EGTM failure threshold
of this type aero-engine is 30, and the sampling period is
200 flight cycles. Due to the different number of cycles
before each engine failure, a total of 30 groups of EGTM
data sets with different sample numbers were obtained, with
totalling1564 EGTM data.

B. PREDICTIVE MODEL EVALUATION CRITERIA
To quantitatively measure and compare the prediction perfor-
mance of the proposed methods, in this study the fixed struc-
ture RBF network model is also used for prediction in addi-
tion to the variable structure RBF model. By calculating the
average absolute error (MAE), mean square error (MSE), and
maximum error (MAX) between the predicted value of each
algorithm and the true value of EGTM as the performance
evaluation standard, the calculation formula is as shown in
Equation (16)-(18) and use Equation (19) to calculate the
95% confidence interval (CI) of each algorithm’s prediction
result. EGTMestimate and cov(EGTMestimate) are mean value
estimate and estimate covariance of EGTM.

EMAE =
1
L

L∑
i=1

∣∣EGTMi,estimate − EGTMi,real
∣∣ (16)

FIGURE 3. Forecast results based on EGTM data of a single engine.

EMSE =
1
L

L∑
i=1

(
EGTMi,estimate − EGTMi,real

)2 (17)

EMAX = max
(∣∣EGTMi,estimate − EGTMi,real

∣∣) (18)

95%confidencerangebounds (19)

= EGTMestimate ∓ 1.96cov(EGTMestimate) (20)

C. EXPERIMENT AND RESULT ANALYSIS
The experiment is mainly divided into two parts——
experiment 1 uses the first 80%EGTMdata of a single-engine
as the training set, and the last 20% data as the test set for
verification; experiment 2 uses the EGTM data of the first
24 engines to establish a prediction model. The data of the
last 6 engines are used for test verification.

When establishing the fixed structure of RBF network, the
trial-and-error methodwas adopted to initialize the number of
hidden layer nodesN and the order of autoregressivemodelR,
and the other parameters (i.e. the center vectorC , the variance
parameters σ , and the weight parameters β which composed
of the connection weight between hidden layer nodes and
output node of the RBF network and the coefficients of the
autoregressive model) were mainly calculated by the self-
organizing selection center learning method. For example,
the 26 # engine in experiment 1, using the aforementioned
method described, the structural parameters N0 = 20,R0 =
5, and the remaining 3 sets of parameters c0, σ0, and β0
(parameter dimension is more, so they are not enumerated
here) are obtained.

The adaptive-tunable-based hybrid RBF Network pro-
posed in this paper for EGTM prediction, the initial value
of network structure and parameters can be theoretically
selected arbitrarily. However, for significantly restricting the
search space of the structural parameters of the network, a set
of initial parameters are obtained by pre-training the fixed
structure of the hybrid RBF network. For example, the 26 #
engine in experiment 1, the initial parameters of an adaptive-
tunable-based hybrid RBF are consistent with those obtained
by training fixed structure RBF, i.e., set N0 = 20,R0 =
5, c0, σ0, β0, and as new samples are continuously added,
the network structure and parameters can be adjusted dynam-
ically, which can obtain a more accurate model structure and
parameters in real-time.
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TABLE 1. Error analysis of EGTM prediction results of 6 engines after
experiment 2.

FIGURE 4. EGTM data of the first 24 engines.

Accordingly, the EGTM prediction results of 2 engines
(15# and 26#) randomly selected from the 30 engines pro-
vided in Experiment 1 are obtained, as shown in Figure 3.
The other three algorithms, such as the fixed structure
of RBF network, Least Squares Support Vector Machines
(LSSVM) [22], and optimally-pruned extreme learning
machine (OPELM) [23] are adopted as contrast models.
Moreover, all algorithms in the experiments are selected opti-
mum parameters.

From Figure 3, four methods can have good prediction per-
formance on the EGTM data set for engines 15# and 26#, but
it can be found the proposed prediction curve is closer to the
real value by the local amplification figure. To quantitatively
analyze the prediction performance, the numerical results of
these four methods are presented in Table 1. It can be seen
that the prediction MSE, MAE, MAX error of the proposed
model has significantly lower. Due to the EGTM have strong
nonlinear and time-varying characteristics, the fixed structure
model cannot follow the EGTM variation process. However,
the proposed method compared with the fixed structure based
on RBF, LSSVM and OPELM algorithms has a more obvious
advantage in prediction accuracy, the result is closer to the
actual value.

Figure 4 presents all EGTM data for the first 24 engines
described in Part A. Since the EGTM data of each engine is

FIGURE 5. EGTM prediction results for the last 6 engines.

independent, the horizontal coordinate is set to represent the
number of cycles, that is, the sample point, and the vertical
coordinate is EGTM value. It can be seen from Figure 4 that
the number of EGTM data obtained by each engine is dif-
ferent; however, the variation tendency is similar, which is
helpful to dig out more dynamic characteristics or serviceable
information of the EGTM data itself. Figure 5 shows the
comparison results of the EGTM data of the last six engines
based on the fixed structure RBF network model and the
variable structure RBF model in this study, where the yellow
circle is the actual engine EGTM data, the blue dot is the
prediction result of the fixed structure RBF and the red star is
the prediction result of the method proposed in this article.
The results can be seen from Figure 5 that the method in
this study has a better overall prediction effect than the fixed-
structure RBF method.

Table 2 shows the accuracy results about the EGTM data
of the last six engines under different methods. The results
demonstrated that the proposed model possess a minor MSE,
MAE andMAXerror comparedwith the fixed-structure RBF.
And the specific error reduction is shown in Table 3. The error
obtained by fixed-structure RBF and the proposed method
are denoted as A and B respectively, then the reduction is
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TABLE 2. Error analysis of EGTM prediction results of 6 engines after
experiment 2.

TABLE 3. Compared with the fixed structure RBF, the method in this
paper reduces the percentage size (%).

FIGURE 6. Average MSE, MAE, MAX error values predicted by EGTM for
the last 6 engines.

calculated by (A − B)/A. From Table 3, it can be seen that
the maximum reduction can be more than 80%. Comparing
with the RBF, the average MSE, MAE, and MAX of the
proposed model decreased by 67.04%, 42.88% and 49.75%,
respectively. Overall, the prediction MSE, MAE, MAX error
of the proposed model has significantly lower. The above
results verify that the proposed model can effectively avoid
the over-fitting phenomenon and accurately track the EGTM
change process.

In order to more intuitive understanding on the results,
the average MAE, RMSE, and MAX values obtained using
two methods for the last six engines are given in Figure 6.
Comparing with other method, the proposed model still has
good estimation performance. Thus, these results illustrate
the dynamic adjustment of the hybrid RBF network can
improve the prediction accuracy and robustness.

The above experiments show that compared with the fixed
structure RBF, the prediction results of the method proposed
in this study are closer to the actual data, and the predic-

tions of MSE, MAE, MAX error of the proposed model was
significantly lower. The aforementioned experimental results
substantiate that the dynamic adjustment of the hybrid RBF
network can accurately capture the dynamic change informa-
tion of EGTM in time, and further enhanced the prediction
accuracy and robustness.

IV. CONCLUSION
To improve the prediction accuracy of aero-engine EGTM,
a hybrid RBF neural network predictionmodel with a variable
online structure is proposed. The core is to construct a hybrid
RBF network composed of RBF network and linear regres-
sion terms to obtain the initial parameters of the model, and
then a Brownian motion with drift and scale coefficients and
particle filter are adopted to dynamically adjust the hybrid
RBF network structure and parameters. The experimental
results demonstrate that compared with the fixed structure
RBF, the prediction accuracy of the method proposed in this
study is significantly improved, and the three error indicators
(MSE, MAE, MAX) declined dramatically, average MSE,
MAE, and MAX errors decreased by 67.04%, 42.88% and
49.75%, respectively, when predicting the EGTM of six dif-
ferent engines. And the results illustrate that the proposed
adaptive-tunable-based hybrid RBF network can capture the
dynamic nature of EGTM in time during the forecasting
process.

In addition, due to the high robustness of the hybrid RBF
model with the variable online structure proposed in this
study, the algorithm can also be applied to predict other per-
formance parameters of aero-engines under different work-
ing conditions, such as engine speed, oil consumption, etc.
Besides, it is worth mentioning that complex neural network
structures such as LSTM can also be selected, and then real-
time dynamic adjustment of LSTM structure can be carried
out by using the ideas in this paper, which can be taken as the
future work. Theoretically, the posterior estimate described
by the state probability distribution will be equal to the true
value only as the selected particle data approaches infinity.
However, the number of particles in this study is fixed, how to
select the appropriate number of particles and how to design
a more effective resampling algorithm will be the focus of the
next research to improve the prediction accuracy of EGTM.
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