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ABSTRACT Great concerns have been raised on the driving cycle due to its critical importance in vehicle
design, energy management strategy, and energy consumption forecast of new energy vehicles. Taking Xi’an
city as a case, a novel method of driving cycle development for battery electric vehicles is proposed in this
paper. First, the chase car method and on-board measurement method are combined to collect sufficient real
driving data, which are randomly divided into two parts for developing and validating the target cycle. Then
the nonlinear dimension reduction of characteristic parameters with respect to the micro-trips is achieved
by employing kernel principal component analysis, and an improved clustering method is developed for
constructing candidate cycles, in which the K-means clustering algorithm is applied in the training of random
forest. The target cycle is selected from the candidate cycles by determining the assessment criteria with
consideration of the characteristic parameters and the speed-acceleration distribution probability. Finally, a
comparative study of different methods is implemented to illustrate the effectiveness of the proposedmethod.
The typicality of the target cycle is revealed by analyzing the discrepancies between the target cycle and other
legislative cycles.

INDEX TERMS Urban driving cycle, battery electric vehicles, random forest, kernel principal component
analysis.

I. INTRODUCTION
Owing to the advantages of environmental friendliness, sim-
ple structure, and high energy conversion efficiency, new
energy vehicles have great development prospects with strong
policy support [1], [2]. A driving cycle is a second-by-second
vehicle speed-time profile in a specific region, which is usu-
ally selected to describe the driving characteristics [3], [4].
As the input of vehicle design, power matching optimization,
and certification standard of energy consumption, the driving
cycle is generic technology in the automobile industry [5].

Driving cycles are grouped into legislative and non-
legislative cycles according to whether it is adopted by the
national or regional government as the standard cycle. The
widely recognized legislative cycles in the world include
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JC08 in Japan, UDDS, FTP75, SFTP, HWFET in the United
States, and NEDC in Europe [6]–[8]. The World Regulatory
Harmonization Forum (WP.29) proposed the worldwide har-
monized light vehicles test procedure (WLTP) for developing
a universal cycle, which was implemented from 2017 to eval-
uate vehicle emissions and energy consumption [9]. Initially,
China has been adopting NEDC as the standard cycle for
vehicle design and test, but NEDC cannot represent the real
driving behavior of the vehicle in China since the test proce-
dure of NEDC is based on the actual road operation in Europe.
To fill the technical gap, China automotive test cycle project
group has collected the real driving data of 5050 vehicles with
a total of 55 million kilometers in 41 typical cities since 2015
and issued two national standards in 2019, China automotive
test cycle-part 1: Light-duty vehicles and China automotive
test cycle-part 2: Heavy-duty commercial vehicles [10], [11].
The construction of China automotive test cycles has
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important reference value for guiding vehicle development
and improving vehicle dynamic and economic performance.

Ample research has been conducted on developing
non-legislative cycles in various regions for different aims.
For instance, cycles of Dublin [4], Istanbul [12], Tianjin [13],
Florence [5], and Hefei [14] were established to study energy
consumption and driving range. Cycles of Mexico [15],
Hanoi [16], Aleppo [17], and Taipei [18] were mainly used to
research emissions. The research objects of the above cycles
include internal combustion engine vehicles (ICEVs), hybrid
electric vehicles, battery electric vehicles (BEVs), and motor-
cycles. By reviewing previous studies, it can be inferred that
the driving cycles varies from region to region and the driving
characteristics of different vehicle type are also unlike [19].
For BEVs, the driving range is one of the primary factors
considered by users, reflected in an inaccurate nominal driv-
ing range that easily causes users to be anxious [20], [21].
Therefore, there is an urgent need to estimate the energy
consumption and driving range more accurately. However,
China light-duty vehicle test cycle-passenger car (CLTC-P)
represents the average characteristics of light-duty passenger
vehicles, which cannot provide targeted input for the test of
BEVs. Thus, developing a tailored driving cycle for BEVs is
the research focus at the current stage.

Existing methods of developing driving cycles can be
divided into the micro-trip-based method and Markov
analysis-based method. The micro-trip-based method divides
the driving data into many micro-trips, then the speci-
fied duration or mileage driving cycles are obtained by
connecting several micro-trips according to different criteria.
Differently, Markov analysis-based method divides the driv-
ing data into kinematic fragments and develops the cycles
based on Markov analysis, which is increasingly used in
combination with Monte-Carlo simulation [15], [22]. In con-
sideration of the complexity and non-repeatability of the com-
bination of Markov analysis and Monte-Carlo method, more
attention has been devoted to the micro-trip-based method,
in which principal component analysis (PCA) and K-means
clustering algorithm are extensively used in relevant litera-
ture [5], [23]. Although the PCA and K-means algorithm is
effective, only one candidate cycle can be obtained from the
same original driving data. Besides, PCA can only extract
linear features of characteristics, and K-means is too sensitive
to the initial cluster center to achieve global optimization [24].

Intending to solve the above problems, we propose a novel
method of developing a driving cycle. The main contributions
of our work as follows.

1) we collect the driving data of BEVs in different periods
within Xi’an. Parts of the preprocessed original data are
randomly selected to construct the candidate driving cycles,
whereas the remaining data are used for validation. The main
characteristics of micro-trips are extracted based on Kernel
principal component analysis (KPCA), and the combination
of K-means and random forest (RF) algorithm is adopted to
cluster micro-trips.

2) We determine the assessment criterion of the candidate
cycles and quantitatively described the differences between
candidate cycles and driving data by the performance value.
The candidate cycle with the minimum performance value
is chosen as the target cycle. The comparisons from diverse
aspects reveal the effectiveness of the proposed method and
the typicality of the target cycle.

The structure of the paper is as follows. Data acquisition
and preprocessing are provided in Section II. In Section III,
the construction of candidate cycles is explained. Section IV
introduces the development of the target cycle. Validation and
comparison of the target cycle are carried out in Section V.
Lastly, the conclusion is summarized in Section VI.

II. DATA ACQUISITION AND PREPROCESSING
The driving cycle development involves data collection, gen-
eration of micro-trips, selection of characteristic parameters
and assessment criteria, and construction of target cycles.

A. ROUTE PLANNING AND DATA ACQUISITION
The representativeness of a driving cycle to the traffic pat-
tern of a region firstly depends on the rationality of the
selected experimental route [25], [26]. We planned the route
according to the urban road topology, traffic flow statistics
of various roads, and resident travel surveys. Traffic flow
monitoring statistics on expressways, main roads, secondary
roads, and branch roads were conducted at 11 predeter-
minedmonitoring points in Xi’an. Analytic hierarchy process
(AHP) is a method to transform a multi-objective decision
problem into a quantitative calculation problem, effectively
solving the weight calculation and decision analysis. AHP
was applied for the determination of the experimental route
by the combination of the traffic flow on the different roads
and the weights of fast travel and convenient travel, which
were obtained by the survey of residents’ travel psychology
[1], [27]. Fig. 1 shows the experimental route, and its total
length is 38.46km with 38 traffic lights, of which the pro-
portion of the expressways, main roads, secondary roads,
and branch roads are 29.96%, 24.80%, 26.85%, and 18.39%,
respectively.

The methods of data collection include the chase car
method, on-board measurement method, and a combination
of both [22], [23], [28], [29]. The chase carmethodmeans that
the driver randomly follows a target vehicle on the predeter-
mined route. If the target vehicle drives out of the experimen-
tal area or the driving behavior is abnormal, the experimental
vehicle will search for another target to follow [30], [31].
Given the low demand for resources and convenient imple-
mentation, this method has been widely adopted, but still
exist two problems. One is that the target is easy to confuse,
especially when entering a new road section or in heavy
traffic [22]. The other is that driversmay likely change driving
styles when followed. The on-board measurement method
refers to that Global Positioning System (GPS) and On-Board
Diagnosis (OBD) are installed on the experimental vehicle
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FIGURE 1. Experimental route.

to record its driving information along the predetermined
route, which can obtain reliable data with high cost [3], [26].
In general, the chase car method and on-board measurement
method have their pros and cons. We combined the two meth-
ods to collect real driving data on the circulation route for a
week to eliminate the influence of weekdays and weekends
on the representativeness of data. The daily experiment time
consisted of 7:30-9:30 in the morning peak, 12:00-13:30 in
the afternoon off-peak, 17:30-19:30 in the evening peak, and
19:30-21:00 in the evening off-peak period. Further, to avoid
the fatigue caused by the repeated driving on the same route
and eliminate the impact of different driving styles on driv-
ing data, 28 drivers were selected to drive the experimental
vehicles, who are familiar with road conditions, have rich
driving experience, and a stable driving style. BYD E6,
battery electric passenger cars with a high penetration rate
in Xi’an, was adopted in the experiment. Fig. 2 shows the
experimental vehicle and main equipment, including GPS,
OBD, and VBOX, with a frequency of 1Hz.

FIGURE 2. Experimental vehicle and main equipment.

B. DATA PREPROCESSING
Considering the quality and continuity of data, we cannot
directly use the original driving data to develop the target
cycle [32]. For example, the speed of some points is greater
than 100km/h, and some discontinuous speed leads to abnor-
mal acceleration. As shown in Fig. 3, the maximum and
minimum acceleration of this part are 8m/s2 and −10m/s2,
respectively, which are beyond the range that can be achieved
by normal driving of vehicles. Due to the sensor noise,
the speed may not be zero when the BEVs are stationary,
and the speed less than 0.5km/h was set as 0. In light of the
speed limit of the experimental route by regulations, the speed
exceeded 70km/h was eliminated. Besides, the acceleration
threshold values were set as −2.3m/s2 and 2.1m/s2, respec-
tively. For the points where the acceleration exceeded the
threshold, the mean speed at the previous second and the next
second was taken as the current speed, and the acceleration
was recalculated. After 150 iterations, the speed and accelera-
tion of all time points were in a reasonable range. Fig. 3 shows
the comparison of partial speed and acceleration before and
after preprocessing.

FIGURE 3. Comparison of speed and acceleration.

For ICEVs, the driving data are generally divided into four
different kinematic fragments, including idling, accelerating,
cruising, and decelerating. Somewhat differently, BEVs have
stopping fragments instead of idling fragments. The segmen-
tation of the kinematic fragments requires a comprehensive
consideration of speed and acceleration. Given the corre-
sponding threshold values, the specific division criteria as

v = 0 & abs(a) ≤ 0.15, stopping
v > 0 & a > 0.15, accelerating
v > 0 & a < −0.15, decelerating
v > 0 & abs(a) ≤ 0.15. cruising

(1)

where v (km/h) and a (m/s2) are the speed and acceleration
of the vehicle, respectively.

III. CONSTRUCTION OF CANDIDATE CYCLES
Based on our previous research [27], [33], we proposed a
novel and effective method for constructing the candidate
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cycles. First, the micro-trips are generated and their main
characteristic parameters are calculated. Second, KPCA is
used to reduce the dimension of characteristic parameters
for micro-trips, then the reduced principal components score
is clustered into specific categories by the combination of
K-means clustering and RF. Finally, the candidate cycle is
constructed by splicing several micro-trips. Furthermore, it is
worth noting that the preprocessed driving data are divided
into two parts, randomly selecting 80% to construct the target
cycle, and the remaining 20% are used for validation.

A. THE GENERATION OF MICRO-TRIPS
As the elementary blocks for driving cycles, the micro-trip of
ICEVs refers to the speed-time profile between two consecu-
tive idling fragments, including idling, accelerating, cruising,
and decelerating phases [31]. Nevertheless, the micro-trip
of BEVs was defined as the trip between two consecutive
stopping fragments in this study, starting and ending with the
speed of 0. We obtained 1414 valid micro-trips by excluding
those with running time less than 10s. For the generated
micro-trips, appropriate characteristic parameters need to be
extracted to reflect the driving feature fully. Different param-
eters have been reported in the literature [4], [32], [34], and
14 parameters related to time, speed, and acceleration were
extracted in this paper to describe micro-trips are shown
in Table 1. The values of characteristic parameters are given
in Table 2.

TABLE 1. Characteristic parameters for describing micro-trips.

B. CHARACTERISTIC PARAMETERS DIMENSIONALITY
REDUCTION
We depicted and calculated 14 parameters of micro-trips, and
these parameters had a significant correlation with each other.
Therefore, it is necessary to search for new low-dimensional
features independent of each other and contain most of the
vital information of the original data to avoid the dimension-
ality curse and feature redundancy. These low-dimensional
features are not limited to a subset of the original features.
In many cases, they are a linear or nonlinear combination of
the original features.

PCA has been extensively applied as a linear dimension-
ality reduction method due to well reconfigurability and
separability with fewer calculations [35]. PCA is calculated
based on the covariance matrix of the observed data, and
the widely existing nonlinear problems cannot be handled
adequately. KPCA is an improved algorithm of PCA by
employing nonlinear methods to extract principal compo-
nents, among which the kernel function is the link between
linear and nonlinear [36]. In recent years, KPCA has been
widely used in nonlinear problems such as feature extraction
and regression [37]–[39]. Assuming that X is the sample
set in the input space, the samples in X are mapped to the
high-dimensional Hilbert space by the nonlinear mapping.
Then PCA is implicitly performed in this high-dimensional
feature space. The kernel method is based on the inner prod-
uct transformation of vectors as

K (xi, xj) = 8(xi) ·8(xj) (2)

where K is the kernel function; xi and xj are samples belong-
ing to X , and8 is the mapping function from the input space
to the high-dimensional feature space.

The kernel function is a continuous kernel of a positive
integral operator satisfying the Mercer theorem [40]. Several
representative kernel functions can be seen in Table 3.

In this paper, the detailed procedures of using KPCA
to reduce the dimensionality of micro-trips characteristic
parameters are given as follows.

1) For eliminating the influence of the order of magnitude
on the results, the characteristic parameters matrix with the
size of 1414× 14 was standardized;

2) In KPCA, selecting a kernel function and determin-
ing the related parameters are the most important because
the degree of capturing nonlinear characteristic of the data
is dependent on them. This paper was carried out with a
Gaussian RBF kernel, in which σ represents the width of
the Gaussian function. A relatively suitable parameter σ as
38.73 was obtained through parameter optimization, and the
kernel matrix Km was calculated;
3) The centralizer of Km was calculated by (3), and its

eigenvalues and eigenvectors were calculated;

Kc = Km − A× Km − Km × A+ A× Km × A (3)

where Kc is the centralizer of Km; A is the matrix with the
size of m × m, in which all elements equal to 1/m, and m is
the number of samples in the input space. The value of m is
1414 in this paper.

4) Results of KPCA are shown in Table 4 (only the first
five principal components are given). The first four principal
components were selected according to the criteria of vari-
ance larger than 1 and the cumulative probability of variance
larger than 85%;

5) In the end, the principal component score matrix was
calculated as the variable of output space.

For comparison, PCA was also employed to reduce
the dimensionality of characteristic parameters. The results
showed that the number of principal components was 3,
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TABLE 2. Characteristic parameters of micro-trips.

TABLE 3. Representative kernel functions.

TABLE 4. Results of KPCA-total variance explained.

and the cumulative variance contribution rate was 85.49%.
However, KPCA selected 4 principal components, and the
cumulative variance contribution rate was 91.96%. It can be
concluded that KPCA dimensionality reduction can reflect
the nonlinear characteristics of the data while containing
more original data information.

C. CLUSTERING OF MICRO-TRIPS BASED ON THE
COMBINATION OF K-MEANS AND RANDOM FOREST
K-means clustering takes the local minimum of the sum of
squares of errors as the objective function [41]. Although
it is widely used because of its simplicity, easy implemen-
tation, and good interpretability, K-means clustering is hard
to achieve global optimization. Therefore, we introduced the
RF algorithm to optimize and modify the K-means clustering
results. RF is a classification algorithm proposed by Breiman
in 2001, which integrates multiple decision trees by ensemble
learning to improve the generalization ability of the clas-
sification method [42]. Compared with other classification
algorithms, RF can run effectively on large data sets due
to parallel training implementation. Besides, RF can handle
the data with high feature dimensions. On account of these
advantages, RF has been studied extensively in classification,
regression, and data mining [43], [44]. The procedures of RF
classification are as follows.

1) If the number of samples in the training data set is k ,
k samples are extracted from the training data set as the
samples at the root node of each decision tree by bootstrap

aggregating sampling. Each sample set has the same size with
different contents. In each round of random sampling, about
36.8% of the training data are not selected, that is, data of
out-of-bag;

2) If the number of variables is m in the sample set,
n (n 6 m) is randomly selected as the number of variables
when the nodes of the decision tree are split, then the infor-
mation contained in n variables is calculated, selecting the
variables with the most classification ability as the node split
features;

3) Each tree grows as much as possible without pruning;
4) A forest is generated by building many decision trees.

For classification problems, each decision tree is a classi-
fier, and the classification is determined by voting based
on the classification results of each tree. As a consequence,
the classification effect of RF is better than that of any single
classifier due to the combination of multiple classifiers.

There are three steps in the clustering of micro-trips by
K-means and RF. In the first step, we determined three
categories of low-speed, medium-speed, and high-speed by
analyzing the actual driving behavior. In the second step,
the K-means clustering algorithm was applied in the training
of RF. K-means clustering was used to cluster the micro-trips
into three categories, in which 30 micro-trips closest to the
center of the category were selected as the training samples.
In the third step, the classification prediction of the remaining
micro-trips was completed by learning the input micro-trips
in the RF.

The classification effect of RF mainly depends on two fac-
tors. One is the correlation between any two trees in the forest,
and a greater correlation will worsen the classification effect.
The other is the classification effect of each tree in the forest,
and the better the classification effect of each tree, the better
the classification effect of the whole forest. Both factors are
related to the number n of the selected variables, and n was
taken as 3 in this paper. The classification results of K-means
clustering combined with RF (KR) and K-means clustering
are shown in Fig. 4 and Table 5. Fig. 4 shows the scatter
plots of the Vm, Am, and Dm of all micro-trips belonging to
different categories. It can be seen that the results of clustering
using only K-means are different from the KR. Apparently,
the micro-trips that initially belonged to the second category
are assigned to the first category after KR clustering, which
may be due to the more significant correlation between these
micro-trips and the second category.

VOLUME 9, 2021 15057



L. Wang et al.: Development of a Typical Urban Driving Cycle for BEVs Based on KPCA and RF

FIGURE 4. The results of clustering. (a) K-means; (b) KR.

TABLE 5. K-means and KR classification results.

As listed in Table 5, the parameter values characterize
the average characteristics of each category. The parame-
ters of the same category obtained by the K-means and KR
are slightly different. The results of KR show that the Vm
of the first category is very low, with the value of 2.81km/h,
the Am and Dm are 0.61 m/s2 and −0.61m/s2, respectively.
The second category has a Vm of 17.05km/h, and it has the
largest Am and Dm. The third category has the highest Vm,
and the Am and Dm are in the middle. It can be concluded
that three categories respectively corresponded to the actual
congestion, normal and smooth driving modes, representing
the low-speed, medium-speed, and high-speed conditions.

We discussed the validity metrics from Compactness (CP),
Separation (SP), Davies-Bouldin Index (DB), and Dunn
Validity Index (DVI) to quantitatively evaluate the clustering
performance of different methods [45].

(1) As an internal validation index of clusters, CP of each
cluster is calculated as the average 1-norm distance between
all samples and its cluster center as

CPi =
1
|�i|

∑
xi∈�i

‖xi − wi‖ (4)

where CPi is the compactness of cluster i; �i represents the
cluster i; |�i| is the number of samples contained in �i; xi
is the sample in �i; wi is the center of �i. The CP of global

variables is expressed as

CP =
1
K

K∑
i=1

CPi (5)

where K denotes the number of clusters. The lower value of
CP, the smaller the distance within the clusters.

(2) SP is defined as the average Euclidean distance between
the centers of every two clusters as (6). The higher value of
SP, the greater the distance between clusters.

SP =
2

K 2 − K

K∑
i=1

K∑
j=i+1

∥∥wi − wj∥∥2 (6)

(3) DB measures distance both between and within the
clusters. Divide the sum of the average distances between any
two clusters by the Euclidean distance between two cluster
centers, and then find the maximum value and divide by the
number of clusters to get the DB as

DB =
1
K

K∑
i=1

max
j6=i

(
Ci + Cj∥∥wi − wj∥∥2

)
(7)

where Ci is the average distance between samples in �i. The
lower value of DB, the higher similarity within the clusters,
and the higher dissimilarity between the clusters.

(4) DVI is defined as the minimum distance between sam-
ples (between clusters) divided by the maximum distance
between samples (within clusters). The higher value of DVI,
the higher similarity within the clusters, and the higher dis-
similarity between the clusters. DVI is calculated as

DVI =

min
0<m6=n≤K

 min
∀xi∈�m
∀xj∈�n

{∥∥xi − xj∥∥}


max
0<m≤K

max
∀xi,xj∈�m

{∥∥xi − xj∥∥} (8)
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TABLE 6. The clustering validity metrics.

Table 6 shows the classification validity metrics of
K-means and KR methods. Compared with K-means cluster-
ing, the CP and DB of KR clustering are smaller, whereas SP
andDVI values are larger. It is proved that the proposed hybrid
clustering algorithm can effectively improve the similarity
within the same cluster and reduce the similarity between the
different clusters.

D. DETERMINE THE DURATION OF EACH CATEGORY
The determination of cycle duration is an essential part of
the construction driving cycles. Durations of cycles are dif-
ferent, for instance, the total duration of NEDC, WLTC,
and CLTC-P are 1180s, 1800s, and 1800s, respectively, and
the non-legislative cycles are mostly between 900-1800s
[14], [23], [26]. The duration was determined to be 1200s for
Xi’an BEVs urban cycle (XBUC). XBUC consisted of three
categories, and the duration of each category was obtained by
multiplying the total duration by the time proportion of each
corresponding category as

Ti =
T�i
K∑
i=1

T�i

× Ttotal (9)

where T�i represents the duration of �i; Ttotal denotes the
total duration of the cycle.

Furthermore, micro-trips were selected based on its
Pearson correlation coefficient with its category. The larger
the correlation coefficient is, the greater the micro-trip can
represent the overall characteristics of its category. The cal-
culation of the correlation coefficient as

r (X ,Y ) =
Cov(X ,Y )
σXσY

(10)

where Cov(X ,Y ) is the covariance of X and Y ; σX and σY are
the standard deviations of X and Y , respectively.
Based on the Pearson correlation coefficient and the run

time of each micro-trip, a few appropriate micro-trips were
selected in each category to represent the characteristics of
the belonging category. We constructed 10 candidate driving
cycles by splicing the selected micro-trips.

IV. DEVELOPMENT OF XI’AN BEVS URBAN CYCLE
By evaluating and comparing the performance value of the
candidate cycles, a target cycle is selected from them to
represent the original driving characteristic best. The deter-
mination of assessment criteria in this study as follows.

A. DETERMINATION OF ASSESSMENT CRITERIA
It is of great significance to determine a set of rational and
representative assessment criteria for the development of

driving cycles when selecting the best cycle from candidate
cycles according to the statistical representativeness [22].
Based on the maximum similarity principle, we took the
constructed 10 candidate cycles as input and adopted the
following steps to output the best cycle.

The first step is to give the indication parameters, which
are different from the micro-trips characteristic parameters
and can be used to characterize the cycle characteristics. The
indication parameters including Vm, Vmr , Am, Dm, accelera-
tion proportion (Pa), deceleration proportion (Pd ), cruising
proportion (Pc), and stopping proportion (Ps) (defined as the
ratio of the time of each kinematic fragment to the total
driving time, for instance, Pa = Ta

/
T × 100%), and the

relative positive acceleration (RPA) as well as positive kinetic
energy (PKE) related to dynamics. RPA is an important
parameter to describe the power demand of the driving cycle
profile as [9]

RPA =
1
dist

∫ T

0
vt · a+t dt (11)

where dist (m) is the distance of the whole trip; T is the
driving time of the trip; vt is the instantaneous speed of
the moment t; a+t is the instantaneous acceleration of the
moment t , only the positive acceleration is considered.

PKE is a parameter describing the positive kinetic energy
of vehicles, and its calculation as [15]

PKE =
1
dist

T∑
t=2

v2t − v
2
t−1 (12)

where only the moment vt > vt−1 is considered.
The absolute relative error (ARE) of 10 indication param-

eters were calculated between the candidate cycles and the
driving data in the second step. The candidate cycles were
then selected when the ARE of each indicator parameter less
than 10% [34], and the mean absolute relative error (MARE)
of each candidate cycle was calculated. Speed-acceleration
probability distribution (SAPD) is a parameter to describe the
speed and acceleration states [4], and the SAPDdiff is defined
as the percentage error of the frequency between the driving
data and other cycles in different speed-acceleration bins as

SAPDdiff =

∑
i(SAPDcycle(i)-SAPDdata(i))

2

SAPDdata(i)2
(13)

where i is the bin of SAPD; SAPDcycle is the SAPD of
candidate cycle; SAPDdata is the SAPD of driving data.

Finally, the performance value (PV) of candidate cycles
was defined as the mean value of MARE and SAPDdiff. The
candidate cycle with the minimum PV was selected as the
target cycle, that is, the XBUC.

B. MAIN CHARACTERISTICS OF XI’AN BEVS URBAN CYCLE
The total duration of XBUC is 1200s, including the low-speed
category of 160s, medium-speed category of 603s, and
high-speed category of 437s. The speed and acceleration pro-
files of XBUC are shown in Fig. 5. The main characteristics
of XBUC and its three categories are shown in Table 7.
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FIGURE 5. Speed and acceleration profiles of XBUC.

TABLE 7. Main characteristics of XBUC.

It can be seen from Table 7 that the Vm of the first category
is the smallest, and the Ps is the largest, up to 53.75%, which
can be inferred that the corresponding driving condition is
congested. Compared with the first category, the second cat-
egory has a larger Vm and Pc, and its Ps is smaller, which
indicates that the driving condition is relatively smooth. The
third category has the highest Vm and Pc, which means that
the corresponding condition is smooth.

To further illustrate the speed-acceleration distribution,
this paper presents SAPDs of the driving data and XBUC,
as shown in Fig. 6. It can be included that XBUC and driv-
ing data have very similar SAPD in that the probability is
high when the acceleration is in the range of [−0.5, 0.5]
and the speed is very low, whereas the rest of the bins are
close to 0. The SAPDdiff between XBUC and overall driving
data, driving data for development and validation are 3.03%,
3.05%, and 3.52%, respectively, which further indicates the
applicability of the developed cycle.

V. VALIDATION AND COMPARISON OF DRIVING CYCLES
To verify the representativeness and typicality of the devel-
oped driving cycle, we compared PCA and K-means cluster-
ing with the proposed method and studied the discrepancies
between the XBUC and several legislative cycles.

A. COMPARATIVE ANALYSIS OF DIFFERENT METHODS
Based on the same driving data for development and valida-
tion, the target cycle was also developed by the conventional
PCA and K-means clustering (driving cycle-PK), as shown
in Fig. 7. The duration of the driving cycle-PK is the same
as XBUC and also consists of three categories. The char-
acteristic parameters of the target cycles based on the two
methods are shown in Table 8. PVs between XBUC and the
driving data used for development and validation are 2.72%
and 2.95%, respectively, whereas the PVs between driving
cycle-PK and driving data are 3.64% and 3.81%, respectively.

TABLE 8. Comparison of characteristic parameters.

Meanwhile, Fig. 8 shows the proportion of acceleration,
deceleration, cruising, and stopping visually. The distribution
of acceleration, deceleration, cruising, and stopping of the
two target cycles are both very similar to that of the driving
data. Relatively speaking, the proportion of acceleration and
deceleration of XBUC are slightly larger.

The results show that the target cycles based on the two
methods can both reflect the driving characteristics. Still,
the proposed method is more in line with the real vehicle
driving data, which proves its availability and reliability.
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FIGURE 6. Comparison of SAPDs. (a) Overall driving data; (b) Driving data for development; (c) Driving data for validation; (d) XBUC.

FIGURE 7. Speed and acceleration profiles of driving cycle-PK.

B. COMPARATIVE ANALYSIS BETWEEN XI’AN BEVS
URBAN CYCLE AND LEGISLATIVE CYCLES
Three legislative cycles were selected to compare with XBUC
in this section. Table 9 shows the characteristic parameters of
different cycles.

As shown in (1), the same kinematic fragments division
principle is used to calculate the characteristic parameters
of the three legislative cycles. According to Table 9, appar-
ent differences exist between the XBUC and three legisla-
tive cycles. Apparently, the research objects and duration of
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FIGURE 8. Pa, Pd , Pc , and Ps of the target cycles and driving data.

TABLE 9. Comparison of XBUC and legislative cycles.

FIGURE 9. The absolute relative error of characteristic parameters.

XBUC and NEDC, WLTC, CLTC-P are different. To further
analyze the differences between XBUC and three legisla-
tive cycles, ARE of characteristic parameters are shown in
Fig. 9. The dotted lines in Fig. 9 show the MARE between
XBUC and NEDC, WLTC, CLTC-P are 54.38%, 48.69%,
and 33.44%, respectively. It can be inferred that XBUC and
CLTC-P have the most similar driving characteristics, fol-
lowed by WLTC and NEDC. The parameters of Vm, Vmr ,
and Pc show the most significant difference between XBUC
and three legislative cycles. ARE of Am and Dm for three
legislative cycles are the smallest, but the proportion of
kinematic fragments is significantly different from that of
XBUC. Quantitative analyses for parameters show that oper-
ating characteristics of XBUC are lower speed, more violent
acceleration and deceleration, and higher PKE and RPA,

which indicates that the urban traffic condition is even worse.
To further explain the speed and acceleration distributions of
XBUC and three legislative cycles, Fig. 10 shows box plots
of the speed and acceleration, and the speed-acceleration
probability distribution is shown in Fig. 11.

FIGURE 10. Box plots of speed and acceleration distribution. (a) Speed;
(b) Acceleration.

From Fig. 10(a), the minimum values of speed are equal
to 0 for all cycles. The 25th percentile range between 0 and
17.7km/h. The median values equal 32.0km/h for NEDC,
41.5km/h for WLTC, 23.8km/h for CLTC-P, and 19.5km/h
for XBUC. The 75th percentile range between 32.6km/h and
68.8km/h. Themaximumvalues range between 59.5km/h and
131.3km/h. It can be inferred from the interquartile range
that the speed distribution of WLTC is the most dispersed,
whereas that of XBUC is the most concentrated. It can be
observed from Fig. 10(b) that the median values of accelera-
tion are equal to 0 for all cycles. The acceleration distribution
of XBUC is the most dispersed, whereas the acceleration of
NEDC is the most concentrated. According to the compre-
hensive analysis of the above results, BEVs have unique driv-
ing characteristics and have greater acceleration than ICEVs.
It can be concluded fromFig. 11 that NEDC,WLTC,CLTC-P,
and XBUC have one thing in common, that is, the distribution
probability in the range of speed [0, 5] and acceleration
[−0.2, 0.2] is the highest, whereas the probability of other
bins is small. The main difference is that NEDC and WLTC
have 6 and 3 distinct peaks, respectively, whereas CLTC-P
and XBUC have only 1 distinct peak. Although the SAPD of
CLTC-P and XBUC are similar, their speed and acceleration
ranges are different. Specifically, the speed range of XBUC
is smaller, but the acceleration range is larger, reflecting
the more congested traffic conditions in the city. Compared
with XBUC, three legislative cycles belong to composite
cycles, which integrate the driving characteristics of urban
and suburban areas, so the speed is relatively high. TheXBUC
developed in this paper is mainly aimed at the operation
condition of the urban environment, belonging to the urban
driving cycles. The qualitative and quantitative discrepancies
between XBUC and the three legislative cycles indicate the
uniqueness of the XBUC and the necessity to develop the
cycle.
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FIGURE 11. SAPDs of four cycles. (a) NEDC; (b) WLTC; (c) CLTC-P; (d) XBUC.

VI. CONCLUSION

Based on kernel principal component analysis and random
forest algorithm, we proposed a novel method to develop
an urban driving cycle for battery electric vehicles, which
provides an accurate input for estimating energy consumption
and driving range. The experimental route was determined
according to the qualitative and quantitative analysis rather
than the subjective experience of the author. The real driving
data in Xi’an city were collected by the combination of the
chase car method and on-board measurement method for one
week. The collected driving data were then randomly divided
into two parts, 80% used to develop the target cycle, and the
remaining data adopted to validate the target cycle.

Considering the deficiency of the conventional PCA and
K-means clustering method, the dimension of micro-trips
was reduced by the kernel principal component analysis, and
an improved clustering method combined K-means with the
random forest was adopted to cluster the micro-trips and
construct the candidate cycles. The performance value was
then defined and calculated, and the candidate cycle with
the minimum performance value was selected as the target
cycle, which can best reflect the urban traffic conditions and
residents’ travel characteristics.

At last, the comparative analysis of the different methods
showed that the effectiveness of the proposed method. The
significant discrepancies were found by comparing the target
cycle to other legislative cycles, especially CLTC-P, and it can
be inferred that the current legislative cycles may not apply
to new energy vehicles. However, it is worth further thinking
about whether the discrepancies are mainly attributed to the
vehicle’s power system characteristics or urban road proper-
ties and traffic congestion levels, or both. In future studies,
it is imperative to develop the driving cycles for subdivided
vehicle types in specific regions.
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