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ABSTRACT Research on clustering spatio-temporal data to extract mobility patterns requires further
development, as most existing studies do not simultaneously integrate data along both spatial dimensions
and temporal dimensions but instead focus on only one dimension or separate the dimensions in analyses
and applications, which could lead to discoveries that are not representative of the overall data or are dificult
to interpret. To simultaneously reveal the spatial and temporal patterns of urbanmobility datasets, we propose
an analytical framework that is based on co-clustering and enables mobility behaviors to be distinguished
in spatial and temporal dimensions. We use one month of taxi GPS data from the Manhattan area to explore
spatio-temporal co-occurrence patterns. The spatial and temporal dimensions of taxi trip data were co-
clustered by using the Bregman Block Average co-clustering algorithm with I-divergence (BBAC_I). We
performed this process on weekdays and holidays and compared the mobility differences between these two
periods. The experimental results demonstrated the effectiveness of this analytical framework, with which
we can reveal the spatial patterns and their temporal dynamics as well as temporal patterns and their spatial
dynamics in mobility data.

INDEX TERMS Mobility patterns, co-clustering, spatio-temporal co-occurrence, taxi trip.

I. INTRODUCTION
With rapid technological advancements in sensors and track-
ing facilities, large quantities of spatio-temporal data that
register human mobility have become readily accessible
and widely available[1]. These increasing volume datasets
not only enable researchers to understand cities via data-
driven technologies but also help planners integrate more
information to improve decision-making in many applica-
tion domains, such as geography [2], ecology [3], urban [4]
and transportation systems [5]. However, the complexity
of human movement data increases along with the com-
plex dependence and interactions between temporal dimen-
sions and spatial dimensions while exhibiting a distinct
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heterogeneity across space and time. For instance, in terms of
a taxi trip, destinations of daily commuting are concentrated
around workplaces (space) in the morning (time) and residen-
tial subdivisions (space) in the evening (time). As a result, the
impact of human mobility on the urban transportation system
or other corresponding urban systems is also heterogeneous
across space and time. In this case, the need to introduce a
data-driven approach that can retrieve interesting dynamic
patterns and critical characteristics from a spatio-temporal
concurrent perspective is urgently needed.

Spatio-temporal clustering is an important task in spatio-
temporal pattern mining, which groups objects based on
their spatial and temporal similarity and analyzes them at a
higher level of abstraction. In urban activities analysis, spatio-
temporal clustering is useful for monitoring and aggregating
individual activities in specific regions and temporal features.
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Traditional spatio-temporal clusteringmethods focus on three
aspects: (1) establish a temporal domain and measure the
corresponding spatial distance between two objects [6], [7];
(2) underline the temporal order of objects at predefined
locations [8]–[11]; and (3) separately measure spatial and
temporal dimensions [12]–[15]. However, spatio-temporal
clustering focuses on only one dimension (spatial or tempo-
ral) or separately analyzes the dimensions by clustering the
spatial samples based on the similarities with the temporal
features, or vice versa. Simple aggregation over a dimension
(time and space) or separately analyzing each dimension
could lead to discoveries that are not representative of the
overall data and the loss of some spatio-temporal interaction
information [16]. A clustering method that performs simulta-
neous clustering along both temporal and spatial dimensions
is essential. Consequently, the goal of this article is to pro-
pose an analytical framework that simultaneously discovers
global mobility patterns such as spatial distributions, tempo-
ral variations, and intuitive dynamic interaction patterns in the
mobility data along both temporal and spatial dimensions.

Co-clustering is the task of simultaneously partitioning a
data matrix that represents a joint probability distribution or
co-occurrences between two random variables (both sam-
ples and features) [17], [18], which has been extensively
applied for pattern analysis in many fields. The purpose of
co-clustering is to identify clusters that exhibit similarity for
a subset rather than an entire feature set, which has shown
prominent performance improvement over traditional one-
sided clustering algorithms [19], [20]. Therefore, the result-
ing co-clusters can reveal valuable implicit information in
a dataset with two dimensions and overcome the loss of
information on interaction features in two dimensions. For
example, co-clustering gene expression data can be employed
to identify the gene groups in specific experimental condi-
tions (such as patients with AIDS) and simultaneously cluster
documents and words to aid in understanding the seman-
tics in a specific context. More importantly, co-clustering
achieves excellent performance in partitioning sparse and
high-dimensional data [21]. Recently, several studies also
applied a feature-based co-clustering algorithm to analyze
geo-referenced time series data in a variety of fields, such
as phenological pattern extraction [3], disease hotspot detec-
tion [22], and identification of favorable conditions for virus
outbreaks [23], [24]. In terms of analyzing human mobil-
ity, some researchers employed a feature-based co-clustering
algorithm to extract features in OD flow data [16], [25],
however, the objects of clustering are two spatial variables of
the origin and destination. Therefore, co-clustering analysis
is an extraordinarily appropriate technique for discovering
hiddenmobility patterns in spatio-temporal data, and it is also
necessary to analyze it from the perspective of spatiotemporal
co-occurrence.

In this article, we propose a framework that is based on a
co-clustering algorithm to analyze spatio-temporal mobility
patterns and their concise interaction characteristics from a
spatio-temporal co-occurrence perspective. Experiments are

performed using the taxi trip time series of NYC on both
weekdays and weekends to demonstrate the effectiveness
and practicality of the proposed framework. First, using one-
month taxi GPS datasets for the Manhattan area of New York
City (NYC), we reorder the mobility matrix that emerges
with urban regions and the time series of a day based on the
co-clustering method and obtains a checkerboard-like spatio-
temporal co-clustering pattern. Second, we apply K-means
to refine the checkerboard-like clustering pattern into non-
checkerboard spatio-temporal co-clusters and identify the
unique spatial and temporal patterns. Last, the spatial pat-
terns with their temporal dynamics and the temporal mobil-
ity patterns with the corresponding spatial distributions are
visualized to gain region- and timestamp-specific insights.
To better understand the travel behavior and urban dynamic
characteristics, we split the dataset into two groups in terms
of periods as weekdays and holidays and perform this pro-
cess by comparing the trip patterns between weekdays and
holidays. The main contribution of this article is to propose
an analytical framework for simultaneously revealing spa-
tial and temporal patterns of transportation/mobility data.
The adopted statistical techniques can adequately interpret
latent spatio-temporal interactions and complex dependence
in large amounts of spatio-temporal mobility data. It is noted
that this article does not intend to develop a new clustering
methodology for the employed methods. The methods that
we apply for co-clustering and K-means are existing methods
because our focus is on gaining new empirical insight by
exploring mobility data rather than contributing to these data
mining techniques.

The remainder of this article is organized as follows:
Section II reviews relevant studies of spatial and temporal
analysis of taxi trips and spatio-temporal clustering meth-
ods, in particular, the co-clustering algorithm. Section III
describes the detailed process of checkerboard and non-
checkerboard co-clustering methods that are applied to
spatio-temporal data. Section IV performs experiments on
taxi trip data from NYC on both weekdays and weekends to
demonstrate the effectiveness and practicality of the proposed
framework. Section V provides the conclusions of this article.

II. LITERATURE REVIEW
A. SPATIAL AND TEMPORAL ANALYSIS OF TAXI TRIP
The taxi trip is a significant mode of transportation in urban
areas due to its flexible door-to-door service and 24-7 opera-
tion [26].With information about when and where a customer
is picked up or dropped off by a taxi, meaningful dynamic
patterns of a city can be obtained by data mining approaches
and models [27], [28].

Previous research has focused on analyzing the mobility
patterns of the taxi trip. Some researches focused on the
spatial content of the taxi trip. For example, considering the
differences between a long distance and a short distance in
the taxi GPS trajectory data of an intracity, [29] built net-
work models and performed community analysis to reveal
a two-level hierarchical polycentric structure of Shanghai
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with a viewpoint of spatial interactions represented by taxi
trips. Reference [30] proposed a matrix factorization method
that is based on an analytical framework to detect taxicabs’
operation patterns in space by analyzing their continuous
digital traces. Conversely, some studies focused on temporal
information about the taxi trip. For instance, by merging GPS
records of taxi trips and historical weather records in NYC,
[31] introduced a classification and regression tree method-
ology to analyze the temporal patterns of the descriptive
statistics of travel time (such as average travel time, standard
deviation, and coefficient of variation) and discovered that
the peak periods exhibit inter period heterogeneity in terms
of the average travel time and standard deviation, whereas
the coefficient of variation exhibited more consistent patterns
among the days. However, pattern extraction in these studies
is imperfect because only the single features of time or space
are considered.

To extract the more comprehensive information about
mobility patterns, additional studies considered both spatial
features and temporal features. Reference [32] investigated
intra-urban human mobility by analyzing the temporal and
spatial distributions of trip distances and trip directions and
proposed a model that integrates both the geographical het-
erogeneity and distance decay effect to interpret these pat-
terns. Reference [33] developed an effective model to explore
the spatio-temporal characteristics of individuals’ daily activ-
ities and determine the temporal variations of activities by
showing a strong periodicity of activity intensity in 1 week.
Notably, all these studies analyzed spatial and temporal
characteristics separately. In addition, in recent years, there
emerged a series of effective matrix factorization methods for
detecting underlying spatio-temporal patterns and exploring
the high-level interactions among different spatial, temporal,
and other attributes in mobility data [16]. Matrix factorization
is a local perception of the research object, which extracts
and explains local features from multiple dimensions (such
as temporal, spatial, and other attributes) [34]. The latent
interactions between different dimensions are represented by
the combined probability across different patterns in each
dimension, and the mixed probability distribution makes the
result unintuitive and difficult to interpret. Therefore, it is
necessary to provide amore concise way to efficiently present
the interaction characteristic among spatial and temporal
patterns.

B. SPATIO-TEMPORAL CLUSTERING AND CO-CLUSTERING
ALGORITHM
Spatio-temporal clustering is an important technology of
spatio-temporal data mining that aims to extract a series of
clusters based on both spaces and timestamps [35], [36].
Spatio-temporal clustering is also beneficial for investigat-
ing the distributions of geographical phenomena and detect-
ing the spatio-temporal characteristics of clusters [37]. In
recent years, spatio-temporal clustering has been exten-
sively applied in many research fields, including socioeco-
nomic analysis, climate change analysis, epidemic detection,

crime behavior prediction, and traffic dynamic analysis [18],
[38]–[41]. In terms of these different applications, clustering
methods are primarily dependent on the specific characteris-
tics of five types of spatio-temporal datasets: spatio-temporal
events, geo-referenced variables, geo-referenced time series,
moving objects, and trajectories [35]. In this study, we focus
on clustering geo-referenced time series, which record time-
changing values of one or more observed attributes at fixed
locations and consistent time intervals [42].

Co-clustering enables us to directly aggregate objects
based on their similarities with respect to observed nonspatial
attribute values at different time stamps and regions. Since
it was first proposed by [17], the importance of the con-
cept of co-clustering has increased and has been extensively
employed for exploratory analysis in many fields. Refer-
ence [43] proposed a spectral bi-clustering algorithm that
simultaneously clusters genes and conditions of expression
data and discovers distinctive ‘‘checkerboard’’ structures in
eigenvectors that correspond to a characteristic expression
pattern across genes or conditions. Reference [44] proposed
information-theoretic co-clustering (ITCC), which uses the
I-divergence matrix to minimize the mutual information loss
between the original random variables and the clustered ran-
dom variables and discovered groups of interrelated words
and documents by employing text mining. Reference [45]
proposed the Minimum Sum-Squared Residue Co-clustering
(MSSRCC) to minimize two different objective functions
based on two different squared residue measures. Reference
[19] introduced the Bregman Block Average co-clustering
(BBAC) algorithm with I-divergence (BBAC_I) to mea-
sure the approximation error using a large class of loss
functions named Bregman I-divergences. The BBAC algo-
rithm also enables the use of many other metrics(such as
the squared Euclidean distance and KL-divergence) as loss
functions to optimize the co-clusters. Among these metrics,
the superiority of the BBAC_I for simultaneously analyzing
two-dimension features (e.g., word-document) has been sug-
gested. Some researchers recently applied the BBAC_I into
the phenology field and successfully identified the spring
phenology patterns along locations and years.

Even though previous studies have analyzed the mobil-
ity patterns of taxi trips, a framework that simultaneously
examines the dynamic mobility patterns along both temporal
dimensions and spatial dimensions is lacking. In this article,
we introduce a co-clustering algorithm (BBAC_I) to extract
similar spatio-temporal groups and their interaction charac-
teristics of taxi trips in NYC from a spatio-temporal co-
occurrence perspective. Although the co-clustering method
is not new, this article focuses on its application to a spatio-
temporal mobility dataset and reveals valuable insight into
spatio-temporal-mobility interactions.

III. METHODOLOGY
In our research, the presented approach includes two main
parts to achieve simultaneous retrieval of spatial and temporal
patterns for human activities that are obtained from taxi trip
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data. The geo-referenced time series data is first divided into
checkerboard-like co-clusters that are composed of spatial
and temporal dimensions using a co-clustering algorithm,
and then K-means is applied to regroup the regular spatio-
temporal co-clusters and refine the spatio-temporal interac-
tion patterns.

A. THE BREGMAN BLOCK AVERAGE CO-CLUSTERING
ALGORITHM WITH I-DIVERGENCE
Co-clustering is an important pattern analysis tool that simul-
taneously clusters rows and columns of a two-dimensional
data matrix. Retrieved checkerboard co-clusters reveal the
intrinsic associations between rows and columns[46]. A
popular means of co-clustering uses information-theoretic
cost functions, which consider co-clustering as a lossy data
compression problem and attempt to minimize the loss in
mutual information between the original data matrix and
the co-clustered matrix [3], [44], [47] (or retain as much
information as possible about the original data matrix [19]).
Based on the description of the co-clustering algorithm in
the literature review, the BBAC algorithm enables the use
of multiple metrics (such as the squared Euclidean distance,
KL-divergence, and I-divergence) as cost functions to opti-
mize the co-clusters. The superiority of I-divergence over
other metrics has been empirically shown [19].

In our research, the BBAC_I algorithm is employed to
capture spatio-temporal-mobility interactions and simultane-
ously group data elements based on their similarity along
regions and timestamps of the original data matrix O(R,T )
(which is also the spatio-temporal co-occurrence matrix)
into the co-clustered matrix C(̂R, T̂ ). The spatio-temporal
co-occurrence matrix can be regarded as the co-occurrence
distribution between two random variables: the regions (R)
and the timestamps (T). In this context, the rows of the
co-occurrence matrix refer to the region sets {r1, r2, . . . , rm}
that represent the fixed spatial area, and the columns represent
the regular intervals {t1, t2, . . . , tn} that belong to one day.
The elements of the co-occurrence matrix are the average
travel volumes for each region and time period. We are
devoted to obtaining a k × l partitional co-clustering matrix
C(̂R, T̂ ), which quantizes R into k region-cluster sets R̂:
{r̂1, r̂2, . . . , r̂k} (k ≤ m) and T into l timestamp-cluster sets
T̂ : {t̂1, t̂2, . . . , t̂l}(l ≤ n). In addition, the mutual information
between the spatial variable R and the temporal variable T
is denoted as I (R;T), similarly, and I (̂R; T̂ ) is the mutual
information between the spatial variable R̂ and the temporal
variable T̂. Therefore, the BBAC_I algorithm is applied to
achieve an optimization problem, where the loss in mutual
information I (R;T ) − I (̂R; T̂ ) (note that I (R;T ) ≤ I (̂R; T̂ ))
between the original data matrix O(R,T ) and the optimum
co-clustered matrix C(̂R, T̂ ) is minimized.
The detailed optimization process is shown in Table 1. The

original data matrix contains the average travel volumes for
m regions (R) and n timestamps (T). The number of region-
clusters R̂ and temporal-clusters T̂ is predefined by the user
as inputs, which represent the interaction degree between the

TABLE 1. Algorithm table of the BBAC_I for discovering mobility patterns
from spatio-temporal co-occurrence data.

spatial dimensions of the mobility patterns and the temporal
dimensions of the mobility patterns. The first step of the
BBAC_I algorithm is to randomly initialize the mapping of
regions to region-clusters and the mapping of timestamps
to timestamp-clusters, which yields the co-clustered matrix
C(̂R, T̂ ). In the second step, the loss in mutual informa-
tion between the original matrix and the co-clustered matrix
(which is composed of the region-clusters and timestamp-
clusters) is calculated by I-divergence metrics, where D(· ‖ ·)
denotes the I-divergence between two matrixes. In the third
step, an iteration process is initiated to separately update
the mapping from regions to region-clusters and the times-
tamps to timestamp-clusters by minimizing the loss function
listed in this step. Last, the loss of mutual information is
recalculated before and after performing the co-clustering.
If the change in the loss of mutual information is smaller
than a predefined threshold, the optimal co-clustering result
C(̂R, T̂ ) is obtained and grouped by the optimal mappings R̂
and T̂ in step 3; otherwise, we return to the iteration process.
The rows and columns of the original spatio-temporal co-
occurrence matrix are regrouped into checkerboard-like co-
clusters, where regions and timestamps that belong to the
same region-cluster or timestamp-cluster are concurrently
arranged.
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B. EXTRACTING NON-CHECKERBOARD CO-CLUSTERS
Based on the BBAC_I algorithm, a distinctive checkerboard
clustering pattern can be obtained. The elements in the same
block are similar and represent the aggregation of regions
and time period with similar mobility patterns. However,
the similarity among the values in the different co-clusters
(blocks) may be attributed to the assignment of full rows
and columns to region-clusters and timestamp-clusters in the
BBAC_I algorithm. For example, the travel volume is scarce
in most regions at midnight, which causes similar values of
co-clusters in the midnight patterns. A more efficient way
to manipulate the regular co-clusters for pattern extraction is
therefore needed.

To tackle the limitation of checkerboard clustering, we
combine the well-known K-means clustering to regroup the
regular spatio-temporal co-clusters and refine the spatio-
temporal interaction patterns, which is based on the principle
of ‘‘divide and group’’. Divide and group is one of the fun-
damental principles in exploratory data analysis [48], which
applies when the overall behavior exhibited in a selected
dataset (called reference set) can be represented by aggregat-
ing behaviors in the subsets of the reference set. The ‘‘divide’’
and ‘‘group’’ are two interrelated analysis processes, which
can promote pattern discovery. The process of dividing a
dataset according to the selected criteria produces several
subsets of the dataset, each of these subsets contains data
objects grouped by the selected criteria, and hence the group-
ing process [49]. Data attributes are often used as criteria, and
clustering is the most commonly used method to divide and
group data. Therefore, the principle of ‘‘divide and group’’
is suitable for our research to improve the flexibility of the
checkerboard clustering, and achieve the interactive classifi-
cation of mobility dataset [50].

At this part, we use K-means to group the checkerboard-
like co-clustering results into k axis-parallel non-
checkerboard co-clusters, as noted by [3]. We calculate
the mean and standard deviation of each block in the
checkerboard-like co-clusters and generate a (k× l)×2 input
matrix (based on the co-cluster numbers in Section III.A)
for K-means clustering, because the former provides a
representative value of elements in each checkerboard-like
co-cluster and the latter considers the presence of possi-
ble outliers within each checkerboard-like co-cluster, which
present the overall distribution and local deviation of the
original data well. The optimal number of the K-means’
clusters are evaluated and determined using two indicators:
the Silhouette coefficient and the sum of the squared errors
(SSE) [51]. The Silhouette coefficient can be understood as
an index for describing the sharpness of the Silhouette of
each cluster after clustering; the value range of this index
is −1 to 1 to 1. The larger the average Silhouette coefficient
of all samples is, the better the clustering effect. In terms of
the SSE, it is usually combined with the elbow method to
obtain the optimal cluster number (K). With an increase in K,
the aggregation degree of each cluster will gradually increase,

FIGURE 1. The framework of the co-clustering spatio-temporal analysis.

and the SSE will naturally decrease. The best clustering
is achieved when the decline of the SSE curve suddenly
decelerates, and the K value that corresponds to the elbow-
shaped split point is the best clustering number. Therefore,
the clustering value with the larger Silhouette coefficient and
proper ‘‘elbow’’ split point is the best choice.

IV. EXPERIMENTS AND DISCUSSION
In this section, we introduce the BBAC_I algorithm to ana-
lyze the spatio-temporal patterns of a taxi trip in Manhat-
tan. To better understand the trip characteristics, an empir-
ical analysis is conducted on both weekdays and holidays.
FIGURE 1 displays the research framework proposed in this
article. The data preprocessing is illustrated in Section IV.A;
we construct two spatio-temporal co-occurrence matrixes at 2
h intervals for weekdays and holidays. In Section IV.B, the co-
clustering parameters and the size of the cluster before the co-
clustering analysis is determined. Section IV.C describes the
checkerboard co-clustering patterns and corresponding spa-
tial distribution of the checkerboard co-cluster for weekdays
and holidays. Section IV.D reveals the humanmobility spatio-
temporal patterns of weekdays and holidays using non-
checkerboard co-clustering, which simultaneously examines
both the spatial patterns and their temporal dynamics in
taxi trips as well as the temporal patterns and their spatial
dynamics. Section IV.E compares our method with several
traditional clustering methods and discuss the limitation of
our research, as well as future work.

A. STUDY AREA AND DATASETS
Taxis have significant roles in public transport systems in
many metropolitan areas. Due to their popularity and impor-
tance, numerous studies utilize the mobility data of taxis to
explore the metropolitan rhythm and pulse, such as traffic
flow and human mobility patterns. According to a report
published by the NYC Taxi and Limousine Commission
(NYCTLC), more than 17,000 licensed taxis (yellow and
green taxis) generated approximately 343,000 trips daily in
2017 [52]. The enriched mobility data provided the oppor-
tunity to extract and analyze spatio-temporal mobility pat-
terns using the co-clustering methodology. In this article,
we investigate taxi rides in NYC—one of the most densely
populated international metropolises in the world. In New
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FIGURE 2. Study area and spatial distribution of the average daily
drop-off number of taxi trips in November 2017 across the NYC area.

York City, there are several types of licensed vehicles, which
include medallion taxis (‘‘yellow cabs’’); street hail liver-
ies (‘‘boro or green taxis’’); black cars, liveries, and luxury
limousines (‘‘FHVs’’); commuter vans; paratransit vehicles;
and wheelchair accessible vehicles (‘‘WAVs’’). Among them,
the services of yellow and green cabs are permitted to pick up
passengers via street hails, thus offering a great footprint of
human activity. Furthermore, yellow cabs are concentrated in
Manhattan and two main airports, and green cabs are allowed
to service the area above E. 96th St. and W. 110th St. in Man-
hattan and anywhere in the other boroughs. Therefore, com-
bining these two datasets can acquire good coverage of the
entire city, which is also research in [53]. The taxi trip datasets
(of both yellow and green taxis), which were downloaded
from the official website of the NYC Taxi and Limou-
sine Commission (https://www1.nyc.gov/site/tlc/about/tlc-
trip-record-data.page), were collected from November 1,
2017, to November 31, 2017, where there are approximately
10 million distinct trip records totally. Each trip record con-
tained spatial information (pick-up location and drop-off
location) and temporal information (pick-up timestamp and
drop-off timestamp) for both pick-up activities and drop-off
activities; the trip distance, fare, and the number of passengers
were also provided.

For this case, we select the drop-off trips to construct a co-
occurrence matrix. In other words, we analyze taxi passen-
gers’ destination choice activities. The distribution of daily
average arrival data for the NYC area in November 2017 is
visualized, as shown in FIGURE 2(a). The data indicate that
the destinations of taxi trips are concentrated in Manhattan
and its surrounding areas. In this article, we focus our analysis
on the Manhattan district, with the exception of the three
island regions (Governor’s Island, Ellis Island, and Liberty
Island), for which the daily average drop-off volume is zero.
The study area is shown in FIGURE 2(b), and each region
is labeled by the location ID (a total of 66 regions; the
geographic information of regions is provided by the TLC).
To investigate the temporal characteristics of trips, we split
the initial dataset into two parts in terms of time periods,
namely, weekdays and holidays, which contribute to a better
understanding of the dynamic patterns with different human

mobility. For the weekday trips, we counted the typical work-
ing day (Tuesday to Thursday) in November 2017 (exclud-
ing Veterans Day, Thanksgiving, and the Wednesday before
Thanksgiving), which total 12 days. Holiday trips encompass
9 days, including Saturday, Sunday, and Thanksgiving Day.
For each temporal part, an interval of 2 h is selected to divide
a full day of operations (24 h) into 12 time periods[54, 55],
and counted the number of taxis that drop-off in each region
for each time period (average alighting data for 2 h intervals
in one day). Therefore, the dynamic drop-off matrix O(R,T ),
which can be regarded as a spatio-temporal co-occurrence
extent between the regions (R = 66 rows) and timestamps
(T = 12 columns), was obtained.

B. DETERMINATION OF THE CLUSTER SIZE
When applying co-clustering, the first issue to consider is the
cluster size, which represents the interaction degree between
the spatial dimension and the temporal dimension. The deter-
mination of the clustering number requires comprehensive
consideration of the characteristics of the data, the purpose
of clustering, and the validity of the clustering effect. If the
cluster size is large, the risk of overfilling may increase. If
the cluster size is too small, the clusters in the latent space
are not adequately depicted and determined [28], which may
disregard the complex spatio-temporal interdependence of
the trip data. In this case, the number of timestamp-clusters
was set to 4 after testing values from 4 to 8 in the initialization
process of the BBAC_I algorithm because the co-clustered
results always returned this number of timestamp-clusters,
which means the loss function of BBAC_I reached minimum
with this value. Similar to the temporal characteristics of pre-
vious studies [34], [56], the divided timestamp-clusters can be
used to characterize four time periods: the early peak period,
evening peak period, off-peak period, and late-night period.
The specific intervals for these periods are determined by
the results of temporal clustering. For the spatial dimension,
we test the values of the region-clusters (k) from 4 to 15 a
total of 5 times to minimize the values of the loss function
(objective function) in the BBAC_I algorithm, which identi-
fies the optimal number of region-clusters. FIGURE 3 shows
the change in the objective function with k for weekdays
and holidays, respectively. As shown in FIGURE 3(a), in
the interval [4], [8], the objective function decreases with an
increase in k; in the interval [8], [15], the objective function
becomes relatively stable. For weekdays, when k = 8 is
selected, the objective function reaches the minimum value
of the interval [3], [18], which has excellent interpretability
of the experiment results. For holidays, the number of region-
clusters is 6. Therefore, we conduct a co-clustering analysis
with the cluster size 4 × 8 (region-clusters × timestamp-
clusters) for weekdays and a co-clustering analysis with the
cluster size 4× 6.
Similar to other cluster algorithms, three predefined

parameters exist in the BBAC_I algorithm: the times of
random mapping initializations, the number of iterations,
and the threshold for convergence with the loss of mutual
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FIGURE 3. Change in objective function with the values of
region-clusters. The x-axis represents the test values of the
region-clusters from 4 to 15. The different colored curves represent the
results of five experiments, which show the change in the values of the
loss function. (a) weekday distribution; (b) holiday distribution.

information. In this study, to determine the global optimal, we
ran the BBAC_I algorithm 200 times with different random
initial values. The convergence criteria were set to the thresh-
old of the changes in the loss of mutual information, which
was less than 10−6. The maximum number of iterations was
set to 2000 to guarantee convergence stability and the quality
of the optimal co-clustering results.

C. CHECKERBOARD CO-CLUSTERING SPATIO-TEMPORAL
PATTERNS
In this section, we applied the BBAC_I algorithm to map the
weekday and holiday co-occurrence matrixes into 4 × 8 and
4×6 checkerboard co-clusters. FIGURE 4 and FIGURE 5 use
heatmaps to exhibit the checkerboard co-clustering patterns
for weekdays and the checkerboard co-clustering patterns for
holidays, respectively, which intuitively aids in understand-
ing specific travel characteristics among different spatio-
temporal distributions. The x-axes represent the reordered
12 timestamps that were grouped into four timestamp-
clusters. The y-axes represent the reordered 66 regions, which
were mapped into eight region-clusters for weekdays and
six region-clusters for holidays. The timestamp-clusters are
reordered from the left of x-axes to the right of x-axes
based on the average drop-off volume in each timestamp-
cluster over the entire study area from less to more, and
the timestamp-column in each timestamp-cluster is arranged
with an increase in the drop-off volume from left to right.
From the bottom to the top of the y-axes, the region-clusters

FIGURE 4. Weekdays’ checkerboard co-clusters intersected by eight
region-clusters and four timestamp-clusters. Each region-cluster and
timestamp-cluster are partitioned by a thin red line. The color of the
blocks represents the drop-off volume in the corresponding region and
timestamp, which vary from dark blue, which represents Very Low
volume, to light yellow, which represents high volume.

are arranged in the order from region-cluster 8 to region-
cluster 1 (or region-cluster 6 to region-cluster 1) with an
increase in the average drop-off volumes of region-clusters
for the whole day on weekdays (or holidays). The region-
row in each region-cluster is arranged with the increase in
drop-off volume from bottom to top. Based on this overall
arrangement, the cells in each checkerboard are also arranged
with an increase in the drop-off volume from left-bottom to
right-top.

FIGURE 4 describes the checkerboard spatio-temporal co-
clustering patterns for weekdays. We observe distinct com-
muting temporal patterns: timestamp-cluster 1 (0:00-6:00 for
the late-night period), timestamp-cluster 2 (6:00-8:00 shows
the off-peak period for most regions), timestamp-cluster 3
(8:00-18:00 for the daytime period; the early peak appears
from 8:00 to 10:00, which is the rightmost column in this
timestamp-cluster) and timestamp-cluster 4 (18:00-24:00 for
evening periods; the evening peak appears from 18:00 to
20:00, which is the rightmost column in the heatmap). The
rhythms of the taxi activities considerably vary among differ-
ent timestamp-clusters. Compared with other time-clusters,
the liveness of all regions, with the exception of region-cluster
8, is the highest in timestamp-cluster 4 (the period from
18:00 to 24:00), which indicates that taxi trips in the whole
Manhattan area are most active in the evening.

The checkerboard spatio-temporal co-clustering patterns
on holidays are shown in FIGURE 5. Similar to weekdays, the
timestamps are partitioned as timestamp-cluster 1 (4:00-8:00
for the late-night period), timestamp-cluster 2 (2:00-4:00 and
8:00-10:00 show the off-peak periods), timestamp-cluster 3
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FIGURE 5. Holidays’ checkerboard co-clusters intersected by six
region-clusters and four timestamp-clusters, which are indicated by the
thin red line.

(20:00-02:00 and 10:00-12:00) and timestamp-cluster 4
(12:00-20:00). The temporal distribution of taxi activities on
holidays is more evenly distributed compared to the early
and evening peak commuting patterns on weekdays, and the
peak time was concentrated from 12:00 am to 20:00 pm. As
we usually observe, the temporal distributions are delayed
by more than two hours on weekdays. Unlike the smooth
changes in the drop-off volume from region to region on
weekdays, some conspicuous distributions exist on holidays,
such as the block that represents the drop-off volume in the
79th region from 12 am to 2 am. This finding suggests that taxi
activities in different regions on holidays are more scattered
or random.

To better obtain spatial visualization results, we exhibit the
spatial distribution of region-clusters in FIGURE 6. Although
the co-clustering process does not consider spatial loca-
tion information, strong spatial agglomerating characteristics
exist for both weekdays and holidays. The spatial distribu-
tion of taxi activities is concentrated in the central area of
Midtown Manhattan and the regions adjacent to Central Park
on the Upper East Side. Compared with holidays, the spatial
distribution of weekday’ trips is more concentrated in the
core area of the CBD in Midtown, whereas most drop-off
trips on holidays emerge in the regions of Upper West Side
and Downtown (which are represented by region-cluster 1 in
FIGURE 5).

D. NON-CHECKERBOARD SPATIO-TEMPORAL
CO-CLUSTERING PATTERNS
Based on the co-clustering method, we identify the checker-
board co-clusters within the similar drop-off volume along
the spatial dimension (regions) and temporal (timestamps)
dimension. However, some co-clusters have similar drop-off

FIGURE 6. Spatial distribution of region-clusters in the checkerboard
co-clustering patterns. Eight region-clusters exist for weekdays, and six
region-clusters exist for holidays, which are labeled by the sequence of
each region-cluster. The activities of each area are represented by color,
where light yellow indicates a Very Low drop-off volume and red
indicates a high drop-off volume.

volumes, for instance, the co-cluster in region-cluster
5/timestamp-cluster 3 and the co-cluster in region-cluster
4/timestamp-cluster 4 in FIGURE 4. To better extract accu-
rate co-clustering spatio-temporal patterns, we regroup the
checkerboard co-clusters into axis-parallel non-checkerboard
co-clusters using K-means clustering. The mean and standard
deviation of each checkerboard co-cluster were employed as
the attribute dimensions of the samples in K-means. There-
fore, a total of 32 samples for weekdays and 24 samples
for holidays exist; the corresponding values of the mean and
standard deviation are shown in FIGURE 7.

Because the x-axis of the curve in FIGURE 7 is sorted
by the column sequence of the co-cluster matrixes, it can be
seen that the curves of the mean and standard deviation are
divided into four gradients, which belong to four timestamp-
clusters in the order from timestamp-cluster 1 to timestamp-
cluster 4. As shown in FIGURE 7(b), the overall mean of
the drop-off volume sustained growth from timestamp-cluster
1 to timestamp-cluster 4 on holidays. In each timestamp-
cluster, the mean value of the first row (corresponds to the
cluster sequence of 1, 7, 13, 19, which belongs to region-
cluster 1) in the co-cluster matrixes is the largest, and the
mean value of the sixth row in the co-cluster matrixes is
the smallest (corresponds to the cluster sequence of 6, 12,
18, 24, which belongs to region-cluster 6). For the weekday
distribution, except for the fluctuation in timestamp-cluster 4,
the mean distributions are similar to the holiday distribution:
the mean value of the first row (corresponds to the cluster
sequence of 1, 9, 17, 25, which belongs to region-cluster
1) in the co-cluster matrix is the largest, and the mean value
of the eighth row in the co-cluster matrix is the smallest
(corresponds to the cluster sequence of 8, 16, 24, 32, which
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FIGURE 7. Mean and standard deviation of each checkerboard co-cluster.
The x-axis represents the cluster sequences, which are arranged based on
column-wise filling in checkerboard co-cluster matrixes for weekdays and
holidays in FIGURE 4 and FIGURE 5. The black square curve represents
the mean, and the red dotted curve indicates the standard deviation; their
corresponding values are shown on the y-axis. (a) weekday distribution;
(b) holiday distribution.

belongs to region-cluster 8). In addition, some peaks are
observed in the distributions of the standard deviation for
both weekdays and holidays, and the corresponding cluster
sequence belongs to region-cluster 1, which indicates that
regions in region-cluster 1 present a relatively higher dispar-
ity of drop-off volume than other region-clusters. Based on
the values of the mean and standard deviation, we conduct
K-means clustering to test the value of K from 3 to 8 and
use the Silhouette coefficient and SSE to select the optimal
number of non-checkerboard co-clusters. FIGURE 8 shows
the changes in the Silhouette and SSE results with respect
to different K values for weekdays and holidays. The SSE
decreases from K = 2 and ushered in a turning point (elbow-
shaped split point) with K = 4 in both FIGURE 8(a) and
FIGURE 8(b). In terms of the average Silhouette coefficient,
the value is relatively highwhenK = 4 for bothweekdays and
holidays. Therefore, comprehensively considering the values
of the Silhouette coefficient and SSE, K = 4 is the optimal
number of the non-checkerboard co-clusters.

Based on the refining operation, the new co-clusters
discretize the checkerboard co-clustering patterns into a
non-checkerboard co-clustering pattern, which is shown in
FIGURE 9. The four classes of co-clusters exhibit different

FIGURE 8. Changes in Silhouette and SSE results with respect to
different K values. The black square curve represents the average
Silhouette coefficient of all samples, and the red dot curve indicates the
SSE. Their corresponding values are shown on the left side and right side,
respectively, of the y-axis. (a) weekday distribution; (b) holiday
distribution.

arrival states and are categorized as: ‘‘Very Low’’, ‘‘Low’’,
‘‘Medium’’ and ‘‘High’’, which is based on the drop-off
volume and the results of K-means. The non-checkerboard
co-clusters can reveal more distinctive spatio-temporal pat-
terns, which aid in understanding and detecting differences
in the spatio-temporal patterns of human mobility between
weekdays and holidays, the results can be drawn as follows.

1) SPATIAL PATTERNS AND THE CORRESPONDING
TEMPORAL DYNAMICS
For the non-checkerboard co-clustering patterns, grid cells
with the same variation over the entire study area compose
a unique spatial pattern. Due to the number of timestamp-
clusters in the checkerboard co-clustering, a maximum of
four spatial patterns are observed for both weekdays and
holidays. According to the composition of each timestamp-
cluster, four unique spatial patterns are observed for both
weekdays and holidays, which are represented by the green
dashed vertical lines in FIGURE 9. The spatial patterns,
which were named SPOW-1 to SPOW-4 for weekdays and
SPOH-1 to SPOH-4 for holidays, are shown in FIGURE 10;
their temporal dynamics are shown as the linear timeline in
FIGURE 11.

For the spatial distribution with the ‘‘High’’ travel
state (red areas in FIGURE 10), it can be observed that
the intensive travel state exists in three kinds of spatial
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FIGURE 9. Non-checkerboard co-clusters that consist of four arrival
states: ‘‘Very Low’’, ‘‘Low’’, ‘‘Medium’’ and ‘‘High’’. The x-axis and y-axis in
(a) represent the same checkerboard co-clusters shown in FIGURE 4. The
coordinate axis in (b) and the coordinate axis in FIGURE 5 are identical.

FIGURE 10. Four unique spatial patterns of non-checkerboard co-clusters
for both weekdays (a) and holidays (b). The different colors represent the
particular travel state: green indicates the ‘‘Very Low’’ state, yellow
indicates the ‘‘Low’’ state, orange indicates the ‘‘Medium’’ state and red
indicates the ‘‘High’’ state.

patterns on weekdays (SPOW-2, SPOW-3, and SPOW-4 in
FIGURE 10(a)) and the corresponding spatial distributions in
these spatial patterns are equivalent, which mainly concen-
trated on Upper East Side and the core regions of Midtown.
This finding indicates that travel destinations on weekdays
are more aggregated and frequently appear in these specific
regions, it is because the diversity of urban functions in these
regions, not only has abundant iconic buildings and shopping
centers but also has the most luxurious residential district and
the largest central business district. However, only one spatial
pattern for ‘‘High’’ on holidays (SPOH-4 in FIGURE 10(b))

FIGURE 11. The linear timeline shows the temporal dynamics of the
spatial patterns. The y-axis shows the spatial patterns in FIGURE 10.
(a) weekday timeline; (b) holiday timeline.

exists. Compared with the travel destination on weekdays,
intensive travel on holidays occurs not only in the Upper
East Side and the core regions of Midtown but also in the
Upper West Side and some special regions in the Downtown,
which reflects the leisure and entertainment functions in these
regions. For example, theUpperWest Side and theGreenwich
Village in the Downtown, which are the holy land of the art
and culture in the world, tend to attract more taxi trips on
holidays. In particular, there is a unique region in Midtown
with a ‘‘High’’ travel state on holidays, which corresponds
to the busiest passenger transportation facility in the United
States, named Penn Station. The result demonstrates that the
rail station plays a more vital role in absorbing activities on
holiday than that on weekdays.

In terms of the travel state for ‘‘Very Low’’ (green areas in
FIGURE 10), it is observed that a spatial pattern which only
‘‘Very Low’’ travel state for the entire area on both weekdays
and holidays (SPOW-1 and SPOH-1), the corresponding time
period is [0:00-6:00] for weekdays and [4:00-8:00] for holi-
days. The temporal distribution of the late-night on holiday
fully embodies the title of New York that never sleeps. For
other spatial patterns, the spatial distributions with the ‘‘Very
Low’’ arrival trips show little difierence between weekdays
and holidays in the non-nighttime period, which mainly con-
centrated on the areas of Upper Manhattan, east of lower
Manhattan. The data analysis shows that there is over one
order of magnitude difference in the number of trips to these
regions compared to other regions, the reason for the above
phenomenon may cause by social inequalities, which had
been proven in the previous research[57].

Moreover, comparing the travel state distribution in spa-
tial patterns on weekdays, there exhibits greater variance

VOLUME 9, 2021 34347



Q. Liu et al.: Spatio-Temporal Co-Clustering Framework for Discovering Mobility Patterns

FIGURE 12. Six unique temporal patterns of non-checkerboard
co-clusters for weekdays. The y-axis represents the travel states.

than the counterpart on holidays, it suggests that the
rhythms of people’s activities on weekdays vary consid-
erably from place to place while it is more universal on
holidays.

The timelines in FIGURE 11 depict the temporal dynamics
of the four spatial patterns for weekdays and holidays respec-
tively. On weekdays, the spatial patterns of taxi activities con-
vert by SPOW-1 – SPOW-2 – SPOW-3 – SPOW-4, whereas
the spatial patterns on holidays convert by SPOH-3 – SPOH-2
– SPOH-1 – SPOH-2 – SPOH-3 – SPOH-4 – SPOH-3, which
represent the more frequent dynamic changes in the spa-
tial patterns. However, the transfer between spatial patterns
on holidays is smoother than that on weekdays, the entire
region and local regions gradually transfer by ‘‘Very Low’’
– ‘‘Low’’ – ‘‘Medium’’ – ‘‘High’’ among different time peri-
ods (SPOH-1∼ SPOH-4). In terms of weekdays, some local
regions change from the ‘‘Very Low’’ state during midnight
hours (SPOW-1 in FIGURE 10(a)) to the ‘‘High’’ state in the
morning hours (red area of SPOW-2 in FIGURE 10(a)), and
some regions during the evening peak hours with the ‘‘High’’
and ‘‘Medium’’ states (red and orange area of SPOW-4 in
FIGURE10(a)) convert to the ‘‘Very Low’’ state at midnight
(SPOW-1 in FIGURE 10(a)). Generally, the results of spa-
tial patterns and the corresponding temporal dynamics indi-
cate a more dynamic yet rhythmic taxi passengers’ mobility
on weekdays, while a more static yet random structure on
holidays.

FIGURE 13. Five unique temporal patterns of non-checkerboard
co-clusters for holidays.

2) TEMPORAL PATTERNS AND THE CORRESPONDING
SPATIAL DISTRIBUTIONS
Similar to spatial pattern partitioning, grid cells with the
same variation over the whole day in FIGURE 9 comprise
six unique temporal patterns and five unique temporal pat-
terns for weekdays and holidays, respectively. The corre-
sponding temporal patterns are represented by the red dashed
transverse lines in FIGURE 9. The temporal patterns are
denoted TPOW-1 to TPOW-6 for weekdays in FIGURE 12
and TPOH-1 to TPOH-5 for holidays in FIGURE 13. In
FIGURE 12 and FIGURE 13, each timeline indicates one
temporal pattern, which varies among the different arrival
states over the time period of an entire day, and the high-
lighted regions in the map represent the geographical extent
that corresponds to the temporal patterns. By comparing the
timeline between weekdays and holidays, we observe some
special temporal patterns.

First, a temporal pattern is observed with only the ‘‘Very
Low’’ travel state for the entire day on both weekdays
and holidays (TPOW-6 in FIGURE 12 and TPOH-5 in
FIGURE 13). Although the regional clustering process for
weekdays and holidays is independent, the geographical
extents are the same for the ‘‘Very Low’’ state and the largest
among all geographical extents. The quite small volume of
taxi activities in these regions may be due to the social
inequality analyzed above, such as less economic incentive
for taxis to these regions.
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TABLE 2. Comparisons with other methods based on Silhouette
coefficient, CH, and DBI.

Second, TPOH-1 has the most intensive variations in travel
state on holidays and converts among four arrival states,
which may be attributed to the complex built environment
in this geographical extent. Because taxi destinations are
related to specific activities [58], regions with different urban
functions tend to exhibit different travel patterns with a higher
diversity of temporal patterns.

Moreover, we observe that all temporal patterns that
change among different arrival states are continuous on holi-
days, whereas some complex temporal patterns are observed
on weekdays. The travel state in the temporal patterns
jumped during the evening peak hours and the midnight
hours. For example, TPOW-1 converts from ‘‘Very Low’’ to
‘‘High’’ during the early peak period, largely because of work
commuting activities on weekdays, which conforms to the
common knowledge of human mobility on weekdays. The
jumping change of state indicates that a large spatial variation
of taxi activities during the corresponding time period, this
finding can be a reference for the taxi company to perform
vehicle scheduling.

E. DISCUSSION
1) COMPARE WITH OTHER METHOD
In this section, we compare co-clustering with several tra-
ditional clustering algorithms, including the classic k-means
[59], ISODATA [60], and SOM [61]. The taxi trip datasets for
weekdays and holidays are used to conduct the comparison.
We directly cluster spatio-temporal co-occurrence matrices
using these three methods by simplifying the spatial and
temporal dimensions respectively. Then, we also use the k-
means algorithm to regroup the checkerboard-like clusters for
all methods. The optimal number of clusters for each method
is determined by the Silhouette coefficient and SSE.

Three metrics are calculated to evaluate the quality of clus-
ter results: Silhouette coefficient, Calinski-Harabasz index
(CH), and Davies-Bouldin index (DBI). The larger the Sil-
houette and CH value, the better the clustering effect, while
the DBI is the opposite. Table 2 lists the comparison results.
Our method, co-cluster, outperforms all the other methods for
nearly overall performance, which has maximum Silhouette
coefficient and CH value, and the smallest DBI for both
weekdays and holidays.

2) LIMITATION
In our research, the mean and standard deviation are used in
K-means clustering to refine the spatio-temporal interaction

patterns. Indeed, the use of mean, standard deviation to com-
pare different datasets in statistics needs to be based on the
premise of conforming to identically distributed (the distri-
bution profiles of our checkerboard-like co-clusters for both
weekdays and holidays are basically consistent and present
linear distribution approximately). Therefore, it is necessary
to test the applicability of the dataset in advance.

V. CONCLUSION
With the development of the mobility big data mining, the
spatio-temporal patterns of urban trips can be utilized to
comprehensively understand urban traffic and human activi-
ties. This article presents a novel analytical framework based
on co-clustering to reveal spatio-temporal patterns of urban
mobility. It uses a two-step strategy based on the princi-
ple of ‘‘divide and group’’ which carries out the k-means
clustering to generate the refine spatio-temporal co-clusters
after the spatio-temporal co-clustering. Compared with other
related methods, this article has the following contributions.
Firstly, our method is capable of simultaneously clustering
the mobility data along both spatial dimensions and temporal
dimensions, making it easy to perceive the global similarity in
spatio-temporal data. Traditional spatio-temporal clustering
methods[6, 7] usually focus on only one dimension (spatial
or temporal) or separately analyzes the dimensions. More
importantly, the proposed framework provides a concise and
efficient way to present the interaction characteristic among
spatial and temporal patterns, rather than interactions repre-
sented by the combined probability across different patterns
[34]. Last but not least, by using the two-step strategy, the
method enables the full exploration of the spatiotemporal
patterns hidden in the mobility data, thus, the spatial patterns
and their temporal dynamics as well as temporal patterns and
their spatial dynamics can be discovered.

A case study of taxi data in Manhattan shows that the
proposed analytical framework outperforms in identifying the
spatio-temporal co-clusters on both weekdays and holidays.
Meanwhile, the empirical results uncover some unique spatial
and temporal patterns of the urban internal mobility, as well
as the interaction characteristics between these patterns and
people’s activities. The mobility patterns generally indicated
distinct spatial activity and temporal dynamic characteristics
between weekdays and holidays. Concretely, we find that
there is a more dynamic yet rhythmic taxi passengers’ mobil-
ity on weekdays, while a more static yet random structure on
holidays. Moreover, combining the geographical and social
background, we observed some particular regional functions
implied in the spatio-temporal patterns. For example, rail
station plays a more vital role in absorbing activities on
holiday than that onweekdays. These findings have important
implications for public policies that target specific temporal
and geographical units and can be adopted to guide urban
infrastructure and transportation planning.

Future improvements to this study could include the fol-
lowing aspects. First, available data could be obtained from
the taxi trip datasets in NYC to focus on fixed traffic districts.
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Future research should also extend our framework to smaller-
scale research areas to reveal the mobility patterns in a fine-
scale geographic context. Equally, mining universal travel
patterns and abnormal travel characteristics from a more
refined time scale is also the direction of future work. In
addition, we plan to extend the two-dimensional framework
to multiattribute dimensions to detect and explore more com-
plex mobility characteristics. For example, the attribute data
of mobility individuals (age and gender), building environ-
ment characteristics of the destination, and meteorological
factors could be incorporated, which would allow for a deeper
exploration of the relationship between urban structure and
residents’ mobility patterns. We also intend to empirically
examine our method using other types of mobility data, such
as public bike-sharing data, to explore the universal mecha-
nisms of human mobility in urban areas.
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