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ABSTRACT Low level laser therapy (LLLT) improves the therapeutic effectiveness of stem cell therapy for
neurological injury through its ability to enhance stem differentiation and protect against neuronal apoptosis
through its antioxidation effects. However, the specific mechanisms governing these effects are poorly
defined. In this study, we investigated the effects of LLLT on stem cell differentiation at the molecular level,
oxidative stress balance, and inflammatory factors to provide theoretical support for its clinical application.
Cell viability was assessed via MTT assays. Reactive oxygen species (ROS), total superoxide dismutase
(SOD), and total antioxidant capacity (TAC) were used to evaluate oxidative stress levels. Western blot
analysis was used to quantitatively investigate protein expression. The levels of secreted proteins and tumor
necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expression were measured by ELISA. Compared to
LLLT at 808 nm, LLLT at 635 nm enhanced the proliferation of human umbilical cord-derived mesenchymal
stem cells (hUCMSCs). The rates of proliferation markedly increased at a power density 20 mW/cm2. LLLT
enhanced the antioxidant capacity and caused no inflammation in normal cells. Markers of neural precursors
were more highly expressed at 808 nm when combined with inducers for 3 d, compared to the more modest
increases observed at 635 nm. The expression of neuN on day 7 also increased, most notably when LLLT
at 808 nm was combined with cerebrospinal fluid (CSF)/injured cerebrospinal fluid (iCSF). ELISA assays
showed that LLLT at 808 nm with CSF/iCSF also increased the differentiation of hUCMSCs into neurons.
LLLT at 808 nm combined with inducers promoted the differentiation into neurons and increased the rate of
neuronal differentiation.

INDEX TERMS Low level laser therapy, human umbilical cord-derived mesenchymal stem cells, oxidative
stress, neuronal differentiation.

I. INTRODUCTION
Due to the aging population, the incidence of traumatic brain
injury (TBI) continues to rise [1]. Advances in medical inter-
ventions have led to lower levels of TBI associated mortality,
but disability amongst the survivors remains a burden on
society and families. Over 50% of cranio-cerebral injuries
lead to disability [2]. Current TBI treatments include surgical
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and non-surgical interventions. Stem cell therapy has revolu-
tionized neuronal treatment.

Stem cells, known as ‘‘universal cells’’, are characterized
by rapid proliferation, multi-directional differentiation, low
immunity and self-repair. Mesenchymal stem cell (MSCs)
secrete soluble growth factors to stimulate cell proliferation
and regulate the inflammatory environment in response to
injury. In vitro, MSCs regulate oxidative stress and scav-
enge reactive oxygen species (ROS) and reactive nitrogen
species (RNS) though the consumption of antioxidants [3].
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The rapid recovery observed followingMSCs transplantation
is mediated through paracrine signaling [4]. MSCs can dif-
ferentiate into any cell type. These cells can be derived from
the preimplantation of mammalian embryos or from somatic
cells that have been stimulated to undergo reprogramming.
MSCs can be extracted from bone marrow, and adipose tis-
sue, but their ability to differentiate is restricted. Examples
include human umbilical cord-derived mesenchymal stem
cells (hUCMSCs) that can be obtained through non-invasive
procedures [5].

MSCs can differentiate into bone [6], nerve [7], and fat
cells [8] and have the ability to modulate inflammation-
associated immune cells and cytokines [9]. Differentiation
can be induced by biological factors including chemical
antioxidants [10] and exogenous gene expression gene trans-
fections. Chemical antioxidants regulate oxidative stress and
as a result, stimulate MSCs to differentiate into mature neu-
rons including neurons and glial cells. However, the toxicity
of chemical therapy limits their clinical use [11]. Changes in
the cell microenvironment play an important role in stem cell
differentiation, and the combination of multiple factors can
improve the efficiency of neural differentiation [12]. The dif-
ferentiation of MSCs into neuronal progenitors is intimately
linked to paracrine function, which is regulated by cell-
derived growth factors and lymphokines [13]. Brain-derived
neurotrophic factor (BDNF) and nerve growth factor (NGF)
are essential for the neural differentiation of MSCs [14].
Basic fibroblast growth factor (bFGF) increases MSC pro-
liferation [15] and induces the differentiation of neural SCs
to mature neurons [16]. Mature nerve cells undergo differen-
tiation in response to a range of stimuli, including endothe-
lial growth factor (EGF) [17] and BDNF, the most widely
distributed neurotrophic factor. BDNF activates TrkB and
P75 which stimulate neuronal growth [18]. Other biological
factors promote SC neural differentiation, but their efficiency
is low and more potent inducers are required.

Low-level laser therapy (LLLT) uses low-level lasers to
the surface of the body to produce clinical benefits. LLLT
leads to photochemical reactions, photosensitivity, and light
stimulation, leading to changes in the immune response and
circulation. LLLT can effectively treat inflammation [19],
wound healing [20], neurological injury [21], and pain [22].
LLLT activates photoreceptors that enhance cell proliferation
and stimulate the multi-directional differentiation of MSCs.
LLLT causes no irreversible tissue damage in mouse models
of nerve injury upon continuous treatment for 7 days with
a 660 nm laser and energy density of 9 J/cm2 [23]. Ani-
mal behavior, electrophysiological assessments, and inflam-
mation analysis showed that MSCs effectively improve the
recovery of lesions in response to light intervention. The
photon energy carried by LLLT is limited, but its accumula-
tion increases with photobiomodulation. This promotes the
differentiation of neural precursor cells into mature nerve
cells [24].

LLLT activates MSCs but its mechanism(s) of action
are poorly defined. Gasparyan et al. [25] separated MSCs

FIGURE 1. Optical platform (a) and laser irradiation parameters (b).

through Transwell filter assays and found that the number of
cells in LLLT groups were lower than those of trophic factor
groups. Interestingly however, the number of cells in the com-
bined intervention group was higher than that of the trophic
factor group. The levels of infrared light migration peaked
at 958 nm, indicating that PBM regulated MSCs migration to
the injury site. Here, we investigated oxidative stress balance,
inflammation, and the neural differentiation of hUCMSCs
with LLLT combined with cerebrospinal fluid (CSF) induc-
tion.

II. MATERIALS AND METHODS
A. CELL IDENTIFICATION
Cells were provided by AmCellGene Co., Ltd.. For pheno-
type analysis, P3 hUCMSCs (1 × 106) seeded into 6-well
plates were harvested in phosphate-buffered saline (PBS)
and labeled with CD105-FITC, CD90-FITC, CD73-FITC,
HLA-DR-FITC, CD14-FITC and CD34-FITC antibodies
(BioLegend, America) at 37◦C for 30 min. Cells were ana-
lyzed by FACs analysis on a BD FACSCanto II flow cytom-
etry (America).

B. EFFECTS OF OPTICAL PARAMETERS ON TEMPERATURE
CHANGES AND PROLIFERATION OF MSCs
HMSCs were derived from the umbilical cord of normal
deliveries. All donors provided informed consent. HUCM-
SCs were seeded in 96-well plates (Corning, NY) at a density
of 5 × 103. Continuous wave mode light-interference was
performed overnight at an energy density of 0, 4, 6 J/cm2;
and a power density of 0, 10, 20, 30, 40, 50 mW/cm2

at 635 nm and 808 nm (Fig. 1). Temperature was measured
using thermography (FLIR, US) before and after irradiation
with 6 J/cm2 at 20 and 50 mw/cm2. Cell proliferation was
assessed via MTT assays at a concentration of 0.5 mg/mL
after 1, 2 and 3 d of culture. Absorbances were measured
at 490 nm.

C. CELL MORPHOLOGY ASSESSMENTS
HUCMSCs in the logarithmic growth phase were inocu-
lated into 6-well plates at a density of 5 × 105 cells/well.
Experimental groups included controls, CSF, injured cere-
brospinal fluid (iCSF), 635 nm and combined CSF groups.
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Cells morphologies were assessed through microscopy after
1, 2 and 3 d of light intervention.

D. DETERMINATION OF INTRACELLULAR ROS, TOTAL
SOD, TAC AND NF-κB, IL-1β, TNF-α LEVELS
Cells were seeded into 6-well plates at a density of 5 × 104

cells/well and laser irradiated. Treated cells were then labeled
with DCFH-DA (Beyotime Biotechnology, China) in serum-
free medium (1:1000 dilution) to a final at concentration
of 10 mµ/L at 37◦C for 20 min. Cells were washed in
serum-free media and absorbances were measured at ex/em
488 nm/525 nm for ROS detection.

After 3 days of laser irradiation, cells were lysed in 200µL
of total superoxide dismutase (SOD) sample solution and
cell supernatants were collected and centrifuged at 12000 g
for 5 min at 4 ◦C. Samples were measured 30 min post-
incubation at 37 ◦C. Absorbances were measured at 450 nm
to measure SOD.

To measure total antioxidant capacity (TAC), irradiated
cells were washed in 200 µL of ice-cold PBS and lysed
through ultrasound. Collected supernatants were centrifuged
at 12000 g for 5 min at 4 ◦C and incubated at room tempera-
ture for 6 min. Absorbances were measured at 414 nm.

Human nuclear factor kappa-B (NF-κB), tumor necrosis
factor-α (TNF-α), and interleukin-1β (IL-1β) ELISA kits
(mlbio, China) were used to analyze the expression of both
transcription factors and cytokines. Supernatants were cen-
trifuged at 1000 g for 10 min to remove particles and poly-
mers. Absorbances were measured at 450 nm.

E. SEMI-QUANTITATIVE DETECTION OF NERVE
CELL-ASSOCIATED PROTEINS
Supernatants were removed after laser intervention and
dishes were washed in PBS. Cells were trypsin digested
(Hyclone, USA) and lysed on ice for 30 min. Lysates were
centrifuged at 12,000 rpm for 8 min and total protein con-
centrations were measured via BCA assay. Samples were
denatured in a 100 ◦Cwater bath and resolved on SDS-PAGE
gels. Samples were transferred to PVDF membranes and
blocked in a 5% BSA-0.1% TBST for 1 h to avoid non-
specific binding. Membranes were probed with antibodies
against GAPDH, neuN and GFAP (ZENBIO, China) at 4 ◦C
overnight and labeled with goat anti-mouse or goat anti-
rabbit HRP conjugated secondary antibodies for 1 h at room
temperature. Membranes were washed in 0.1%-TBST. ECL
luminescence reagent (Beyotime, China) was added to visu-
alize protein bands. Protein expression was semi-quantitated
using Image J software.

F. QUANTITATIVE DETECTION OF SECRETED NEURONAL
PROTEINS
Following laser intervention, supernatants were collected
and protein concentrations were assessed to determine the
optimal dilution ratio. The levels of BDNF, GDNF and
NT-3 (Elabscience, China) were then assessed. Samples were
added dropwise to the solid phase carrier for 2.5 h at room

temperature or overnight at 4 ◦C (100 uL/well). Residual
liquid was removed through washing and samples were dried
using absorbent paper. Antibodies were diluted 80-fold and
added at room temperature for 1 h (100 uL/well). HRP-
biotin was diluted 200-fold and added for 45 min. Reaction
substrates were then added for 30 min, and the reaction was
terminated through the addition of stop solution (50 uL/well).
Absorbance’s were immediately measured on a 450 nm
microplate reader and best fit curves were constructed to
assess protein concentrations.

G. STATISTICAL ANALYSIS
The following experimental groupings and statistical meth-
ods were set up prior to the experiments according to the
data guidelines Published by the American Society for Phar-
macology and Experimental Therapeutics [26] and the data
analysis methods of the related article [27]. The experiments
were to be repeated at least three times and each well was to
be tested three times. Data are expressed as mean± standard
deviation (x̄ ± s). Data were analyzed using one-way analy-
sis of variance (ANOVA) and two-tailed Student’s t-test for
comparison between two groups. p < 0.05 or p < 0.01 were
considered to be statistically significant. Data were analyzed
using SPSS 25 and plotted using Origin 2017 and Graphpad
Prism 8.

FIGURE 2. Fluorescence-activated cell sorting analysis of cells surface
markers.

III. RESULTS
A. IMMUNOPHENOTYPING OF HUCMSCS
As shown in Fig. 2, cells were positive for the MSCs markers
CD90, CD105, and CD73, but negative for CD14 (mono-
cyte/macrophage marker), CD34 (hematopoietic/endothelial
cell marker) and HLA-DR (MHC-II marker). This confirmed
that the cell populations were predominantly hUCMSCs.

B. EFFECT OF OPTICAL PARAMETERS ON TEMPERATURE
The regulation of cell by LLLT is non-thermal [40]. Mea-
surements were performed on cultured cells before and after
irradiation (Figure 3). There was no statistically significant
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FIGURE 3. Temperature change of cells before and after irradiation.

FIGURE 4. Cell proliferation at different power densities (a). Cell
proliferation at the indicated wavelengths. Energy densities were (b) 4
J/cm2 and (c) 6 J/cm2.

increase in temperature after the plates were restored to room
temperature and irradiated with 635 nm and 808 nm lasers.

C. OPTICAL PARAMETRIC SCREENING
The effects of power density on the proliferation of hUCM-
SCs are shown in Fig. 4a. Doses of 10, 20, 30, 40,
and 50 mW/cm2 were screened at an energy density 6 J/cm2.
Differences between the experimental groups were small
after 1 d, but became more pronounced in experimental
groups treated with 10, 20mW/cm2 after 2 d. The optical den-
sity of the 20 mW/cm2 group was statistically significantly
higher than other groups at day 3, whilst 50 mW/cm2 groups
showed no differences from the controls.

The effects of LLLT on the proliferation of hUCMSCs are
shown in Fig. 4. The energy densities assessed were 4 and
6 J/cm2, repectively. Compared to the control group, changes
in the proliferation of hUCMSCs were not obvious on days
1 and 2. However, with photon accumulation, the optical
density increased at 635 nm with 4 J/cm2(Fig. 4b) However,
there was no differences were observed between the groups
at an energy density 6 J/cm2 (Fig. 4c).

FIGURE 5. Levels of ROS, antioxidants, NF-κB, IL-1β and TNF-α at
indicated energy densities.

FIGURE 6. Semi-quantitative analysis of neuronal marker expression.
(a) Representative gels and semi-quantitative analysis of GFAP and
(b) neuN. control (I), CSF (II), iCSF (III), 635 nm (IV), 635 nm + CSF (V),
635 nm + iCSF (VI), 808 nm (VII), 808 nm + CSF(VIII), 808 nm + iCSF (IX),
bFGF + EGF (X), DMSO(XI).

D. CELLULAR ROS, ANTIOXIDANTS, NF-κB AND
INFLAMMATION ANALYSIS
The effects of LLLT on hUMSCs ROS, SOD, TAC, NF-κB
and inflammatory factors (IL-1β and TNF-α) are shown
in Fig. 5. At 635 and 808 nm with energy densities of
4 and 6 J/cm2, ROS production increased to lower levels.
Compared to the control group, LLLT increased the lev-
els of SOD, with SOD production at 808 nm lower than
that of the 635 nm treated group. Total antioxidant capacity
at 808 nm increased. Laser radiation increased the levels of
NF-κB but caused no statistically significant increase in the
expression of other inflammatory factors.
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FIGURE 7. Quantitative analysis of secreted protein concentrations.

E. NEURONAL CELL PROTEIN EXPRESSION
The semi-quantitative analysis of protein expression in both
glial and neuronal cells is shown in Fig. 6(a-b). GFAP (50 kD)
is a glial cell matrix protein and neuN (molecular weight
46-55 kD) is a nuclear protein in neuronal cells. Positive

control groups included EGF with bFGF. The expression of
GFAP increased in the 808 nm with CSF/iCSF group on
day 1, but neuN decreased. The expression of neuN in the
CSF group, iCSF group, and 808 nm with iCSF groups were
statistically significantly higher than control groups.

The expression of neuN in the 808 nm with iCSF group
was further enhanced on day 5. GFAP was highly expressed
to comparable levels across all groups. The expression of
neuN was highest on day 7 in the iCSF group, followed by
the 635 nm with CSF, and 808 nm with CSF groups.

F. QUANTITATIVE ANALYSIS OF SECRETED PROTEIN
EXPRESSION BY ELISA
BDNF, GDNF, and NT-3 were quantitatively analyzed as
shown in Fig. 7. The total protein concentrations of the
samples were quantified to determine the appropriate dilution
ratio. BDNF levels peaked in the CSF group during the initial
stages. An upward trend was observed in both the biological
factor and chemical induction groups. The levels of GDNF in
the iCSF group and 635/808 nm with iCSF group increased,
whilst the concentration of biological factors alone group
were low. The effects of light intervention were more obvious
on day 3, particularly in the 808 nm and 808 nm with CSF
groups. Following photobiomodulation, the levels of GDNF
increased in the 808 nmwith iCSF group to levels comparable
to the positive control group.

NT-3 levels were higher in iCSF and 635 nm with iCSF
groups during the initial stages, but the effects of 808 nm
were less obvious. The levels of NT-3 increased in the 808 nm
with CSF or iCSF group on day 5 to levels comparable to
the control and chemical induction group. Compared with
the 808nm laser intervention, the concentration of NT-3 was
higher in the combined intervention group at day 7. NT-3
levels were also higher in the 808 nm iCSF or CSF groups
compared to the biological control group at day 7.

IV. DISCUSSION
A number of methods have been described for the differenti-
ation of MSCs. The use of biomaterials provide the opportu-
nity to transdifferentiate MSCs into a neuronal lineage [28].
Polymers of poly l-lactic acid/polycaprolactone fibrous scaf-
folds can improve MSC differentiate into glial and neural
progenitor cells [29]. Mechanical stimuli such as sub-sonic
vibration [30] and electric stimulation [31] caused MSCs to
differentiate into neural-like cells. However, the differenti-
ation of MSCs induced by LLLT combined with inducers
remains less-well defined. The laser produces photochemical
and photothermal effects. The key to distinguish between
low power laser and high power laser is whether there is the
presence or absence of photothermal effects [32]. In cellular
experiments [33]and animal experiments [34], some authors
have argued that the small temperature increase induced by
the laser is not sufficient to explain the LLLT which is con-
sistent with results in this paper. LLLT has a non-thermal
effect that does not affect structural changes in the tissue
but is sufficient to activate the tissue. LLLT is different from
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other light-based treatments because it does not ablate and
is not based on heating [35] and is safer than chemical or
biological induction and is safer. LLLT has important regu-
latory effects on cell activity. Photobiomodulation promotes
cell proliferation [36] but it’s effects on MSCs differentiation
are less well characterized [37]. Here, we confirmed that
LLLT at 635 nm promotes the proliferation of hUCMSCs and
studied the effects of photobiomomodulation on oxidative
stress, inflammatory responses and cell differentiation. The
energy absorption or transformation of photons is influenced
by the spectral characteristics of tissue cells. We screened
energy density, power density and wavelengths of three opti-
cal parameters. A wavelength of 636 nm could promote the
proliferation of ADMSCs, which is consistent with our find-
ing that 635 nm accelerates the proliferation of MSCs [38].
Previous studies showed that the proliferation of MSCs was
more obvious at an energy density of 4 J/cm2 [39]. Power
densities were selected through step by step analysis and cell
proliferation was enhanced at a density of 20mW/cm2. The
proliferation and differentiation of cells under different states
are competitive [37].

Intracellular ROS regulates the self-renewal and differenti-
ation potential of stem cells [40], [41]. Irradiation at 635 and
808 nm led ROS production. Huang et al. [42] showed similar
effects, in which ROS production in the mitochondria was
associated with short-term increases in MMP following PBM
(3 J/cm2, 810 nm, 20 mW/cm2) delivery to control cells. Mild
ROS levels stimulate neural differentiation [43]. SOD can
scavenge superoxide anion free radicals, and TAC is used as
a comprehensive index of antioxidation. A delicate balance
exists between ROS production and cellular antioxidants.
Excessive oxidative stress disturbs this balance, leading to
high levels of ROS and subsequent tissue damage. After
irradiation, the secretion of SOD increases. Other oxides
in ROS that are unaffected by SOD can be removed by a
variety of antioxidants in TAC. Accordingly, the TAC value
of 4 and 6 J/cm2 was higher than that of the control group and
increased cell proliferation was observed. Assis et al. [44]
also confirmed that PBM increased the expression of SOD.
When SOD scavenges ROS, the total antioxidant capacity is
high, and cell proliferation is enhanced.

NF-κB is redox-sensitive and activated by ROS [35].
Excessive energy generation leads to the over-activation of
NF-κB and enhanced ROS level, which exacerbates cell
damage [35]. Moderate levels of mitochondrial oxidative
stress result in neuroprotective throughNF-κB signaling [45].
Photobiomodulation regulates inflammation and can improve
the safety of transplantation. In activated inflammatory cells,
PBM can decrease inflammation [46], which is particularly
important for neuronal disorders.

Our previous study showed that cells differentiated into
nerve-like cells at a 808 nm of 6 J/cm2, although no effects on
cell proliferation were observed [39]. MSCs differentiation
is regulated by cell density and cell-to-cell contact [47]. Cel-
lular growth factors also influence differentiation. To guide
the differentiation of MSCs into nerve cells, CSF provides

biological factors required for cell differentiation. This study
prolonged the induction time and further explored the effect
of MSC differentiation.

Self-renewal potential as opposed to multi-directional dif-
ferentiation increased. At higher cell densities, differentiation
was stimulated through the combined effects of the paracrine
and autocrine systems, leading to enhanced GFAP expres-
sion [47]. Western blot analysis showed that the effects of
light intervention were less obvious. Cell densities increased
at day 3, and GFAP expression was regulated through
autocrine and paracrine effects. Semi-quantitative analysis
indicated that the intercellular paracrine effects were strong
following light intervention and that the differentiation of
glial cells was pronounced. LLLT combined with biologi-
cal inducers therefore promotes the differentiation of neural
MSCs and increases their differentiation into neurons.

Upon assessment of the secretory functions of mature
nerve cells, we further studied the type of differentiated neu-
ronal cells. GDNF is secreted by glial cells and promotes
cell proliferation following light intervention. Para-secretory
effects combined with an inducer enhance its expression [47].
In this study, the concentration of BDNF increased in
response to photobiological regulation and biological induc-
tion at later stages. These data confirmed that BDNF plays
an important role in stem cell differentiation [12]. Previous
studies showed that the neurotrophins NT-3 and BDNF can
develop into neuromuscular synapses [48]. The expression
of NT-3 in neurons was more obvious at 808 nm in the
inducer groups. With continuous photobiological regulation,
the differentiation of MSCs towards cells of neuronal lineage
was enhanced.

The detection of related proteins shows that light interven-
tion can promote stem cell differentiation into nerves, but the
cycle numbers remain high. In addition, the effects of LLLT
on global gene expression now warrant further investigation.

V. CONCLUSION
A low energy density 4 J/cm2 of 635 nm at 20 mW/cm2

using optical parameters could effectively promote cell
growth. LLLT leads to low-levels of oxidative stress and
increases NF-κB expression. The effects of 808 nm were
more pronounced, but did not influence the release of pro-
inflammatory factors. The combined effects of LLLT at 808
nm and cerebrospinal fluid could improve the efficiency of
neural differentiation and the secretion of nutritional factors
in MSCs.
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