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ABSTRACT Considering importance of the autonomous driving applications for mobile devices, it is
imperative to develop both fast and accurate semantic segmentation models. Thanks to emergence of Deep
Learning (DL) techniques, the segmentation models enhanced their accuracy. However, this improved
performance of currently popular DL models for self-driving car applications come at the cost of time
and computational efficiency. Moreover, networks with efficient model architecture experience lack of
accuracy. Therefore, in this study, we propose robust, efficient, and fast network (REF-Net) that combines
carefully formulated encoding and decoding paths. Specifically, the contraction path uses mixture of dilated
and asymmetric convolution layers with skip connections and bottleneck layers, while the decoding path
benefits from nearest neighbor interpolation method that demands no trainable parameters to restore original
image size. This model architecture considerably reduces the number of trainable parameters, required
memory space, training, and inference time. In fact, the proposed model required nearly 90 times fewer
trainable parameters and approximately 4 times less memory space that allowed 3-fold faster training
runtime and 2-fold inference speedup in the conducted experiments using Cambridge-driving Labeled
Video Database (CamVid) and Cityscapes datasets. Moreover, despite its notable efficiency in terms
of memory and time, the REF-Net attained superior results in several segmentation evaluation metrics
that showed roughly 2%, 4%, and 3% increase in pixel accuracy, Dice coefficient, and Jaccard Index,
respectively.

INDEX TERMS Autonomous driving, deep convolutional neural networks, nearest neighbor interpolation,
semantic segmentation.

I. INTRODUCTION
Being one of the most popular members of computer
vision tasks, semantic segmentation has been widely used
in numerous applications in various domains. Although
traditional methods for semantic segmentation mainly
depended on domain expert intervention, heavy use of
high level engineering skills for feature choice [1],
emergence of DL techniques entailed unprecedentedly
notable progress in a number of semantic segmenta-
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tion fields, namely, medicine [2]–[4], biomedicine [5]–[7],
geo-sensing [8]–[10], fashion [11]–[13], and autonomous
driving [14]–[16].

An autonomous driving (driverless) vehicle is a means of
transport that possesses ability to recognize its surroundings
and move safely with little or no human intervention [17],
[18]. Depending on the human intervention in driving pro-
cess, autonomous vehicles are categorized into five levels.
As the level progresses, the human intervention becomes less
involved. Specifically, Level 0 vehicles are under full control
of a driver and Level 5 vehicles are totally independent from
human activity [19].

15084 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1090-0910
https://orcid.org/0000-0002-7466-1376
https://orcid.org/0000-0002-0737-2021


B. Olimov et al.: REF-Net: REF-Net for Semantic Segmentation Applications Using Devices With Limited Computational Resources

A successfully launched project using 5-ton VaMoRs
van in the 90s of XX century as well as rural and urban
self-driving car challenges organized by Defense Advanced
Research Projects Agency (DAPRA) in 2005 and 2007 gave
great impetus to development of autonomous driving research
that attracted researchers all over the world to contribute to
the improvement of this field [20]. The other reasons for
high interest in the area of autonomous driving are related to
the environment protection and customer satisfaction. Specif-
ically, self-driving cars possess great positive influence on
addressing the problems of carbon emissions as well as traffic
jam and driver safety.

Although autonomous driving entails numerous optimistic
consequences, it is a highly difficult task to develop robust
self-driving vehicle system due to complicated and unex-
pected situations in urban areas. These factors made environ-
ment perception of autonomous vehicles challenging. In fact,
autonomous vehicle percepts and recognizes its surround-
ings using various sensors, namely, radar, lidar, and camera.
Therefore, improving the perception ability of the vehicles
was the broad and active research area so far. Particularly,
great number of research works focused on radar-based
[21]–[23], lidar-based [24]–[28], and camera-based [29]–[32]
object detection.

Based on self-driving car characteristics, a system to
perceive its surroundings is expected to be real-time,
which requires time-efficient models. Also, considering
autonomous vehicle involves little or no human intervention
safety of its passengers is crucial. Moreover, autonomous
driving cars should be robust to adverse weather conditions
that can make specific sensors of the vehicles defective
or out of order. Consequently, a state-of-the-art model for
autonomous driving is required to be fast, accurate, and
robust. However, study of the existing methods showed that
to obtain high accuracy they require enormous number of
trainable parameters [5], [33]–[36], which result in slow
training and inference speed. These factors make self-driving
cars environment perception challenging and lead to unsafe
driving. Moreover, owing to large size of the models, it is
difficult to use them for mobile or battery-powered applica-
tions [37]. Therefore, in this study, we propose REF-Net that
requires considerably fewer parameters; consequently, needs
less time for training and inference. In addition, themodel can
obtain significantly better and more accurate performance in
comparison with the existing efficient methods.

REF-Net benefits from threefold residual networks in
the contraction and a new upsampling technique in the
expansion paths. Thanks to usage of bottleneck lay-
ers in the contraction and nearest neighbor interpola-
tion upsampling method in the expansion paths, the
model requires significantly fewer parameters to train the
model, which results in speed-up in training and inference
phases.

In fact, the proposed model addresses the aforemen-
tioned existing problems and contributes to enhancing the
autonomous driving field in the following ways:

•The REF-Net model introduces residual skip connections
along with bottleneck layers in the contraction part and near-
est neighbor interpolation upsampling method used in the
expansion path, which allow the proposed model to outper-
form the existing expensive networks in terms of computation
and time.
• Although the REF-Net demands fewer trainable param-

eters, the proposed method obtains the-state-of-the-art per-
formance when assessed with several evaluation metrics,
namely, pixel accuracy, mean IoU and Dice coefficient.
Therefore, this study provides beneficial guidelines to fine-
tune parameters and model architecture to obtain accurate
semantic segmentation results.
•TheREF-Netmodel produces the segmented autonomous

driving images 2 × faster when compared with the exit-
ing computationally expensive methods. To the best of our
knowledge, there has been no such a fast and accurate pro-
posed yet. Thus, the REF-Net can be used as the benchmark
in the related autonomous driving semantic segmentation
research.
• The REF-Net addresses the issue of introducing semantic

segmentation tasks in mobile or battery-powered applications
due to its speed and accuracy. Also, real-time autonomous
driving applications may hugely benefit from the proposed
model owing to small size, fast performance and accurate
segmented results.

The manuscript is organized in as follows. In Section
II, we present an overview of the existing methods related
to the semantic segmentation in autonomous driving field.
Section III provides detailed information on the proposed
REF-Net method. Section IV provides the details of the con-
ducted experiments and results using the considered mod-
els. Section V discusses the experimental results. Finally,
Section VI concludes the research and outlines potential
future research directions.

II. RELATED WORK
In this section, we describe currently available methods for
semantic segmentation in driverless vehicles domain. For
convenience, we divide the techniques into two broad groups,
such as traditional methods and DL methods.

A. TRADITIONAL METHODS FOR SEMANTIC
SEGMENTATION IN AUTONOMOUS DRIVING FIELD
Before the emergence of DL, there were three most widely
used methods for semantic segmentation, namely random
forest classifier (RFC), conditional random fields (CRF), and
boosting. Although these approaches were not able to attain
desired accuracy results, they could obtain the state-of-the-
art performance approximately a decade ago. Specifically,
Shotton et al. proposed efficient and powerful low-level fea-
tures, called semantic texton forests that used ensembles of
decision trees and act directly on image pixels [38]. The
texton forests did not require computation of filter-bank
responses; thus, were very fast in both train and test stages.
Also, Brostow et al. developed a semantic segmentation
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algorithm using 3D point clouds obtained from ego-motion
[39]. The authors projected 3D cues on 2D image plane
by modeling spatial layout and context simultaneously.
After obtaining the features, randomized decision forest was
exploited to generate a precise 2D segmentation and classify
objects into pre-defined categories.

One of the most prominent approaches for traditional
sematic segmentation was developed by Sturgess et al. [40].
The proposed method combined appearance and structure
from motion features. Label likelihoods were modeled using
CRF framework and the a priori knowledge. Also, textons,
color, location-based features were used as an input to a novel
boosting algorithm that obtained the-state-of-the-art perfor-
mance on CamVid. Further, Ladicky et al. proposed a hier-
archical random field model that combined various features
obtained from different stages of quantization hierarchy [41].
Due to usage of powerful graph cut-based algorithms, the pro-
posed model was very efficient in inference and showed bet-
ter generalizability than the existing approaches. Similarly,
Kohli et al. [42] introduced a method by addressing the label-
ing problem using higher order CRF. This technique allowed
to partially alleviate misleading segments that spanned multi-
ple object categories. Also, the authors exploited higher order
potentials, which assisted to group the pixels within a single
segment to share the same label.

Regarding boosting approaches, Shotton et al. introduced
TextonBoost algorithm learned a discriminative model of
object classes based on shape, appearance, and context infor-
mation [43]. The authors benefited from the discriminative
model that used features based on textons. Owing to usage
of random feature selection and piecewise training methods,
this method trained a model in an efficient way and obtained
competitive results in segmenting highly textured, highly
structured, and articulated objects. He et al. [44] developed
a technique that comprised contextual features for labeling
images, where each pixel belonged to one of the categories.
These features were combined into a probabilistic framework
that incorporated the outputs of various components that
focused on the image-label mapping and patterns within the
label.

B. DL METHODS FOR SEMANTIC SEGMENTATION IN
AUTONOMOUS DRIVING FIELD
Despite being used for long time, traditional approaches
required heavy hand engineering as well as were time con-
suming and not accurate. Therefore, after introduction of
DL approaches that were efficient in terms of time and
obtained notable performance, traditional methods became
nearly obsolete. Consequently, being a member of DL tech-
niques, Deep Convolutional Neural Networks (DCNN) are
heavily utilized in semantic segmentation for the last few
years. DCNN models architecture comprises encoding (con-
traction) and decoding (expansion) paths. In the encoding
part, the features of an image are extracted by decreasing an
image size is decreased and increasing of its depth. However,
at this stage a model has insufficient information about the

location of the features. Therefore, in the decoding part,
an image is restored to its original size by decreasing an
image depth, which allows a model to learn the location of
the features.

In the early stages of semantic segmentation using DL
methods, the researchers mainly segmented LiDAR points
were utilized to segment LiDAR points [45]–[47].

One of the most popular approaches for semantic
segmentation is single-stage pipeline-based fully convo-
lutional network. Long et al. proposed a DL model
architecture containing only convolutional operations [48].
Badrinarayanan et al. proposed another DCNN model called
SegNet that contained encoder and corresponding decoder
networks followed by a pixel-wise classification layer [33].
The authors used VGG16 [49] network as an encoder model
and in the decoding part the encoded image was transformed
into the original one that restored the low resolution features
maps as full resolution feature maps. This was obtained by
usage of pooling indices saved from the maxpooling opera-
tion during the encoding path, which eliminated training in
the expansion part. The resulted upsampled sparse feature
maps then convolved with trainable filters to generate dense
feature maps. The model attained notable accuracy results in
comparison to the existing models at that time.

One of the most notable DCNN models for semantic seg-
mentation is U-Net [5]. The model was originally proposed
for binary segmentation in medicine domain; however, owing
to its generalizability, it was utilized in multiclass semantic
segmentation in various fields. Its architecture was symmet-
rical and contained four large blocks in the encoding and four
large blocks in decoding as well as one bridge block that
connects encoding and decoding parts. The contraction part
of the model executed two convolution operations with the
filter size of 3× 3 followed by a 2× 2 max pooling layer and
dropout regularization. Concerning the expansion path, after
increasing the image size through transpose convolution, the
output was concatenated using the corresponding output of
the extraction path convolution layer. Then the result passed
through the same set of operations as in the expansion path
apart from the max pooling operation. Finally, when the size
of the original image was restored, one filter using a kernel
with the size of 1 × 1 executed the convolution operation to
produce a resulting segmented image.

Jegou et al. presented fully convolutional dense network
for semantic segmentation [34] based on densely connected
convolutional networks [50] that ensured that each layer of
the model was directly linked to the other layers of the net-
work in encoding path. Concerning the restoring an original
input image, transpose convolution was used in the expansion
path. In fact, the model architecture contained 103 convo-
lutional layers. Despite of comprising great number of lay-
ers, the network obtained the-state-of-the-art performance
in multiclass semantic segmentation owing to the usage of
the densely connected convolutional neural network in the
contraction path. Also, the fine-tuned model eliminated need
for post-processing module to achieve better performance.
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FIGURE 1. An overview of the proposed methodology.

However, the aforementioned models required large num-
ber of parameters for training that resulted in slow training
and inference by making these models challenging to use
for computationally limited device applications. Considering
this fact, Pazske et al. presented efficient DCNN for real-
time semantic segmentation [37]. The authors benefitted from
using various convolution operations in the decoding path,
such as asymmetric and dilated convolution. Also, they uti-
lized bottleneck layers inspired from [51]. Regarding decod-
ing part of the model, it used convolution transpose operation
to restore an original image. The model was enormously effi-
cient in comparison with the existing methods by requiring
significantly few trainable parameters.

III. THE PROPOSED METHODOLOGY
This section contains comprehensive information about the
REF-Net model and its architecture. An overview of the
proposed model is represented in Figure 1. As can be seen
from the graphical illustration of the proposed model, first,
the input data for training passes through three-step data pre-
processing. At the initial stage, the data is resized to match an
input size of the model. Then, data standardization is applied
to make the values of the input image followGaussian normal
distribution. This is obtained by subtracting mean value of the
data (µ) and dividing into the standard deviation value (σ ) as
shown in Equation (1):

X =
X − µX
σX

(1)

After obtaining the standardized images, data augmenta-
tion is applied on them to increase the number of training

instances. The data augmentation is performed based on the
characteristics of the images, meaning that there is no rule of
thumb that work properly for all data.

Completing the preprocessing steps, the data is ready to be
inputted into a model. It comprises two parts, namely, encod-
ing (contraction) and decoding (expansion) paths. In the
encoding part, the model learns useful features, parts of
objects, and complete objects by decreasing the image size
and increasing the image depth as the training process
progress. On the contrary, the model attempts to identify
location of these objects by restoring the original image size
in the decoding part. It is important to note the computation
of an image size in a convolution layer. It can be calculated
using Equation (2) as follows:

HI =
HI − fs+2∗p

s
+1

WI =
WI − fs+2∗p

s
+1 (2)

In Equation (2), HI , WI are the height and width of an
image, fs is the kernel size of a convolution operation filter,
p is zero-padding, and s is stride that is responsible for a step
of the convolution filter.

The contraction path contains an early conv block that has
two branches. The first one performs convolution operation
using 13 3 × 3 filters with stride of 2 and zero-padding to
decrease the image size by two times. The second branch per-
forms overlapping maxpooling operation with stride of 2 to
match the image size from the first branch of the early conv
block. Then, the outputs of these branches are concatenated
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FIGURE 2. Detailed description of (a) the down conv blocks, (b) the conv blocks, and (c) upsampling blocks.

followed by batch normalization [52] and parametric rectified
linear unit (PReLU) [53] activation layers.

The output of the early conv block then passes through
downsampling conv block illustrated in Figure 2 (a). Observ-
ably, the down conv block is highly inspired by skip con-
nections [54] that have wide range of applications in various
domains. However, the difference of the proposed method
with the regular residual networks is that we utilized 2 × 2
filters instead of using default 1 × 1 filters in the first con-
volution layer that provided better performance in [37]. Also,
the first branch of the block contains dropout regularization
[55] to address overfitting after repetitive convolution, batch
normalization, and activation layers. Moreover, instead of a
regular convolution layer with stride of 2, the second branch
contains maxpooling layer followed by padding to match the
image size of the first branch output.

This step is applied to reduce the number of trainable
parameters; consequently, reduce computational complexity
and training time. Finally, the outputs of the two branches are
added and pass through an activation layer.

After obtaining the output of the down conv block, the data
goes through several conv blocks, which are illustrated in
Figure 2 (b). The conv blocks have similar structure to the

down conv blocks with slight differences in the first convo-
lution layer of the first branch and complete second branch.
Specifically, we used 1 × 1 filters with stride of 1 as the
first convolution operation of the conv block instead of 2 × 2
filters with stride of 2 used in the down conv block. Since
the image size is not changed in the first branch of the conv
block, we do not apply any operation in the second branch.
The conv blocks are completed by adding the outputs of the
branches and going through an activation layer. It is notable
that for the 5∼20th conv blocks, main convolution layer of
them benefit from the mixture of asymmetric convolution
layers [56] as the main convolution layer followed by dilated
convolution layers [57], where dilation rate increases every
following layer.

Combination of the early conv block, 2 down conv blocks,
and 20 conv blocks finishes the encoding part of the model
and its output is inputted into the decoding path. In the expan-
sion path, we use nearest neighbors upsampling method in
contrast to the transposed convolution utilized in the existing
methods. We found transposed convolution approach expen-
sive in terms of both computation and time because it requires
additional parameters that are trained using an optimizer
that demands computation of gradients of these parameters
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in every step of backpropagation algorithm. As the primary
objective of this study is to develop fast and accurate seman-
tic segmentation model architecture, we utilized inexpensive
method for restoring the image size that is nearest neighbor
interpolation upsampling method. The computation method
of the aforementioned techniques for upsampling are pro-
vided in Equation (3), as shown at the bottom of the next page.

In the equation, x is a pixel of an input image for upsam-
pling, w is a weight parameter used to increase the size of
an image using transposed convolution, y is a pixel of an
upsampled image. As can be seen, the transposed convolution
requires additional trainable parameters to perform upsam-
pling, which are optimized as training stage progresses.
Moreover, input data values are multiplied by weight param-
eters that lead to computational complexity and increase in
training time. In contrast, the nearest neighbor interpolation
method simply copies the values of the input image into the
output matrix. Although this approach is simple, it is com-
pletely logical since an image contains hundreds of pixels and
the neighboring pixels are approximately the same in most
cases. More importantly, this technique requires no additional
parameters nor extra computation, which are crucial factors
in dealing with the existing problems in real-time semantic
segmentation. Also, this method obtains competitive accu-
racy, which will be discussed in the results section of this
manuscript.

Selecting the nearest neighbor interpolation method for
recovering the image size in the decoder part of the model,
we provide detailed graphical illustration of the upsampling
block in Figure 2 (c).

Observably, upsampling blocks use the power of skip
connections too. However, unlike to the existing methods,
upsampling method is not performed right after obtaining the
input data from the previous layers in the upper branch. In the
proposed method, we first perform convolution operation
with 1 × 1 filters and then increase the image size by factor
of 2 using the nearest neighbor interpolationmethod followed
by 1× 1 convolution, batch normalization, and dropout. This
strategy assists to reduce computational complexity by apply-
ing 1 × 1 convolution to reduce the depth of an incoming
image.

The lower branch also benefits from this trick by using 1
× 1 convolution followed by batch norm and maxunpooling
operation that uses the indices from themaxpooling operation
of the encoding path to increase image dimensions. After
increasing the image size by factor of 2 in both branches,
they are added and pass through an activation layer to pro-
duce an output. This output then goes through two conv
blocks, upsampling block, conv block, respectively. Finally,
a segmented image is generated using convolution operation
with 1 × 1 filter.

IV. EXPERIMENTS AND RESULTS
In this section, we provide comprehensive information about
conducted experiments to test the performance of the pro-
posed model on two publicly available autonomous driving

FIGURE 3. Randomly selected training image from (a) CamVid and
(b) Cityscapes datasets after applying data augmentation.

TABLE 1. Detailed description of the datasets used for the experiments.

datasets. Also, we share outcomes of these experiments and
compare them with the results of the existing methods.

A. DATASETS
We used two popular databases that are in open access for
research and widely used to evaluate model performance in
self-driving cars field. The first database was CamVid and the
second onewas Cityscapes dataset. Table 1 represents general
overview of them.

We can obtain from Table 1 that both datasets comprised
considerable large sized images. Therefore, to reduce com-
putational expenses, we resized the input images into 360 ×
480 and 512 × 1024 for CamVid and Cityscapes datasets,
respectively. Also, the datasets contained limited number of
examples for training and validation sets. We addressed this
issue by generating new training and validation images by
applying data augmentation. Specifically, we applied hori-
zontal flip and zoom scaling in the range of 0.75∼1.5 to
obtain transformed images. The output of this process on
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random training images from the considered datasets are
provided in Figure 3.

B. BASELINE MODELS
We selected four well-known semantic segmentation mod-
els, namely SegNet, FC-DenseNet103, U-Net, and ENet, to
compare their performance with the one of the proposed
method. Since these models were described in detail in the
introduction part of this manuscript, we do not go deep into
their specifications in this section.

The first three models were chosen as the networks that
obtain state-of-the-art performance, but expensive in terms
of time and computation. Meanwhile, ENet was selected as
a time-efficient model that achieves comparatively limited
accuracy. By selecting these models, we wanted to compare
the performance of the proposed method with regard to both
computation time and accuracy.

C. TRAINING SETUP
We formulated the proposed method as well as the base-
line models using 3.6.9 version of Python as well as 1.4.0
version of PyTorch framework and conducted experiments
using 32 GB NVIDIA Tesla V100-SXM2 GPU with CUDA
10.0. In all experiments, we initialized the weight parameters
using Kaiming weight initialization strategy [53] and Adam
optimizer [59] with a momentum of 0.9, learning rate of 5e-4,
weight decay of 2e-4. As for the loss function to minimize,
we used crossentropy loss. We trained the models for a
hundred epochs with a batch size of 10 and 4 for CamVid
database and Cityscapes dataset, respectively. This number of
epochs was selected because in average themodels converged
at epoch 100 and stopped improving their performance after-
wards.

D. EVALUATION METRICS
Most datasets used for semantic segmentation exhibit a prob-
lem of class imbalance, where one category has significantly
higher rate of representation in comparison with the other
classes. Therefore, being most widely used evaluation metric,
accuracy, cannot fairly assess the performance of a segmen-
tation model. Considering this fact, we conducted evaluation
of the models using not only pixel accuracy (PA) metric but
also Dice coefficient (DC) and mean intersection over union

(mean IOU). The PA computes average score of the ratio
of correctly predicted pixels with regard to target pixels as
follows:

PA =
1
m

m∑
i

p∑
k
ŷk == yk

p∑
k
yk

(4)

In Equation (4), ŷ and y are predicted and target values, p
andm are total number of pixels in an image and total number
of instances, respectively.

Dice coefficient computes twice of intersection area of two
images divided by the area of their union and formulated in a
following way:

DCA,B = 2
|A ∩ B|
|A| + |B|

(5)

Regarding mean IoU, it calculates the ratio of overlapping
area between two images with the intersected area subtracted
from their union as shown in Equation IV-E:

mean IoUA,B =
|A ∩ B|

|A| + |B| − |A ∩ B|
(6)

E. EXPERIMENTAL RESULTS
In this sub-section, we share the results of the experiments
using the CamVid database and Cityscapes dataset. First,
we compare the models memory requirements and the num-
ber training parameters in Table 2.

As it can be seen from Table 2, the proposed model
required the fewest number of trainable parameters when
compared with the baseline models by demanding nearly
90, 85, and 27 times fewer parameters than U-Net, SegNet,
and FC-DenseNet103 models, respectively. Moreover, the
proposed model needed more than 100 times less memory
to store trainable parameters in contrast to SegNet and U-Net
models. The only model that could compete with REF-Net is
ENet, which was also less efficient in terms of memory and
trainable parameters in comparison to the proposed model.

In fact, considering the baseline models, the REF-Net
model demanded the least memory space and the fewest
number of trainable parameters.

We also compared the considered models in terms of time
required for training using CamVid and Cityscapes datasets.

(3)
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FIGURE 4. Required average time per epoch to train the considered models using (a) CamVid and (b) Cityscapes datasets.

FIGURE 5. Experimental results on the validation set of CamVid dataset.

Bar chart illustrated in Figure 4 shows average time per
epoch required to train the models on the aforementioned
datasets. Logically, the models with the least number of
trainable parameters, such as ENet and REF-Net significantly
outperformed their peers, namely SegNet, FC-DenseNet103,
and U-Net, that required from 3 to 4 times greater amount of
time to be trained.

After obtaining the results of the aforementioned mod-
els with reference to memory, parameters, and training
time, we compared them in terms of accuracy using the
three evaluation metrics mentioned above and loss value.

Figure 5 illustrates loss, PA, DC, and mean IoU values on
the CamVid’s validation set. We can see that the SegNet
and ENet models obtained relatively lower results than the
other models. In fact, the performances of U-Net and REF-
Net were superior to their peers in terms of considered
evaluation metrics on the validation data. At the same time,
the FC-DenseNet103 model attained slightly higher loss and
negligibly lower scores in the accuracy metrics in comparison
with these two models. Considering the REF-Net model’s
efficiency in computation, memory, and time, the proposed
model obtained relatively competitive accuracy compared
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FIGURE 6. Experimental results on the validation set of Cityscapes dataset.

TABLE 2. Comparison of the models in terms of memory and
parameters∗.

to more powerful, slower, and computationally expensive
models.

A similar tendency of evaluation metrics can be observed
in the model’s performance results on the Cityscapes dataset,
provided in Figure 6. However, based on the results rep-
resented in this figure, we can see that the models per-
formed slightly better in the Cityscapes dataset than the
CamVid database. This superior performance was obtained

due to a significantly larger number of training instances
of Cityscapes in comparison with the CamVid. We can see
that U-Net outperformed the other models in all evaluation
metrics obtaining the lowest loss value and highest DC,
meanIoU, and PA scores. Regarding the proposed method,
it achieved very similar results in the considered evaluation
metrics to the ones of U-Net. Still, the REF-Net model’s
performance was negligibly inferior to the best-performed
model (U-Net), which is more storage-intensive and compu-
tationally expensive. Considering this, we can conclude that
the proposed model achieved the most optimal tradeoff in
terms of efficiency, speed, and accuracy.

V. DISCUSSION
The results obtained from the training and validation sets of
the considered datasets provided promising results for the
REF-Net model. Due to its efficiently formulated architec-
ture, the proposed model required nearly a hundred times
less memory and a million times fewer trainable param-
eters than the powerful models attaining state-of-the-art
performance. Despite being highly efficient, the proposed
model outperformed (SegNet, FC-DenseNet103) or at least
obtained competitive results (U-Net) in terms of the evalu-
ation metrics. However, the validation set cannot provide a
realistic idea of a semantic segmentation model’s strength
since its examples partake in the model’s training stage
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FIGURE 7. Required inference time to produce a segmented test image
in (a) CamVid and (b) Cityscapes datasets.

and are used to fine-tune hyper-parameters. Therefore, the
fairest comparison of the models could be obtained using
a test set of the considered datasets. The test set was used
only once after finishing training and acquiring the out-
comes provided in this manuscript’s experiments and results
section.

A. DISCUSSION OF THE INFERENCE TIME
First, we discuss the considered models’ required inference
time. Figure 7 compares the baseline and proposed networks
regarding the time required to generate a segmented test
image. Similar to the training time results, REF-Net also
performed considerably better in inference time. It required
28.81 and 32.57 milliseconds to output a segmented image
from CamVid and Cityscapes test sets, respectively. These
results were approximately two times faster thanmore power-
ful models, such as SegNet, FC DenseNet103, and U-Net that
spent 47.32 and 59.85, 40.18 and 44.32, as well as 49.52 and
63.13milliseconds to generate a segmented image in CamVid
and Cityscapes datasets, respectively. Concerning an efficient
ENet model, the proposed model performed nearly 3% faster
than ENet on both datasets.

B. DISCUSSION OF THE GENERALIZIBILITY OF THE
MODELS
We compared the considered models’ ability to general-
ize by assessing their performance on the test sets using

TABLE 3. The results of the baseline and proposed models on the test
sets of the considered datasets.

several evaluation metrics. The results of the baseline and
proposed models on the considered datasets are provided in
Table 3.

Table 3 shows that REF-Net outperformed the baseline
models in all evaluation metrics, except for mean IoU when
assessed using the CamVid database. Notably, the perfor-
mance of the proposed model was only slightly lower than
U-Net’s highest achieved result regarding the mean IoU met-
ric. Considering that mean IoU equals to the fraction of true
positives with regards to the sum of true positives, false posi-
tives, and false negatives, we can conclude that the proposed
method produced more false positives and false negatives in
comparison with U-Net model. However, when the models’
performances were evaluated on the Cityscapes dataset, the
REF-Net attained the highest performance only on the Dice
coefficient and mean IOU. Considering the other evaluation
metrics, the proposed model obtained the second-highest
results in terms of loss and pixel accuracy respectively.
Notably, the REF-Net model showed inferior performance
only compared to a significantly powerful model, such as
FC-DenseNet103.

C. DISCUSSION OF THE EXPERIMENTAL RESULTS
Considering the results of the conducted experiments on
two open source datasets, we can see that ENet model and
the proposed method has smaller differences in compari-
son to the more computationally expensive models, such
as U-Net, FC-DenseNet-103, and SegNet. The reason for
this is that both models (ENet and REF-Net) are consid-
ered as efficient models and tackle the problem of efficient
computation in DCNNs. Specifically, ENet was originally
proposed to deal with the problem of limited computa-
tional resources and excessive computation time in DCNNs.
REF-Net, in turn, is also an efficient network that further
improved the solutions to the aforementioned aspects of
DCNN training; therefore, the proposed method achieved
similar (better) results than ENet. Regarding the other com-
putationally expensive models, their performance was signif-
icantly different because they were not regarded as efficient
models. In short, for benchmarking, we selected ENet as an
efficient model and U-Net, FC-DenseNet-103, and SegNet
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FIGURE 8. (a) Input image, (b) target annotated image from the CamVid database, and (c) generated segmented image using the proposed model.

models as accurate models to compare their performance
with the one of REF-Net. Because, the main objective of

this research work was to propose both efficient and accurate
model.
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FIGURE 9. (a) Input image, (b) target annotated image from the Cityscapes dataset, and (c) generated segmented image using the proposed
model.
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D. DISCUSSION OF SEGMENTED IMAGES GENERATED BY
THE PROPOSED MODEL
In addition to outperform its counterparts in several eval-
uation metrics on the test sets of the considered datasets
and obtaining the best performance in efficiency and accu-
racy among the considered popular networks for semantic
segmentation, the proposed method generated notable seg-
mented images. These images on the test set of CamVid and
Cityscapes datasets are represented in Figure 8 and Figure 9,
respectively.

Based on the shown segmented images produced by
REF-Net, we can see that they did not perfectly match with
the ground truth masks. To the best of our knowledge, there
was not any impeccable model that could produce identical
segmented images to the target masks. However, the pro-
posed model generated decent outputs that seem to be almost
identical to the target annotated images. Considering this,
we believe that the proposed model has a great potential of
being effectively applied in developing software for mobile
and battery-powered computational devices or real-time seg-
mentation applications.

VI. CONCLUSION AND FUTURE WORK
In this study, we conducted research on semantic segmenta-
tion models in autonomous-driving. We also explored widely
used DL models in this field that exhibited high processing
complexity and enormous memory requirements, which did
not allow the development of applications for devices with
limited computational resources. Considering the increasing
demand for mobile and battery-powered devices, we for-
mulated the REF-Net model, which uses dilated and asym-
metric convolution operations with skip connections and
bottleneck layers in the contraction path. The nearest-
neighbor interpolation-based upsampling method was also
utilized to restore encoded images, requiring no trainable
parameters at all.

In the experiments conducted with popular, publicly avail-
able datasets related to autonomous-driving, the REF-Net
model required considerably fewer parameters, significantly
less memory space, and substantially less training and infer-
ence time than the more powerful semantic segmentation
models. Also, unlike the ENet model, REF-Net attained com-
petitive accuracy results when assessed using several evalu-
ation metrics. These facts ensured that the proposed model
could be successfully implemented in applications with lim-
ited computational power with insignificant or no accuracy
loss.

We plan to continue research work in autonomous-driving
and develop more efficient and accurate DL model architec-
ture by fine-tuning and enhancing the proposed model.
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