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ABSTRACT Research into biometric identification technologies has evolved in recent years, as most secure
facilities and applications are now based on digital technology. Among the available biometric identification
technologies is eye detection. The relevance and impact of the use of eye detection in a variety of biometric
authentication systems are very high. The main problems associated with the accuracy of eye detection
methods are occlusion or reflections from glass. In view of this, we propose a hybridized and enhanced eye
detection method that uses a faster region-based convolutional neural network with Gabor filters and naive
Bayes (FRCNN-GNB) model to address the problems associated with eye detection schemes. The proposed
method consists of four components: convolution layers, a region proposal network, a detection network, and
a decision model. The enhancement method is based on a cascade Faster R-CNN with Gabor filters and the
naive Bayes model, in which the initial bounding boxes of the eye region are detected using Faster R-CNN
and the decision step is carried out using Gabor filters and the naive Bayes model to determine which of the
bounding boxes belong to the eye region. Experiments on the proposed FRCNN-GNB eye detection scheme
are performed on the CASIA-IrisV4 database, and show that the accuracy in terms of eye detection is 100%.

The results of the study demonstrate the efficiency of the proposed solution.

INDEX TERMS Eye detection, faster R-CNN, Naive Bayes model, object detection.

I. INTRODUCTION

Object detection systems are designed to detect the occur-
rence of objects of certain classes within digital images
(and videos). The object identification system discovers
which objects appear in a specific image, and where [1]-[3].
Object detection systems play a vital role in face recogni-
tion, eye detection, biometric authentication, car tracking,
security surveillance, activity detection, object recognition,
and many other applications. With the advent of large visual
recognition datasets, object categorization [4] and object
detection [S5] have been under continuous development, and
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advancements have been made in convolutional neural net-
works (CNNs) [6]. Human eyes are essential voluptuous
organs, and it features wealthy of a face. Eye detection has
started to become a significant technological aspect of com-
puter vision with the advent of biometric recognition systems.
Eye detection is a technology that determines the positions of
the eyes based on abstract features of the images [7].
Localization of the eye or extraction of the iris is an impor-
tant strategy in the fields of iris recognition, interpretation
of expressions, eye tracking, behavior recognition, and face
recognition [8], [9], among others. Particularly in the detec-
tion of driver fatigue, the motion characteristics and positions
of the eyes are used as a basis for the extraction of features
related to tiredness, such as blinking frequency, eye gaze
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detection, percentage eyelid closure time, and so on. [10].
In an iris recognition system [11], the first step in the entire
process is to determine the location of the eyes, and the pupil
and iris can then be segmented. Meanwhile, eye detection can
also get the scale of iris. Tiredness detection systems similarly
seek to determine the locations of the eyes, and then to apply
a model of the eyes to compute the number of blinks. The
accuracy of eye detection directly influences the precision of
iris recognition and biometric applications. Eye detection is
facultative in face detection systems, which can increase the
precision of detection of a face when detection of the eye is
reliance. In view of the demand for the applications discussed
above, several eye detection algorithms have been proposed
based on the attributes of the eyes. These algorithms and pro-
cedures consist of two steps: a model is first constructed based
on manual selection of the eye attributes, and this model is
then utilized to classify and locate the eyes. Following the
emergence of neural networks, object detection can be done
automatically using a convolutional neural network (CNN)
to determine the attributes, and in 1992 [12], an eye detection
method was suggested based on the geometry of the eyes.

In 2005 [13], appearance-related features were used to
detect eyes. A human eye localization algorithm based on
features textile was proposed in 2011 [14]. In recent years,
systems started to locate the eyes based on facial landmarks
and have given good results. However, when the image is
affected by reflection by glass or is occluded, algorithms
based on features textile, geometry, and appearance have
shown very poor performance. When an eye is detected using
facial landmarks, the image may include partial faces that
would be arising failure to detect faces and thus lead to failure
to locate the eyes. Under non-ideal conditions, eye detection
still poses problems, since the precision of the eye detection
method is inevitably affected by reflections from glass, image
resolution, individual differences, occlusion, illumination,
and other factors. Recently, deep CNNs (convolutional neural
networks) have given state-of-the-art results when applied to
the many tasks of computer vision; however, the use of CNN’s
in eye research is limited due to a lack of large datasets.

To address the problems associated with eye detection sys-
tems, we propose an improved method of eye detection based
on a cascade Faster R-CNN with Gabor filters and a naive
Bayes model (FRCNN-GNB), which locates the positions
of the eyes with increased precision even in pictures which
contain only partial faces.

This article provides answers to the following research
questions:

- Why is it important to study eye detection in the context
of the task?

- How can an eye be located within an image?

- How can an improved eye detection method be developed
in order to achieve optimum performance?

Our research work makes the following new contributions
to eye detection research:

- We develop a system based on a convolutional neural
network (CNN) for eye detection.
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- After detecting the bounding box in the image via Faster
R-CNN, which represents the initial eye region, the features
of the initial eye region are extracted using Gabor filters, and
the naive Bayes model is then applied to determine the final
eye region.

Compared to other eye detection methods proposed in
previous works, our FRCNN-GNB eye detection scheme has
the following advantages:

- The proposed method does not rely on the method
selected for facial detection and the scale of the eye patch
cropped.

- It can be applied even to pictures of faces that are severely
occluded or with local pictures view of the facials with eyes
when it fails the method of facial detection.

- It does not rely on illumination when detecting eyes.
In addition, it is not dependent on the distance or alignment
between the centers of the right and left eyes, and can detect
both right and left eyes without alignment.

The remainder of the paper is structured as follows. Related
works on methods and algorithms for eye detection are dis-
cussed in Section 2, and a thorough overview of the proposed
FRCNN-GNB eye detection method is given in Section 3.
Section 4 presents an experimental study of the proposed
scheme, and the final section summarizes and concludes the

paper.

Il. RELATED WORK

A. CLASSICAL EYE DETECTION METHODS

The detection of objects is an important research topic within
the field of computer vision. Conventional object detection
frameworks building features and classifiers manually via
training, learning through big data and making end-to-end
workout training. In the domain of conventional computer
vision, object detection algorithms typically have three parts:
selection of the detection windows, selection of features
and building of the classifier. Detection window selection
algorithms have sophisticated through the sliding window
dependent on edge box or scale selective search that is more
efficacious in generating region proposals due to the use
of diverse features. There are several conventional methods
for feature selection, such as histogram of oriented gradi-
ents (HOG), local binary patterns (LBP), and so forth [15].
In many object detection systems, a decision tree or support
vector machine (SVM) is used as a classifier.

Conventional methods for eye detection can be basically
classified into three distinct categories: appearance-based,
shape-based, and synthesis approaches. Appearance-based
approaches usually involve the matching of models, in which
amodel of an eye is created, and similarity measurements are
used to detect (locate) the eyes in the image.

Hallinan [16] constructed a model of an eye by detecting
valleys and peaks in intensity and decreasing the energy func-
tion to match the images. Rao [17] identified eye and non-
eye patterns, which were represented using a Gabor filter,
and a shallow neural network was then trained as a classifier.
Despite changes in illumination and rotations through tiny
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angles, their model could be applied. However, it ignores this
approach the image’s spatial information and thus is difficult
to transact the translation contrast. Huang and Wechsler [18]
used an optimum wavelet bundle to capture the most impor-
tant characteristics of the eye area and functions of the radial
base that can be identified as eye regions or otherwise from
regions of the face.

Wang et al. [19] suggested an approach involving non-
parametric discriminant analysis for eye detection. Typically,
appearance-based approaches require large training datasets
of eyes, with different head poses and types of illumination.

One existing model of the iris, eyelid, and pupil
uses a shape-based approach to match test samples.
Young et al. [20] used a Hough transform to effectively
extract the iris and pupils in the form of elliptical contours.
Similarly, Lam and Yan [21] extended a distorted mold to
parameterize the iris and eyelids, which arise from the inter-
section of two parabolas and a circle. To improve the eye
detection process, an additional four intersecting locations
of the eyelids and the iris were suggested. Nevertheless, this
approach needs highly primary positions index of the eye
form template.

Kawato and Tetsutani [22] used a circle frequency filter
to reveal candidate points within eyes and the angle of rota-
tion of the images. Eyes on every side of the discovered
dot have detected as tiny darkest bits. Synthesis techniques
collect, the methods, strategies of shape and appearance to
evolve their respective benefits. Xie et al. [23] suggested
a partial model based on shape to find the positions of
many sub-components and implicitly model the appearance.
Ishikawa [24] utilized an active appearance model to combine
methods based on patterns of appearance and shape. The
shape aspect was built on an active shape model, while the
texture was modeled independent of the shape, using princi-
pal components analysis. Their paradigm was able to detect
and monitor eyes.

When these approaches to eye detection are compared,
our work can be considered an appearance-based model that
depends on data rather than on the initialization of a good
template of an eye. In a novel approach to eye detection,
we combine a Faster R-CNN with Gabor filters and the naive
Bayes model.

Our FRCNN-GNB model takes advantage of the strong
features learned by CNNss, which allows it to better locate the
initial eye region in an image of a person at a distance, and the
final eye region is then determined using Gabor filters and a
naive Bayes model.

B. EYE DETECTION WITH DEEP MODELS

With the ongoing developments in computing ability, many
computer vision tasks have been dominated by the use of deep
CNNs. Abstract features can be extracted using deep learning
via condensed data and frequent training that can to the
crosses betterment of essential information. A region-based
neural convolution network has good efficiency, making
it the primary algorithm used in the domain of object
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detection. Nevertheless, due to the considerable benefits of
deep learning in the field of computer vision, several deep
neural networks have been implemented for eye-associated
tasks.

Reinders et al. [25] were the first to suggest exploit-
ing a neural network to solve the eye detection problem.
They proposed an approach based on multilayer perception
to determine the positions of the eyes in an anterior face
image, with no requirement for manually crafted features.
Krafka ef al. [26] used combined learning CNNs for inputs
from the patch of facial pictures and the facial mask, and then
merged this information to infer the gaze.

Huang et al. [27] suggested a multi-mission learning
algorithm for the appreciation of the eye condition and for
detection of the landmarks of the eye. They utilized a coarse-
to-fine approach in which CNNs were cascaded in two stages
to fine-tune the shape of the eye. Our model can also be
viewed as a multi-mission learning system, as we use Faster
R-CNN to detect the initial eye regions, and then apply Gabor
filters and a naive Bayes model for the final eye detection.

The region-based CNN (R-CNN) was first proposed for
object detection in [28], in an algorithm suggested that
demonstrated a high level of accuracy in locating and clas-
sifying objects compared to traditional algorithms. However,
it involved several feature extractors and there were several
requirements for the SVM classifiers, meaning that the train-
ing period was lengthy.

Two methods were proposed to alleviate these issues: the
SPP-Net [29] and the Fast R-CNN [30]. Rather than feeding
each deformed proposal picture zone into the CNN, the Fast
R-CNN and the SPP-Net work across the CNN for the input
picture whole once exactly.

That every proposal’s in detection layers can obtain scores
of classes and coordinates after the proposals mapping to
the maps of feature for the convolutional ultimate layer.
SPP-Net, R-CNN and Fast R-CNN depend on public object
proposals of the input, that come from the seeking of selec-
tive [6]. However, these algorithms upon being dense com-
puted. Ren’s team suggested Faster R-CNN [31] to minimize
the computational burden of generating the proposal. Several
object detection applications have employed Faster R-CNN
since it was proposed. For instance, the authors of [32]
proposed a Faster R-CNN approach to face detection. They
published their findings based on two commonly utilized
benchmarks for face detection: the IJB-A, and the newly
released FDDB.

In view of these existing problems in the research area of
computer vision, our proposed FRCNN-GNB method uses
Faster R-CNN techniques together with Gabor filters and a
naive Bayes model for eye detection. In brief, we use Faster
R-CNN to find the initial region of the eye, and then detect
the final eye region using Gabor filters and a naive Bayes
model. Importantly, it concentrates our FRCNN-GNB model
on eye patches, besides it could been worked together with
local show of face picture without methods of alignment of
the face.
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FIGURE 1. Framework of the proposed FRCNN-GNB enhanced eye
detection algorithm.

Ill. PROPOSED FRCNN-GNB APPROACH

A. OUTLINE OF THE PROPOSED METHOD

In this section, we describe the structure of the proposed
FRCNN-GNB enhanced eye detection algorithm. As shown
in Figure 1, our algorithm is basically divided into two sub-
modules: (i) Faster R-CNN, which identifies the bounding
box of the initial eye coordinates from pictures, and (ii) Gabor
filters and a naive Bayes model, which predict and determine
the final bounding box coordinates of the eye.

B. DETECTION OF INITIAL EYE REGION
WITH FASTER R-CNN
1) STRUCTURE OF FASTER R-CNN
Images from the CASIA Iris-Distance database V4 were
utilized as the input to the Faster R-CNN [31], and eye
regions were detected from the images. Figure 2 illustrates
the structure of the Faster R-CNN used here. It can be divided
into three sections: a classifier, a region proposal network
(RPN), and a feature extractor. It can be seen from the Faster
R-CNN process that the map of features is generated after the
final convolution layer in the feature extractor, and is used as
input for the RPN. The initial region of object detection is
then created. The produced proposals pass in the completely
linked layer as input, and they are categorized into classes and
then given a score.

The Faster R-CNN is configured by utilizing ResNet-50
[33] as the mainstay that has 50 commonly convolutional
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FIGURE 2. Structure of Faster R-CNN.

covers. The images are taken, and the matched proposal
regions of the eye as inputs to Faster R-CNN [31] as well
as the initial region of the eye of the person are identified.
The structure of the Faster R-CNN used here is presented
in Figure 2. It is mainly separated into three sections: the
classifier, the RPN, and the feature extractor.

We used a pre-trained ResNet-50 network to extract the
features. This network included 50 ReLU layers, four max-
pooling layers, and 50 convolution layers. Initially, the cate-
gorized image is accepted as input and is passed to the ReL.U,
convolution and max-pooling layers to obtain the feature map
for the final output image. In an input image of dimensions
2352 x 1728 (width x height) pixels, the ROI is set as the
area around the eyes within the whole face, which allows
the eyes to be identified more efficiently. On the basis of
the training data employed in the experiment, the ROI is set
taking into account different and shifting locations as the
image is of a person at a distance. Some real images from the
training dataset are displayed in Figure 3(a), and the matching
labels are shown in Figure 3(b). The red bounding boxes are
annotations showing the ground truth or ROI.

As shown in Figure 3(b), the ROl is determined on the basis
of the initial input image and is cropped to reduce the area
from which points can be selected as initial candidates for
eyes, thus raising the detection rate.

The size of the final feature maps is 1024 x 51 x 28 pixels
(width x height x channel) is based on the ROI of the image.
These feature maps are then used in the RPN with the ROI
images, and are then passed to the classifier and RPN as input.

The RPN is a network of fully convolutional layers that
is used to effectively identify proposed regions with a wide
range of aspect ratios and scales that will be passed to the
classifier. These regions are represented as rectangular areas
that may or may not contain a candidate object. A classifier
is used to optimize the proposals, and is the next component
of the Faster R-CNN. The RPN and the first component
(feature extractor) of the Faster R-CNN detector share the
same convolution layers, allowing for concurrent training.
The Faster R-CNN is applied only once to the whole input
picture via the CNN, and then purify proposals of objects.
Due to the use of convolution layers, ResNet-50 can generate
high-quality object proposals.

In the RPN during training, while utilizing RPN to fore-
tell proposals of the eye from the maps of features attained
from former phase extraction of feature, RPN takes the
features maps as input and outputs a collection of candidate
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FIGURE 4. Region proposal network (RPN) of the Faster R-CNN [31].

eye regions in the form of rectangular areas (i.e., bounding
boxes), every with a score of objectless. In this article, we use
a ResNet-50 [33] with 50 shareable convolution layers.

The RPN applies sliding windows to the output of the
convolutional feature map via the last shared convolution
layer to create rectangular region proposals for each location
(see Figure 4). An nxn filter of the spatial window was
convolved with feature map convolutional of the input. Then,
each sliding window is overthrown on a feature of lower-
dimensional (for ResNet-50 is 512-d ), via convolving with
two filters of 1 x 1, respectively, for the box-regression layer
(reg) and the box classification layer (cls). In the RPN the
key task is to assign the abovementioned 1024-dimensional
features to lower-dimensional alternatives (512), and two
fully connected layers are then applied: the first stage is
responsible for regression, and the second for classification.
For each position of the sliding window, k potential proposals
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(i.e., anchors in [31]) were produced in the classification
layer. 4k outputs were created for the regression layer to
encode the k coordinates of the bounding boxes.

In the classification layer, output 2k objectness scores were
extracted to represent the probability of each proposed region
containing an eye or a non-eye object. Since several proposed
regions strongly overlap, non-maximum suppression (NMS)
was applied to integrate regions with high intersection-
over-union (IOU). Based on the object probability score,
the remaining proposed regions were ranked using NMS, and
the top N propositions were utilized for detection. Anchors
were described as candidate regions during the training phase,
and the RPN was trained using 256 anchors including 128
negative and 128 positive samples. Furthermore, the eyes
likelihood and regression vector of the bounding box [28] are
acquired for the anchor boxes to efficiently offer the region
of the eye proposals.

Faster R-CNN [31] uses anchor boxes more appropriately
for detecting objects, allowing for more precise detection.
Equations (1) and (2) are regression vectors of the bound-
ing box (vx, Vy, Vw, vn), which are values parameterized of
the transformation among the anchor box and the expected
box [28]:

Yp = Ya

= —) = — 1
Vx Wa Vy ha (D

h
log (&> ,vp = log (—p) 2)
Wa hy

where (x, y, w, h) refer to the midpoint coordinates x, y, and
the breadth and height of each box, respectively, and x,, x,
refer to the midpoint coordinates x of each proposed box
and the anchor box, respectively (and so on fory, w, and k).
Equation (1) displays the scale-invariant interpretation among
the midpoint coordinates, while (2) refers to the log-space
interpretation between the height and width.

When training RPNs, each proposed region is mapped
using a binary class label that indicates whether it is an object
(i.e., an eye) or part of the background. Using the regression
vector for the bounding box, interpretation of the regions with
a more appropriate location and scale could be achieved. The
boxes ultimately identified in this way match the connection
over the threshold of union (IOU) (i.e.,, IOU > 0.7), and
non-maximum suppression (NMS) was carried out in order
to select positive samples proposal boxes directly above the
scores of the eye (i.e., object likelihood) standard to gain the
candidates of the eye. The proposed region is described as
a negative (background) sample if IOU < 0.3 for all ground
truth boxes.

In the classifier of the Faster R-CNN [31], the final feature
map and the regions identified by the RPN in the previous
two phases are used as input. The main role is to regress to
the coordinate of eye area and class category. Initially, after
collecting the matching position to the boxes of the proposal
on the map of the feature, it is passed to the fully connected
layer, and candidate regions of various sizes are normalized to
the same size (i.e., 7 x 7) through pooling the ROI. Following

Vw
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this, the feature map of normalized size is passed to the
fully connected layer to give the regression vector for the
bounding box, and the probability score for containing an
eye. In addition, the refined appropriate predict boxes are
acquired from the regression vector of the box. NMS was
employed to remove the corresponding candidate boxes and
consequently give the ultimate detection results. Since the
current Faster R-CNN was intended for multi-class detection
(i.e. 20 classes), each proposal is categorized as multi-class
in the classified section. In the present study, to categorize
the outcomes into two types (i.e. background as well as an
eye), the nodes of the output were minimized to two in the
classification step.

2) LOSS FUNCTION

In the current study, the Faster R-CNN is used to catego-
rize the images into two types (background and object) in
conjunction with the RPN. Hence, in every structure of the
classifier and RPN, weight is qualified to reduce the function
of loss in the mini-batch for every box proposal or anchor
box:

L (p.p*,v,v*) = Leis (p. p*) + 50" Lieg (v.v¥)  (3)

Equation (3) shows the loss function used for the classifiers
and RPN. In the RPN, p refers to the likelihood that the anchor
box is the object, while p* refers to the ground truth label
(background = 0, object = 1), v refers to the regression
vector of the bounding box of the anchor box and v* refers
to the regression vector of the bounding box of the relevant
ground truth as well as the anchor box. For the classifier, p
is the probability distribution of matching each predict box
(for every predict box, p = (po, p1)), and p* refers to the
ground truth label (background = 0, eye = 1). Equation (3)
gives a value of one when p* is not a label of a background
region. v is the matching regression vector for the bounding
box of each class p*. v* refers to the regression vector of the
bounding box of the related ground truth as well as matching
class. Lcls (classification loss function) and Lreg (regression
loss function), each match with log function of loss as well as
the robust function of loss (smooth L1) [30]. In Equation (3),
the loss of regression takes place just when the ground truth is
not the background (p* # 0). Consequently, when the ground
truth is marked as an eye, loss of categorization and regression
with a complementary parameter of weight o. Continuing
through this phase, the weight will be qualified to reduce the
value of the loss and the location of the eye is identify in
the image. This process was carried out to identify the initial
bounding box for the eye.

C. DETECTION OF THE FINAL EYE REGION USING THE
DECISION MODEL

When the Faster R-CNN has identified the initial bounding
box for the eye, we capture this from the image, as shown
in Figure 5, to allow the decision model to predict the final
eye region. We use Gabor filters and a naive Bayes model in
our decision model to improve the performance of the eye

VOLUME 9, 2021

FIGURE 5. Initial bounding box captured for an eye.

detection scheme on the basis of reflections; the input for
faster module of R-CNN is the entire image, which is large but
includes irrelevant areas to exactly locate the eye positions.
Then, the initial eye bounding-box of outcomes is taken from
the Faster-R-CNN as input to the decision model to decide
the final eye region.

The features are then extracted from the image of an
eye captured using the initial bounding box, using Gabor
filters [34]. The most significant benefit of Gabor filters is
their invariance to translation, scaling and rotation. They are
also robust against photometric turbulence, such as noise in
images and changes in illumination [35]-[38].

The Gabor filter-based characteristics are immediately
removed from the gray-level images. In the three-dimensional
area, a two-dimensional Gabor filter is a Gaussian kernel
function moderated by a multifaceted sinusoidal wave of a
plane, which can be expressed as follows:

f? 4 yly I
N_W] exp _T exXp (]ZJfo )
x' = xcos@ + ysinf

G(x,y)

y = xcosf + ysinf 4)
where f is the occurrences of the sinusoid, 6 is the normal
to the parallel stripe orientation of a Gabor function, ¢ is
the stage counterbalance, o is the standard deviation of the
Gaussian envelope and y is the three-dimensional ratio of
aspects that describe the Gabor function support elasticity.
We use 40 Gabor filters with eight orientations and five
scales, as shown in Figure 5. The size of the primary image of
the eye area employed in the experiments is 401 x 251 pixels,
and with 40 Gabor filters, the dimensions of the feature vector
are 401 x 251 x 40 = 4,026, 040. Since the neighboring
pixels in an image are often closely related, the redundancy of
information could be reduced by down-sampling the feature
images created by Gabor filters [36], [38]. Down-sampling
with a factor of 16 is applied, meaning that the final size of
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FIGURE 6. Gabor wavelets, with eight orientations and five scales.

the feature vector will be 16,640. The vectors and the unit
variance are then normalized to a mean of zero.

The features extracted from the initial eye region are then
input to a naive Bayes classifier to predict the final eye area.
The naive Bayes model is a deeply streamlined Bayesian
probability model [39]. The naive Bayes classifier functions
on a solid individuality supposition [39] which means that the
probability of one attribute does not influence the probability
of another. Given a sequence of n attributes, the naive Bayes
classifier produces 2n! autonomous suppositions.

However, the results of the naive Bayes classifier are usu-
ally true. The study in [40] scrutinized the conditions under
which the naive Bayes classifier shows better performance
and showed that faults were caused by three elements: noise
in the training data, variance, and bias. The noise could be
straightforwardly reduced by selecting appropriate training
data, which should be separated into classes by a machine
learning algorithm. Bias arises due to groupings in the big
data used for training, and variance arises because these
groupings are very small.

The naive Bayes classifier is a simple, probabilistic clas-
sifier grounded in the application of the Bayes theorem.
We use this approach to train and predict (decide on) the
final eye region, using the initial bounding box of the eye
area for classification. The first stage of this process is to
identify the mean value of the data in Equation 5; there are
about 442 images of data that be must categorized using this
classifier.

1 N
= — i 5
" N,;x ©)

where N represents the entire data, and x; is a individual data
value. Employing 1 value, the impartial sample variants (82)
can be determined as shown in Equation 6.

2 1 u 2
) =m'2(xi—ﬂ) (6)
i=1

Using u and 82, the variants and mean of the training data
(the features of the initial bounding box of the eye region) are
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FIGURE 7. Examples of images from the training dataset.

calculated. Two classes are produced by the naive Bayes clas-
sifier (eye region/other region) which produce eight equations
reflecting the variants and means in each class.

w and 8% must provide the probability density, which can
be assessed using Equation 7 by replacing the values of i
and §2.

TR P, ™

X, W, ) = . 2:8
2.7 .82

where f is the class probability density as well as its feature,
are calculated using Equation 5, and 82 are the variants which
are calculated using Equation 6. Utilizing Equation 7 will
produce many values which form the input values of evidence
formulas, as shown in Equation 8.

n
Evidence = ZP fxw-f (x : 62> ()

i=1
p is the probability of class in the data, f(x : u) are the
means, which are calculated using Equation 7, and f (x : 82)
is the variance, which is also determined by Equation 7. Evi-
dence has employed for divider on the equations to determine

posterior values, as shown in Equation (9) below:

SN P, f (x:6%)

Eridence

Posterior(x) =

&)

Using Equation 9, values representing two classes can be
produced: the eye region and other regions. These two values
are subsequently graded to select the highest one, which
represents the decision (prediction) of the naive Bayes model.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
This section presents experimental results for the precision
and efficiency of the proposed FRCNN-GNB algorithm for
enhanced eye detection. These experiments involved eye
detection from 2,567 ultraviolet images of 142 subjects
with varying degrees of reflection or occlusion by glass
from an open dataset (CASIA-Iris-Distance database, Version
4.0) [41]. Examples of these images are shown in Figure 7.
The images were divided into two datasets, which were used
for testing and training. A total of 111 images were used as
the training dataset and the remainder as the test dataset.

To evaluate the training of the Faster R-CNN with the
ResNet model, the training stage consisted of two steps:
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(i) after training the RPN model grounded in a pre-trained
model of ImageNet, the detection network was trained using
the suggested regions created by RPN; (ii) the convolution
layer was prepared with the initial phase trained weights as an
alternative to the pre-trained ImageNet model, and the RPN
was trained for a second time. The suggested regions identi-
fied by RPN were then employed to train the whole detection
network. The convolution process of the layer accomplishes
the sharing weight. Training was implemented using two
personal computers with different specifications (PC1 and
PC2) and compared with a benchmark system (Benchmark).
PC1 had a 3.10 GHz Intel 15-2400 CPU with an NVIDIA
GeForce GT 430 1024 MB GPU and 20 GB memory, while
PC2 had a 2.9 GHz Intel 17-7500 CPU with an NVIDIA
GeForce GTX 950M 2048 MB GPU and 24 GB memory.
The Benchmark system used in comparing the computation
time is selected to align with the type of tasks performed
in this research. The researchers of this benchmark system
proposed a deep learning algorithm that used faster RCNN in
eye detection but with different layers than ours. The PC used
in the benchmark system had a 3.6GHz Intel i7-7700 CPU,
NVIDIA GeForce GTX 1070 (1920 CUDA cores and 8 GB
memory) GPU and 16GB memory [42] and the calculation
of the benchmark system score was based on comparison of
the AI scores of PC2 (AI-Score: 2512) and the benchmark
system (Al-Score: 14830). As reported in [43], Benchmark
of Al computation time depends mainly on the GPU of the
system [43]-[45].

During the training phase, the net of detection and the
values for the loss and precision of RPN were documented.

In the Faster R-CNN, classifier learning and RPN learning
were carried out interchangeably. A four-steps alternating
training approach was employed, in which each process was
conducted twice [31].

In the initial training stage of the classifier and RPN, end-
to-end learning was carried out along with feature extraction.
In the second stage of the classifier training and RPN, to share
the extractor of the features, the feature extractor was left
out and network learning was performed alone. The SGD
approach was employed during training with the following
parameters: no. of epochs = 6 (in the training of the classi-
fier), base learning rate = 0.001, momentum = 0.9, decay of
weights = 0.0005, batch size = 2, gamma = 0.1, batch size =
1, no. of epochs = 4 (in the training of the RPN), base learning
rate = 0.001 and gamma = 0.1. At each stage of training,
after every interval of iteration (i.e., 555), the trained model at
that point was stored; when training was complete, the model
with the fewest validation faults of the stored models was
chosen and used in the next step in the training process.
Nearly 18 hours were needed to apply all of the training
steps. Figures 8 and 9 show graphs of four kinds of loss and
accuracy function step of training, respectively.

The x-axis represents the number of iterations, while the
y-axis represents the values of loss and accuracy. As the
iteration number rises, the loss decreases toward a relatively
low value. The opposite behavior is seen in the graph of
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FIGURE 8. Graph of loss during training of the Faster R-CNN.
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FIGURE 9. Graph of accuracy during training of the Faster R-CNN.

accuracy: as the number of iterations increases, the accuracy
decreases towards a relatively high value. This indicates that
the Faster R-CNN employed in the present study has been
satisfactorily trained.

In Figure 8, RPN_L refers to the function of the RPN
network categorization loss; RPN_RegL refers to the loss
function for the network regression of RPN; Det_L refers to
the function of the categorization loss of the entire identifi-
cation network; Det_RegL refers to the overall loss function
for network regression. In Figure 9, RPN_A refers to the
precision function of the network categorization of RPN;
RPN_RegA refers to the precision function of the network
regression of the RPN; Det_A refers to the precision func-
tion of categorization of the entire identification network;
and Det_RegA refers to the precision function of the entire
network regression.

A total of 442 images were used to train the decision model
(with a Gabor filter and naive Bayes model), and these were
captured from the same training images on Faster RCNN with
a resolution of 401 X 251 pixels. Examples of these images
are shown in Figure 10. The 442 images were divided into
two classes: 222 belonged to the ‘eye region’ class, while
the remaining 220 images belonged to the ‘other region’
class. Examples of images from the training dataset are shown
in Figure 10.

After training, our proposed FRCNN-GNB model was
used for eye detection on the test dataset. In this testing phase,
the accuracy of the two models (before and after applying our
enhanced method of eye detection) was recorded.
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(b)

FIGURE 10. Examples of images from the training dataset for the decision
model: (a) ‘eye region’ images; (b) ‘other region’ images.

The performance of the two models was assessed both
before enhanced eye detection (i.e. with the Faster R-CNN
model) and after application of the enhanced eye detection
method (FRCNN-GNB). These networks were compared on
the test dataset, and were assessed based on the results of
recall and precision.

An analysis of accuracy and recall IOU was employed to
assess the precision of object detection. In this description,
true positive (TP) refers to the case where the value of the
10U of the identified box is larger than the reference threshold
for the IOU and the projected class is congruent with the
added information. False positive (FP) refers to the case
where the value of the IOU of the identified box is lower
than the reference threshold or that the projected class is not
in congruence with the added information. A false negative
(FN) means that even if the item exists in the image, no box is
identified. At a value of 0.5 for the IOU, Table 1 displays the
precision and recall for eye detection based on the proposed
method (FRCNN-GNB) and on Faster R-CNN. Using the
above-mentioned concepts of TP, FN, and FP, the following
two criteria are employed to measure the precision [46]:

. No.TP
precision = —————— (10)
No.TP+No.FP
No.TP
Recall = ————— (11)
No.P + No.FN

where No. FP, No.TP, and No. FN refer to the numbers of
FP, TP, and FN outcomes, respectively. The maximum and
minimum values for the recall and precision are one and zero.

As shown in Table 1, for the Faster R-CNN, the precision
is 95.968%, while for the proposed FRCNN-GNB method,
the precision is increased by 3.199%.

Figure 11 (a) shows several wrong detections using Faster
R-CNN, while Figure 11(b) shows the corresponding correct
detection using FRCNN-GNB.
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TABLE 1. Recall and precision for eye detection using the proposed
enhanced method (FRCNN-GNB) and a Faster-R-CNN at an 10U threshold
of 0.5.

Algorithm Precision Recall
Faster R-CNN 0.95968 0.99167
Proposed “FRCNN- 0.99167 0.99167
GNB” method

TABLE 2. Comparison of the accuracy and time of eye detection of the
proposed FRCNN-GNB model with state-of-art algorithms, on the CASIA
v4 Distance database.

Method Accuracy Rate Detect Time (s)
Rizon et al. [47] 92.91119% -
Uhl, Wild [48] 96.4% 1.28
Chai et al. [49] 95.6193% -
single classifier by Uhl, 65.8% 0.60
Wild [48]
nested classifier by Uhl, 14.6% 0.65
Wild [48]
Our implemented faster 98.21% 0.5915
R-CNN [31]
Our implemented FR- 99.1% 0.5914
CNN-NB
Proposed “FRCNN- 100% 0.5910
GNB”

FIGURE 11. Examples of eye detection using (a) Faster R-CNN and (b) the
proposed FRCNN-GNB method.

Table 2 shows the accuracy rates for eye detection on the
CASIA v4 Distance database for the proposed FRCNN-GNB
method, with alternative methods, including the Faster
R-CNN method and our proposed without Gabor filter
FRCNN-NB.

In Table 2, we compare the results of the proposed
FRCNN-GNB model with the following state-of-art algo-
rithms: Uhl, Wild [48], single classifier by [48], and nested
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TABLE 3. Comparison of the computation times of PC1, PC2 and the
benchmark system.

Method Detect Time (s)
Our implemented PC1:22.636
faster R-CNN [31] PC2:3.4922
Benchmark: 0.5915
Our implemented PC1:22.5908
FRCNN-NB PC2:3.4913
Benchmark: 0.5914
Proposed PCl1:22.4216
“FRCNN-GNB” PC2: 3.4892

)

Benchmark: 0.5910
- ]r..
P
A 2R -

FIGURE 12. Eyes detected with occlusion and angle challenges using
proposed FRCNN_GNB method.

classifier by [48] performing eye detection from the face
detection result. Kawaguchi and Rizon [47] used intensity
valleys to detect the face area and then feature template
form valleys were used followed pairs costs to detect eye.
Chai et al. [49] used morphological processing and flirting
to detect the eye. In this article, we implemented a Faster
R-CNN [31] method which directly detects the eye from
the face image, and also we implemented (cascade Faster
R-CNN with Naive Bayes model “FRCNN-NB’’) without
using Gabor filter.

Uhl and Wild [48] used 2,511 images from a total
of 2,567 in the CASIA V4 Iris-Distance database, so when
consider 56 images which [48] did not used it the accu-
racy become 94.2%. Hence, the eye detection accuracy of
the model of Chai et al. [49] is superior by 2.71% and
1.42% to those of Kawaguchi and Rizon [47] and Uhl
and Wild [48], respectively. However, the accuracy of our
proposed FRCNN-GNB method is better by 0.9%, 1.79%,
4.38%, and 5.8% than FRCNN-NB, Faster R-CNN [31],
Chai et al. [49], and Uhl and Wild [48], respectively.

As shown in Table 3, the computation time required for
eye detection by the proposed FRCNN-GNB method is lower
than for FRCNN-NB and Faster R-CNN [31] by 0.0021 s and
0.003 s, respectively when using PC2, and by 0.1692 s and
0.2144 s respectively when using PC1. Moreover, the runtime
of the proposed method is less than FRCNN-NB and Faster
R-CNN by 0.0004 s and 0.0005 s respectively when using the
benchmark system.

Considering its computation time, the proposed method is
capable of real-time eye detection since it is done in fraction
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of a second. Table 3 shows that there is a big difference
in detection time using different systems (PC1, PC2, and
benchmark system). This difference is mainly caused by the
varying GPU specification in the three systems.

Figure 12 shows example of images illustrating accurate
eye detection under challenging conditions such as off-angle
and occlusion, using our proposed FRCNN-GNB model.

The proposed FRCNN-GNB method is much more accu-
rate than the current methods of eye detection, as it uses Faster
R-CNN to detect the initial bounding boxes for the eye region
and then uses a decision model (based on Gabor filters and
naive Bayes) to decide on and locate the correct eye regions,
thus achieving the objectives of this research.

V. CONCLUSION

This study proposed an enhanced eye detection model that is
resistant to reflection by glasses or occlusion. The proposed
method is an attempt to the detection of the eye. It is vitally
important that the proposed approach accomplishes predic-
tion of the eye region immediately, without requiring local-
ization of the face. The problem of increasing the precision
of eye detection under conditions of reflection from glasses
or occlusion was solved by using a cascading Faster R-CNN
with a Gabor filter and a naive Bayes model. It is important
to note that the suggested approach initially identifies the eye
region as an area of interest and then trains the Faster R-CNN
using this region of interest to detect the initial eye region
then capture the initial eye region. The results are then passed
to a Gabor filter to extract features and then to a naive Bayes
model to determine the final eye region. Through experiments
with the CASIA Iris-Distance database V4, we demonstrated
the high detection rate of the suggested approach and its high
performance in comparison to other detection approaches.
Assessments were carried out using MATLAB 2019a, and the
presented approach showed high performance. These exper-
iments show that the suggested enhanced approach can be
effectively applied to eye detection. The proposed approach
combines an object detection algorithm with a decision model
(Gabor filter and naive Bayes) to predict the correct eye
region.
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