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ABSTRACT Multi-label classification (MLC) is considered an essential research subject in the computer
vision field, principally in medical image analysis. For this merit, we derive benefits from MLC to diagnose
multiple grades of diabetic retinopathy (DR) from various colored fundus images, especially frommulti-label
(ML) datasets. Therefore, ophthalmologists can detect early signs of DR as well as various grades to
initiate appropriate treatment and avoid DR complications. In this paper, we propose a comprehensive ML
computer-aided diagnosis (CAD) system based on deep learning technique. The proposed system’s main
contribution is to detect and analyze various pathological changes accompanying DR development in the
retina without injecting the patient with dye or making expensive scans. The proposed ML-CAD system
visualizes the different pathological changes and diagnoses the DR grades for the ophthalmologists. First,
we eliminate noise, enhance quality, and standardize the sizes of the retinal images. Second, we differentiated
between the healthy and DR cases by calculating the gray level run length matrix average in four different
directions. The system automatically extracts the four changes: exudates, microaneurysms, hemorrhages,
and blood vessels by utilizing a deep learning technique (U-Net). Next, we extract six features, which are
the gray level co-occurrence matrix, areas of the four segmenting pathology variations, and the bifurcation
points count of the blood vessels. Finally, the resulting features were afforded to an ML support vector
machine (SVM) based on a classifier chain to differentiate the various DR grades. We utilized eight
benchmark datasets (four of them are considered ML) and six different performance evaluation metrics
to evaluate the proposed system’s performance. It achieved 95.1%, 91.9%, 86.1%, 86.8%, 84.7%, 86.2%
for accuracy, area under the curve, sensitivity, specificity, positive predictive value, and dice similarity
coefficient, respectively. The experiments show encouraging results as compared with other systems.

INDEX TERMS Multi-label computer-aided diagnosis (ML-CAD), multi-label classification (MLC), deep
learning (DL), U-Net, diabetic retinopathy (DR).

I. INTRODUCTION
Diabetes is a chronic disease characterized by blood glucose
level elevation. This elevation leads over time to severe dam-
age of the human blood vessels (BV), eyes, and nerves [1].
Diabetic retinopathy (DR) is mostly one of the common
complications of diabetes. It is a progressive disease that can
cause permanent blindness without warning [2]. By 2040,
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the studies estimate that diabetes will affect about 642 mil-
lion adults overall the world, while DR affects one from
every three people with diabetes [3]. Another study ensures
that by 2030, the number of people with DR will grow to
191 million [4].

The main characteristics and signs of the DR are microa-
neurysms (MA), hemorrhages (HM), exudates (EX), venous
loops (VL), venous reduplication (VR), and neovasculariza-
tion (NV). The occurrence of one/two or all of these features
in the retina determines the DR stages [5]. In the initial
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FIGURE 1. The various grades of DR from IDRiD dataset: (a) Normal retina anatomy, (b) Normal case, (c) Mild, (d) Moderate, (e) Severe
(NPDR), and PDR.

DR grades, patients are generally without notable symp-
toms, but, in advance, patients may suffer from symptoms
that include distortion, blurred vision, and progressive visual
severity loss. Therefore, DR grades can be categorized into
non-proliferative DR (NPDR) and proliferative DR (PDR).
On the other hand, NPDR can be branched to subgrades,
which are mild, moderate, and severe. Mild is indicated by
appearing small MA, whereas moderate reflects appearing
HM and/or EX. The severe NPDR reflects increasing in
retinal ischemia by appearing small, abnormal, and weak BV,
which are called NV. This severe grade is setting the stage for
the PDR. Fig. 1 shows the various DR grades by annotating
the retina anatomy and pathological changes, such as HM and
EX. Besides, NVs increase the area of BV and cause ischemia
in the retina. Fig. 1 shows some examples of different DR
grades in fundus images.

HMappear similar toMA if they are small. On the contrary,
MA appears similar to HM if it is large on wide BV. The
physician can distinguish between the two signs in the clinic
by injecting the patients with fluorescein dye. TheMA, in this
case, takes the same white color as the BV but HM not.
Another solution is that the patient pays for an OCTA scan,
which may be centered only on the retina. The third patholog-
ical change sign is EX. It is resulted from the breakdown of
the blood-retina barrier, allowing leakage of serum proteins
and lipids from the BV. On the other hand, NV is the PDR
mainmark. It often occurs near the optic disc (OD). It is called
NV of the disc (NVD). When NV occurs within three disc
diameters of the major BV, it is called NV elsewhere (NVE).

There are multiple ocular imaging modalities used to
depict the retina to help ophthalmologists detect ocular dis-
eases. Previously, fluorescein angiography (FA) based on
dye used in detecting retina vascular diseases. Then, fundus

autofluorescence (FAF) became commonly used in macular
degeneration and pattern dystrophies. By 1990, optical coher-
ence tomography (OCT) was invented to visualize the retina’s
layers. It was developed mainly to detect macular diseases
and choroidal NV. OCT’s subjective and insensitive to the
small retinal thickness andmacular breaks [6]. Recently, OCT
angiography (OCTA) is developed, which depends on motion
contrast from the blood flow. In OCTA, there is no need
for dye injection. It is safe and non-invasive, but it works
in a small field of view (FOV) and unable to show leakage.
After this brief review, we can conclude that color fundus
photography remains the most applicable imaging modality,
especially in DR. The main merits depict the retinal BV, OD,
macula, and vascular abnormalities. It allows an objective
comparison of the retina and optic nerve appearance [7].

It is noteworthy that deep learning (DL) has a vitally
important role in detecting DR and its different stages. In the
last few years, many systems classified the DR to different
stages from mild to PDR by utilizing DL based on the color
fundus imaging modality, such as [8]. DL’s idea was inspired
by brain neuronal connectivity. This connectivity enables the
brain to process large amounts of data. Besides, it extracts
meaningful patterns depending on bygone experiences with
the same inputs.Moreover, DL is able tomodel data at various
abstractions. Deep convolutional neural networks (CNN) has
been at the forepart of DL. Recently, CNN has achieved great
success in many real-life applications [9], [10], especially in
medical image analysis and multi-label (ML) classification
[11], [12]. In detecting DR and its grades, the ophthalmol-
ogists and developers face many challenges and problems.
They can be summarized in the following points:
• DR detection is accomplished by involving a well-
trained physician.
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• The manual retina’s structural changes and BV abnor-
malities detection may be inconsistent and time-
consuming, it depends on physician’s experience [13].

• Previous automated systems [14] were developed to
solve such problems based on the hand-crafted features
tools. These tools are sensitive to the contrast of fundus
images. Besides,there are noise, artifacts, and illumina-
tion in fundus images.

• There is feature similarity between the eye anatomies
and DR lesions. For example, HM takes the same color
as BV. On the other side, it may be like an MA if it is
small. EX takes the same color and shape as OD.

• Feature Extraction and segmentation steps are the work-
load and burden the developers.

• Recent improvements in biomedical image analysis are
based on DL, which could be exploited to enhance
the Computer-aided Diagnosis systems (CAD)s’ perfor-
mance. Moreover, many DL models fall into overfitting.

• A deep fine-tuned CNNs are very useful in medical
image analysis, and even outperform the fully trained
CNNs, especially in limited training set [15].

All of these challenges motivated us to present a novel
ML-CAD system based on conventional and DL techniques
to automatically detect DR grades accurately by utilizing dif-
ferent ML color fundus images. The proposed system starts
with the preprocessing phase, in which the system removes
noise, enhances contrast, and resizes the color fundus images
to a standard size. In the binary classification phase, we dif-
ferentiate the healthy from the DR grades by extracting
11 descriptors of the gray level run length matrix (GLRLM)
in four directions and feeding the feature vector to the support
vector machine (SVM) classifier. To visualize the DR signs
for the ophthalmologists, wemade the segmentation phase for
the DR case images. We resulted in four segmenting images
(BV, EX, MA, and HM) for each DR image by the cus-
tomized U-Net DL model. Then, the bifurcation points (BP)
are extracted and counted from the BV network image. After
that, we extracted six features from the four segmented DR
images. Finally, we utilized the multi-label SVM (MLSVM).
MLSVM is SVM based on the classifier chain (CC)) to
diagnose the four DR grades (mild NPDR, moderate NPDR,
severe NPDR, and PDR). We validated each of these phases
to ensure robustness and accuracy. The proposed ML-CAD
system improved the accuracy of classifying the DR grades
from eight various benchmark datasets.

The proposed methodology comprises a series of contribu-
tions, which are listed as follows:
• The problems of low quality, contrast enhancement, and
various resolutions and sizes of the utilized datasets were
solved.

• We present a comprehensive system that used DL and
conventional methods to classify healthy andDR grades.

• We utilized a customized, robust, and automated method
for segmenting the four pathological variations (BV,
EX, MA, and HM) rather than using many supervised
segmentation methods for each sign’s detection.

• The ophthalmologists are provided with four accurate
segmenting images of main pathological DR signs and
the overall diagnosing results. The other systems con-
centrated on one or two signs’ segmentation or mak-
ing direct diagnosing without visualizing the different
pathological variations.

• The proposed system extracts seven various essential
features from the segmenting pathological variations.

• We utilizedML classification (MLC) byMLSVM based
on problem transformation to diagnose the different DR
grades. The utilized ML classifier provides the flexibil-
ity to future grading based on other lesion detection.

• The proposed ML-CAD system was applied on eight
benchmark datasets with different cameras’ settings,
various patients (children, adults, men, women, and
elderly people), and different noise, quality, and illumi-
nation levels.

• We validated the proposed ML-CAD system by com-
paring it with other systems. Moreover, we utilized six
different performance measures.

We organized the rest of the manuscript into six sections.
Section II presents the background of the current literature’
reviews. It also focuses on recent studies’ limitations and
how the proposed ML-CAD systems tame these limitations.
Section III presents the proposed ML-CAD system frame-
work phases. Section IV describes the conducted experi-
ments. Section V presents the discussion and the analytical
comparison between the proposed ML-CAD system and oth-
ers. Finally, Section VI concludes our work and highlights
our future research directions.

II. RELATED WORK
Many researchers have worked on DR detection and diag-
nosis by utilizing retinal fundus images. For instance,
Brian et al. [16] differentiated HM from EX to detect DR.
They first detected OD from the green channel. To improve
the image contrasts, they utilized the contrast limited adap-
tive histogram equalization (CLAHE). Thereafter, the authors
segmented the EX by combining CLAHE with Gabor fil-
ters, followed by thresholding. They adopted the circular
Hough transform (CHT) approach, followed by thresholding
to extract HM. The authors segmented only EX and HM signs
without diagnosing the DR grade.

Atlas and Parasuraman [17] extracted gray level
co-occurrence matrix (GLCM), GLRLM, and speeded up
robust features (SURF). They classified normal and DR
images. They utilized the adaptive neuro-fuzzy inference
system (ANFIS) to extract HM. The authors only segmented
HM as a sign of DR, but the DR grade cannot be diagnosed
using HM alone. Orlando et al. [18] applied the SVM tech-
nique to extract BV. According to the related distance of
pixels, they weighed the pairwise interactions. They utilized
a 2D Gabor filter and unary potentials of line detector to
standardize all the images. However, the authors ignored
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the merits of automated segmentation, which can affect the
results negatively.

Fadafen et al. [19] extracted EX by morphological after
excluding OD. The authors utilized edge and feature-based
detection to detect BV through brightness, width, and direc-
tion.Their results were dependent on the human visual sys-
tem, which are sensitive to intensity and directions. Although
EX is considered a strong sign for DR detection, the authors
could not classify the DR grades. Moreover, they did not
utilize a contrast enhancement technique. Safitri and Juniati
[20] diagnosed normal and DR. The authors enhanced the
contrast by CLAHE. They segmented the BV by thresh-
olding and the matched filter. Finally, they utilized the
box-counting technique for fractal dimension and k-nearest
neighbor (KNN) for classification. However, the results were
dependent on the fractal dimension values. Their perfor-
mance measures did not sufficient in ML imbalanced dataset.
Abdelmaksoud et al. [21] classified the healthy and the DR
grades by extracting EX, MA, HM, and BV. They utilized
matched filter with a first-order Gaussian derivative fil-
ter and some morphological operations. They extracted the
GLCM, areas of lesions, and BP counts. Finally, they utilized
MLSVM classifier. It isn’t easy to extract many signs from
the fundus images using conventional methods. It burdens the
developer, especially in large datasets. Therefore, it is crucial
to utilize DL methods.

Recently, several researchers have focused their atten-
tion on detecting DR grades based on DL to save the
effort of extracting and selecting features by handcrafted
feature-based methods, such as Abr ’amoff al. [22] evalu-
ated the analysis software of the IDx-DR device. The device
takes OD, macula centered images for each eye. It outputs
the grade of the DR. It depends on AlexNet and Oxford
Visual Geometry. The authors modified the device’s system
to be applied on public datasets. But, they did not capable
of detecting PDR separately from macular edema (ME) as
well as the IDx-DR device. Moreover, the diagnostic drift
in differentiating between HM and MA affected detecting
mild and moderate grades. Bellemo et al. [23] made a com-
bination of two CNNs: an adapted visual geometry group
network (VGGNet) and a residual neural network (ResNet)
to classify the images based on gradient-descent (GD). The
two models’ probability output scores were summed, and
then, they made the final classification by thresholding the
output scores due to the sensitivity (SEN) and specificity
(SPE). Their model gave higher accuracy but required more
computational time.

Unlike [22] and [23], Mansour [24] utilized AlexNet to
extract BV features. He utilized connected component anal-
ysis (CCA) for feature extraction and selection. The AlexNet
was 5- convolution (CONV) layers and two- fully con-
nected (FC) layers. Finally, he utilized an SVM classifier
to classify the DR classes. The author segmented only BV
from the images and ignored other lesions, such as HM, MA,
and EX that are essential in detecting mild and moderate
cases.Gadekallu et al. [25] utilized principal components

analysis (PCA) and dimensional reduction by firefly. The
authors made normalization by using the Standardscalar.
Their model was being overfitted when it was implemented
on a small dataset. Hagos et al. [26] utilized the pre-trained
Inception-V3 model to classify the DR into two classes:
normal and abnormal. The authors made the preprocessing
by cropping and resizing the images. They utilized a softmax
classifier, stochastic GD (SGD) optimizer. They assigned the
learning rate (lr) to be 5 × 10-4 and utilized the cosine loss
function. The authors just classified the presence/absence of
DR, while different grades of DR need to be differentiated.
The same idea of hagos et al. [26] was proved in Tymchenko
et al. [27] work. They made some augmentation processes
such as horizontal and vertical flipping, transposing, and
rotation. The authors utilized EfficientNet models based on
pretrained ImgeNet. Although they utilized more than one
dataset to validate the model, it is not enough to validate their
real-life model. Therefore, they intended to utilize Shapley
Additive exPlanations (SHAP) method in the future to visu-
alize features that give the physician the assessment ability of
the stages.

Xu et al. [28] introduced a system for detecting only
DR’s presence/absence. They presented A CNN model with
10- CNN layers. After each two CNN layers, they inserted
one max pooling (MP) layer then the FC layers. They utilized
the SGD optimizer and the softmax classifier. They cared
about the preprocessing by doing data augmentations, but
they utilized a small dataset.Pratt et al. [29] presented a CNN
model that included 10-layers of CNN, three FC layers, and
classification to five classes by the softmax classifier. They
used the rectified linear unit (ReLU) as an activation function.
Besides, they used batch normalization (BN) and used MP
to occur after each CONV layer. Unlike [28], the authors
ignored the preprocessing stage in their proposed system.
In fact, noise affected their classification results. Moreover,
it is necessary to utilize more than one dataset to achieve
reality and robustness.

Butt et al. [30] built CNN models like [28] and [29], but
the difference in their work was that they built three CNN
modules based on RGB channels. They separated the RGB
fundus images to R, G, and B and supplied each one in a
distinct model. The authors concluded that the second model
with the B channel gave better accuracy than the models with
R and G channels.Li et al. [31] utilized fractional MP in CNN
to detect five classes of DR. The authors processed the images
by rescaling and clipping. They utilized an SVM classifier
with a modified recognition rate. Although the authors built
two CNNmodels with different layers to get different feature
spaces and combine the best predictions by SVM classifier,
they need sufficient and balanced groups of images, such as
[29]. They failed to predict classes 3 and 4 accurately and
hardly differentiated class 0 from class 1 in testing new data.

From the previous review of the current literature utilized
conventional methods and DL architectures, we can conclude
their main limitations in diagnosing DR grades from color
fundus images as follows:
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• Most studies focused on detecting the DR pres-
ence/absence and ignored the DR grades. On the other
hand, the studies which focused only on segmenting the
DR signs, satisfied with segmenting only one or two of
DR pathological variations (EX, HM, BV, and MA).

• Some studies proposed the DR grades diagnosis. These
models were conservative, and they were not applicable
in the real world because of the insufficient and imbal-
anced datasets. Besides, they fall into overfitting.

• A lot of state-of-the-art systems diagnosed the DR
grades without segmenting and visualizing the different
variations of DR for the ophthalmologists.

• Most studies ignored preprocessing steps, while the
noise and low contrast affect the segmentation and clas-
sification accuracy.

To conquer these restrictions and obstacles, we present a
comprehensive ML-CAD system. It mainly depends on the
problem transformation MLC. It means that the system trans-
forms the problem into sub-problems. The number of derived
problems is the same as the class labels number. MLC idea
depends on label correlations, which can result in unprece-
dented labels from the existing labels. The proposed system
evicts noise by using the median filter. On the other hand,
it boosts the contrast and handles the illumination problem by
histogram equalization for brightness preservation based on
a dynamic stretching technique (HEBPDS) [32]. The system
makes the preprocessing steps without losing the images’
features. It segments 4 DR signs (HM, EX, BV, and MA)
from various colored fundus images by utilizing a customized
U-Net model.

The segmentation is a significant phase for the DR grades
diagnosis for the developer and the ophthalmologists. It is
essential to visualize the main DR four pathological varia-
tions for the ocular specialists. It helps the ophthalmologists
and lessens the burden of the patient. The ophthalmologist
can observe the BV network with NV andMAwithout inject-
ing the patient with dye or paying for an expensive scan.
It provides them with HM and EX and diagnoses the disease
grade to do the right treatment in time. The system combines
conventional and DL methods to get benefits from them in
diagnosing DR grades accurately.

Seven different important features are extracted: GLRLM,
GLCM, regions of interest (ROIs) areas, and BP of BV from
the four segmenting images. MLSVM classifier is used to
classify the five various DR grades: normal, mild NPDR,
moderate NPDR, severe NPDR, and PDR. Our system can
be applied to various color fundus images with different
cameras’ settings, qualities, noise, illumination on different
patients. Eventually, we validated our ML-CAD system by
making many different rapprochements with other systems
and methods. We build the proposed framework to segment
and diagnose the DR grades based on our system in Abdel-
maksoud et al. [21]. In the proposed framework, we extend
and promote our previous system [21].We can summarize the
difference in the following five points. First, wemade a binary

classification that depends on hand-crafted feature extraction.
This phase is used to distinguish healthy from DR cases. Sec-
ond, we added some post-processing steps to prepare images
for the segmentation phase. Third, we segmented the fundus
images by utilizing a customized, universal DL U-Net model.
In fact, shallow classification models’ performance depends
on the quality of the features fed into them. On the other hand,
classification is mainly based on the accuracy of the segmen-
tation phase. Therefore, we customized the U-Net model by
establishing it deeper and customized its hyperparameters to
provide precise results. Fourth, we increased the features that
we extract to classify the DR grades accurately. We extracted
11 descriptors of the GLRLM on four directions, which are
0o, 45o, 90o, and 135o for each image. Finally, we evalu-
ated the performance using six different performance metrics
and compared it with many current conducted systems and
methods.

III. THE PROPOSED ML-CAD SYSTEM
The primary objective of the proposed ML-CAD system is
to detect DR, present the four DR signs, and classify the five
various healthy and disease grades from different eight RGB
fundus datasets (four of them are consideredML) that contain
multiple DR lesions. Segmentation of DR signs and the DR
grades diagnosis help the ocular specialists observe different
disease variations and make the right treatment decisions.

The proposed ML-CAD system utilizes GLRLM to
retrieve texture features from four different angles of the
preprocessed fundus images. The output features are used to
differentiate healthy and DR cases. The system also visual-
izes the segmenting lesions in four separated images for each
entered DR case image. The ML-CAD system also extracts
six features from the segmented DR signs. It then selects the
most correlated and significant features values to locate each
sign’s peculiar characteristics deeply. The proposed system
depends on MLC problem transformation. Finally, in vali-
dation,we utilized six performance measures to validate the
proposed ML-CAD system.

Fig 2 shows the architecture of the proposedML-CAD sys-
tem, which consists of eight phases. First, the preprocessing
phase eliminates noise and enhances images. Second, the fea-
ture extraction phase is implemented to retrieve the entered
fundus images’ main characteristics. Third, the binary clas-
sification phase uses the previous feature vector to classify
the images into normal and DR cases. This phase is signif-
icant as it provides only the DR cases to the next phases
to reduce time, memory space, and effort. Then, we make
the post-processing phase, which contains three steps. First,
resizing all the images and their ground truth (GTs) to be in
a standard size of 512 × 512 and enable validation between
the predicting and the segmenting images. Second, creating
the mask for each image to be excluded in the segmenta-
tion. Third, we utilized the IDRiD dataset to train the U-Net
model on the three lesions GT’s (MA, EX, and HM). But
the IDRiD dataset’s GTs are in RGB. Therefore, we have to
binarize them. The fifth phase in the proposed framework is
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TABLE 1. A summery of some current studies, AUC: Area under curve, ACC: Accuracy, SPE: Specificity, SEN: Sensitivity, and DSC: Dice coefficient.

FIGURE 2. The proposed ML-CAD system for detecting and diagnosing healthy and DR grades from color fundus images.

the segmentation by utilizing the customized U-Net model.
In this phase, we train the U-Net model on the DRIVE dataset
BV’s GT to predict the vasculature network of the other seven

datasets. By doing the four training, the model produces four
segmenting images for each DR case. We validate the result-
ing segmenting images with their GTs and the experts. After
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that, we performed the feature extraction on the ROIs. The
resulting feature vector is fed to the classification, the seventh
phase of the proposed framework.We utilized the SVMbased
on CC classifiers, which are called MLSVM, to classify the
other four DR grades. Finally, we evaluated binary classifica-
tion, segmentation, and final MLC performance by utilizing
six various performance metrics. We evaluated the overall
proposed system by comparing it with other systems and
methods. The proposed ML-CAD system phases are demon-
strated in detail in the following subsections.

A. PREPROCESSING
This phase is crucial in any medical system as the medical
images are characterized by artifacts, noise, and insufficient
quality that vary from one modality to the other. In this
respect, fundus images suffer from low contrast, illumination,
and noise. Therefore, the proposed system includes some
steps in the preprocessing phase to enhance the quality and
remove the noise. First, we apply the median filter to strip
noise [33]. Then, we utilized HEBPDS [32] to enhance the
contrast of the fundus images. At the end of the preprocess-
ing phase, we extracted the green channel from the RGB
enhanced image to use it in the feature extraction and the
binary classification by GLRLM and SVM.

B. GLRLM EXTRACTION
In the first extraction phase of the proposed framework,
we utilized GLRLM to extract the features of the green chan-
nel of all processed images [34]. The resulting feature vector
is used to differentiate normal and DR cases. To illustrate how
the GLRLM works, we represented it by (gl, rl, θ), where gl
is the gray level, rl is the run length, and θ is the direction
angle. It is a way of testing an image across a given direction
to find the pixels with the same gray level values. Thus,
it gives the homogeneous runs’ size for each gray level. Many
different GLRLM matrices can be computed for a single
image as we utilized 11 matrices of them. Each matrix is
calculated for each selected direction of the preprocessed
image. Therefore, we calculated 11 GLRLMmatrices in four
different directions 0o, 45o, 90o, and 135o. We computed
these 11 matrices’ average in 4 directions to get a single
averaged GLRLMmatrix for each image. The main GLRLM
construction for processed fundus images and the feature
vector steps’ measurement is shown in two algorithms, which
are found in [35]. GLRLM can be represented by Eq. 1.

GLRLM (θ ) = g(i, j)|θ, 0 ≤ i ≤ Ngl, 0 ≤ j ≤ rlmax (1)

where j is the number of elements, i is the intensity in the
direction θ ,Ngl is the maximum gl, and rlmax is the maximum
length. We calculated 11 texture feature descriptors, which
are short run emphasis (SRE), long run emphasis (LRE),
short run low gray-level emphasis (SRLGLE), short run high
gray-level emphasis (SRHGLE), long run low gray-level
emphasis(LRLGLE), long run high gray-level emphasis
(LRHGLE), run percentage (RP), low gray-level run empha-
sis (LGLRE), high gray-level run emphasis (HGLRE), run

length non-uniformity normalized (RLNN), and run length
non-uniformity(RLN) [36]. Eqs. 2 − 12 show the computa-
tions of the aforementioned 11 feature descriptors.

SRE =

∑Nl
i=1

∑Nr
j=1

(g(i,j)|θ)
i2∑Nl

i=1
∑Nr

j=1 g(i, j)|θ
(2)

LRE =

∑Nl
i=1

∑Nr
j=1(g(i, j)|θ )j

2∑Nl
i=1

∑Nr
j=1 g(i, j|θ)

(3)

SRLGLE =

∑Nl
i=1

∑Nr
j=1

(g(i,j)|θ)
i2 j2∑Nl

i=1
∑Nr

j=1 g(i, j)|θ
(4)

SRHGLE =

∑Nl
i=1

∑Nr
j=1

(g(i,j)|θ)i2

j2∑Nl
i=1

∑Nr
j=1 g(i, j)|θ

(5)

LRLGLE =

∑Nl
i=1

∑Nr
j=1

(g(i,j)|θ)j2

i2∑Nl
i=1

∑Nr
j=1 g(i, j)|θ

(6)

LRHGLE =

∑Nl
i=1

∑Nr
j=1(g(i, j)|θ )i

2j2∑Nl
i=1

∑Nr
j=1 g(i, j|θ )

(7)

HGLRE =

∑Nl
i=1

∑Nr
j=1(g(i, j)|θ )i

2∑Nl
i=1

∑Nr
j=1 g(i, j|θ)

(8)

LGLRE =

∑Nl
i=1

∑Nr
j=1

(g(i,j)|θ)
j2∑Nl

i=1
∑Nr

j=1 g(i, j)|θ
(9)

RLN =

∑Nr
j=1 ((

∑Nl
i=1g(i, j)|θ ))

2∑Nl
i=1

∑Nr
j=1 g(i, j)|θ

(10)

RLNN =

∑Nr
j=1 ((

∑Nl
i=1g(i, j)|θ ))

2∑Nl
i=1

∑Nr
j=1(g(i, j)|θ )

2
(11)

RP =
Nl∑
i=1

Nr∑
j=1

(g(i, j)|θ )
Np

(12)

where Nl is the number of discrete intensities in the image,
Nr is the number of discrete rl, and NP is the number of
pixels. SRE calculates the short runs distribution. The higher
value of SRE marks accurate textures. LRE measures the
long runs distribution. The higher value of LRE marks poor
textures. SRLGLE assures runs in the upper left quadrant
of GLRLM, where SRL and low gl are located. LRLGLE
measures the joint distribution of long rl with lower gl values.
The LRHGLE method measures the joint distribution of the
long rl with higher gl values. The HGLRE method mea-
sures the distribution of higher gl values. The higher value
indicates more concentration of high gl values in the image.
The LGLRE method measures the distribution of the low
gl values. The higher value indicates more concentration of
low gl values. The RLN method measures the similarity of
the rl throughout the image. The lower value indicates more
homogeneity among rl in the image. TheRLNNmethod is the
normalized version of the RLN. RP calculates the percentage
of the number of realized runs and the maximum number of
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potential runs. The highly uniform ROI volumes produce a
low run percentage.

C. BINARY CLASSIFICATION
The calculated feature vector is supplied to an SVM clas-
sifier to distinguish normal from DR cases. SVM divides
the data points into two classes. The hyperplane gives a
margin to separate the two data groups into (0) or (1). The
distance between the points and the separation line should
be far enough, so the points are called support vectors. After
generating the model, the classifier diagnoses the test set of
images. The DR cases are labeled (1) and supplied to the
next phases for detecting the exact DR grade, whereas the
normal cases are labeled (0). This phase is very important
for the segmentation phase. There is no need to segment
the healthy cases, which reduces the overall processing time,
memory space, and effort. The primary and essential reason
to construct this phase is that the significant contribution is to
visualize all the pathological variations to the ophthalmolo-
gists besides giving them the grade of each case. Therefore,
it is no need to provide the ophthalmologists with unnecessary
segmenting images for each healthy case. It is sufficient to
tell them about the normal or healthy cases without giving
them the BV, black ( EX, HM, and MA) images. The four
DR signs are not found in healthy cases. Of course, this phase
prevents overlapping, obfuscation, and confusion for the
ophthalmologists.

D. POST-PROCESSING
In this phase, we prepare the images for the customizedU-Net
segmentation phase. Because we utilize different images
with diversity in resolution, noise, contrast, and illumina-
tion, we had to build the post-processing. This phase is
an extension of the preprocessing phase. In this subsection,
we have to resize all the preprocessed RGB images and
their GTs to a standard size of 512 × 512. The GTs images
are resized to be validated with the predicted ones. On the
other hand, IDRiD dataset is very large. All images are
in resolution 4288 × 2848. This step also saves memory
space and reduces the processing time. The second step in
this phase is the IDRiD’s GTs binarization because IDRiD
GTs are in RGB, as shown in Fig. 3. Finally, we extract
masks of all images to be excluded in the segmentation
process.

E. SEGMENTATION
In this subsection, we first give a brief illustration of the
CNN identifications and operations. Then, we demonstrate
in detail the U-Net architecture and its hyperparameters that
are changed to improve training and validation accuracy. The
segmentation phase by the U-Net model positively affects the
classification of the four DR grades (mild NPDR, moderate
NPDR, severe NPDR, and PDR). In addition, it is considered
a universal method to extract the four pathological changes
by training the model on each sign’s GTs.

FIGURE 3. An example of IDRiD dataset with HM, EX, and MA GTs without
binarization process: (a) The original image, (b) EX GT, (c) HM GT, and
(d) MA GT.

1) CNN
Generally, the human brain detects the features to differen-
tiate and categorize the objects around the human. In the
same context, CNNwork as the brain. It cannot categorize the
objects without detecting the detailed features. CNN includes
a set of operations, such as convolution, activation, pooling,
flattening, and full connection. It is a feedforward multilay-
ered hierarchical network. The connectivity between its neu-
rons is inspired by visual cortex organization. The individual
neurons are organized in such a way that they respond to
the overlapping regions. The main positive characteristics of
CNNs are they contain some of the best learning algorithms
for grasping the image contents. They can learn good internal
representation from unstructured, raw data. Also, they give a
promising performance inML classification problems, which
lie in the correlations between labels or label dependency.
Therefore, CNN can exploit spatial correlation in data to
produce new hidden features from the obvious features. The
CNN topology is split into multiple learning phases, such
as convolutional and sub-sampling layers. Each layer uses
kernels and performs multiple transformation processes [37].

2) CNN COMPONENTS
A general CNN architecture consists of CONV, pooling, and
FC layers. Each component may at least consist of one layer.
FC layer may be substituted by the global average pool-
ing (GAP) layer. This layer reduces the overfitting because
there are no parameters to be optimized and represent one
feature map for each class or category. Besides, different
mapping functions, different regulatory units such as BN
and dropout (DO) are also embedded in the architecture to
optimize CNN performance and avoid overfitting. It is very
necessary to concentrate on the CNN components arrange-
ment. This organization plays a vital role in designing new
architectures and achieving satisfactory performance. The
CNN components are stated as follows:
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FIGURE 4. The U-Net architecture to extract EX, HM, BV, and MA.

• CONV [38], [39]: This layer is parameterized by a set
of learnable filters (kernels). The kernel divides the
image into small blocks. These blocks are recognized as
receptive fields. The kernel is applied across the input
tensor, which is represented as an array of numbers.
An element-wise is calculated by the product between
each kernel element and the input tensor at each tensor
location. After that, the product is summed to obtain the
output value in the corresponding position of the output
tensor. The output is called a feature map. Zero paddings
are utilized greatly in recent CNN architectures. It is
used for retaining in-plane dimensions to apply more
layers because, without zero paddings, each successive
feature map would get smaller after the CONV process.

• Hyperparameters and down-sampling: A stride is a
distance between two successive kernel positions. To
achieve down-sampling, a stride is selected to be larger
than one. A pooling is another process to perform down-
sampling. The summarized hyperparameters are ker-
nels size, number, padding, which can also be used for
down-sampling, and stride. Finally, the CONV layer
output is passed to the non-linear activation func-
tion such as Hyperbolic tangent (tanh), sigmoid, and
ReLU.

• Pooling (PO) [40]: This process decreases the sub-
sequent learnable parameters number, reduces the
feature-map size, regulates the CNN network complex-
ity, reduces overfitting, and increases the generalization.
Po in CNN can be MP, average pooling (AP), global
pooling (GP), global average pooling (GAP), L2, over-
lapping, or spatial pyramid pooling (SPP).

• FC [41]: It is known as a dense layer in which the output
of CONV and PO layers is flattened and transformed
into a 1D array. The learnable weight connects each
input with each output. In the classification task, the final
FC layer’s output represents the output of the network.
It is the probability of each class. Generally, the output
nodes have the same number of classes.

3) U-NET ARCHITECTURE
It is a CNN model that is used to localize the abnormalities
areas. If CNN is used to learn the image feature map to exploit
new feature maps and convert the image to feature vector,
the U-Net construct the image from this feature vector [42].
As shown in Fig. 4, the U-Net architecture consists of three
phases that make the architecture take the (U) shape, which
are contraction (down), bottleneck (the middle bottom), and
expansion (up). In each phase, we can increase or collapse the
number of the blocks. In the utilized architecture, we added
three blocks in the contraction stage after the input. Each
block includes two CONV (3 × 3) layers with RELU acti-
vation and followed by one MP (2 × 2) layer. The number
of kernels is duplicated after each block as we started with
32 kernels and increased to 512 kernels or feature maps in
the bottleneck phase. After that, the architecture starts the
expansion phase by doing the up-sampling CONV ( 2×2) and
RELU activation. This phase consists of three blocks as well
as the contraction blocks. Each block includes two CONV
(3 × 3) with RELU activation and followed by up-sampling
CONV (2 × 2). The kernels or feature maps number are
reduced to the half after each block. Finally, one CONV
(1×1) is added to result in the segmentationmaps.We trained
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the architecture four times on the BV, EX, MA, and HM GTs
and predicted four segmenting images from each input.

We trained and evaluated the model by 10-fold
cross-validation with 30 epochs and 100 steps for each
epoch. In prediction, the batch size was 16, stride (2, 2) for
concatenation, ‘‘same’’ padding, and dropout equals (0.1).
We optimized themodel by Adam optimizer with the learning
rate (lr ) equals to 1e − 3. Finally, we utilized a sigmoid
function and binary-cross entropy. The utilized U-Net archi-
tecture is shown in Algorithm 2. C is convolution, U is up-
sampling, 2@ is two consecutive convolutions, 1@ ConvT
is one convolution transpose, plus (+) is a concatenation of
the output of 1 convT layer of the expansion, and the feature
maps of the contraction in the same level.

After segmenting EX, BV, HM, and MA, we validated
the results due to six performance measures, as illustrated
in detail in the next section.In addition, we compare the
resulting segmentation of the proposedML-CAD systemwith
the universal customized DL segmentation model with other
current segmentation methods.

F. FEATURE EXTRACTION AND SELECTION
We applied this phase by utilizing conventional hand-crafted
methods. The reason is that we need to complete the four
lesion segmentation process we made. We segmented each
disease sign to diagnose it in its early and advanced grades
carefully. Therefore, we cared about appearing even small
MA that formulates the early mild grade for the ocular spe-
cialist or physician. It is crucial to extract features from
these small signs. The thing that needs more auditing and
supervising, while other systems, such as Lam et al. [43],
could not diagnose the mild grade by using CNN.

For BV images, we utilized GLCM to extract 12 differ-
ent feature descriptors, as proposed by Gadkari [44]. The
GLCM describes the texture features. GLCM computes the
frequency of appearance of pixel pairs with specified values
in a spatial relation in the processed image. We skeletonize
the BV network. Then, we determine BP with red marks and
dismiss dummy, terminal branches and points.

Meanwhile, we calculated the BV, MA, EX, and HM
areas. There are four fields recorded in the feature vector.
The feature vector consists of 12 GLCM descriptors, 4 ROIs
areas, and BP count for each DR image. We applied PCA
technique. It is utilized to describe the extracted features
with low dimensional space without information loss [45] by
defining the most correlated values.

G. ML CLASSIFICATION
We utilized the MLSVM technique. MLSVM is based on
SVMwith a kernel of a radial basis function (RBF).We added
the four class labels (mild NPDR, moderate NPDR, severe
NPDR, and PDR) to the feature vector. The normal or healthy
grade was defined before the segmentation phase by the
binary SVM. In the first-class label (mild NPDR), all the
images with a mild grade are defined by 1, and the others
are 0, and so on for the other class labels. So, the MLSVM

Algorithm 1:MLC Phase of the ML-CAD System
Data: Label matrix, data matrix, K-Fold, SVM kernel,

and previous labels.
Result:Model and predictions.
Calculate Ch = random permutation(classes NO.);
Set Previous labels=zeros;
for I= Ch do

if Index = [] then
OPERATE SVM training (data, label, SVM
STRUCT);
RETURN model;
OPERATE SVM predicting (label, test, model,
SVM (type));
RETURN Predicted labels;
PUT Previous labels (I) = Predicted labels;
PUT post Index =Model (label) = 1;

else
OPERATE SVM training (data, label (Index),
SVM STRUCT);
GET Predicted labels;
PUT Previous labels = Predicted labels;
PUT post Index =Model (label) =1;

end
PUT Index = [Index, I];

end

classifier builds one binary classifier for every class label
based on the predictions of preceding classifiers in the chain.

According to the MLC idea, the correlations among the
labels are significant in producing new labels. The SVM clas-
sifier based on CC achieves the correlation by aggregating
the binary classifiers’ predictions that were built. CC makes
the aggregation in a chaining order strategy. CC prompts
additional features for the instances. In addition, it randomly
prompts the connections among class labels. These correla-
tions are specified by the alteration. In testing, the binary
classifiers are applied. Then, the classifiers’ outputs form
the label features of the chain structure. Finally, the tech-
nique aggregates both responses and computes the prediction.
We validated the results by the k-fold cross-validation tech-
nique to avoid overfitting.

IV. EXPERIMENTAL RESULTS
This section is divided into four subsections. The first subsec-
tion is the dataset description, which illustrates the settings
of the nine utilized datasets (eight for training and testing
while the last one is for training only MA GTs). Second,
the performance metrics are discussed, which are utilized to
evaluate the system’s segmentation and classification phases.
Third, DR sign segmentation is divided into two parts. One
for BV segmentation and Bifurcation points (BP) extraction
and the second for MA, EX, and HM segmentation. Finally,
the ML classification results subsection presents the results
of grading the DR cases.
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Algorithm 2: Segmentation by Using U-Net
Data: batch size, inputs, activation, DO, classifier,

optimizer, and learning rate.
Result:Model and predictions.
SET kernel k=3, Stride S=2;
SET PO=2, padding PA=same;
Stage1: Contraction path
Block 1:
C1= 2@Conv(K, inputs, PA), filters F=32;
MP1=MP(C1, PO);
Block2:
C2= 2@Conv(k, MP1, PA), F=64;
MP2=MP(C2, PO);
Block3:
C3= 2@Conv(K, MP2, PA), F=128;
MP3=MP(C3, PO);
Block4:
C4= 2@Conv(K, MP3, PA), F=256;
MP4=MP(C4, PO);
Stage2: Bottleneck point
C5= 2@Conv(K, MP4, PA), F=512;
[Stage3: Expansion path] Block1:
U6= 1@ConvT(K=2, S, PA, C5), F=256;
U6= U6+C4;
C6= 2@Conv(K=3, U6, PA), F=256;
Block2:
U7= 1@ConvT(k=2, S, PA, C6), F=128;
U7= U7+ C3;
C7=2@Conv(K=3, U7, PA), F=128;
Block3:
U8= 1@ConvT(k=2, S, PA, C7), F=64;
U8= U8 + C2;
C8= 2@Conv(K=3, U8, PA), F=64;
Block4:
U9= 1@ConvT(K=2, S, PA, C8), F=32;
U9= U9 + C1;
C9= 2@Conv(K=3, U9, PA), F=32;
C10= 1@Conv (K=1, classifier, C9), F=1;
SET outputs=C10;
GET model (inputs, outputs);
Compile model;

A. DATASETS’ DESCRIPTION
We applied our proposed ML-CAD system on eight stan-
dard datasets: HRF [46], ChaseDB1 [47], DIARETDB0 [48],
DIARETDB1 [49], STARE [50], MESSIDOR [51], DRIVE
[52], and IDRiD [53]. Table 2 lists the main features of the
used eight benchmark datasets and the last one for training
the U-Net model on the MA sign.

• DRIVE dataset [52]: It consists of 40 retinal images.
Twenty for training and the rest for testing. The experts
manually diagnosed them as seven cases have DR, and
the other 33 are healthy cases. Each set contains a field
of view (FOV) masks.

• High-Resolution Fundus (HRF) dataset [46]: It consists
of 30 images in total. Fifteen cases are healthy, and
the others are DR cases. It has BV ground truth (GT)
for each healthy and DR images, which are manually
segmented by a clinical expert.From our point of view,
the dataset is very important in training and validating
models because each GT image includes full thick and
thin vessels that perform the complete vasculature.

• STARE dataset [50]: It includes 400 images. We utilized
only twenty of them because they have BV GTs. These
images were divided in balance, 10 images are healthy,
and the others are DR cases.

• CHASEDB1 dataset [47]: It consists of 28 images,
which are manually segmented to BV by two experts.
The advantage of this dataset is that its images were col-
lected from 14 children. It will give our ML-CAD sys-
tem variety in training and testing. Besides, all images
are paired with the same person. The dataset is split into
20 images for training and 8 for testing.

• DIARETDB0 dataset [48]: It consists of 130 images,
20 of them are normal, and the rest contain DR signs.
TheGTs are about *.dot files, includingDR sign’s name.

• IDRiD dataset [53]: We utilized two parts of this dataset,
which are segmentation and disease grading. It contains
81 in JPEG format. It has a GT of 4 lesions, which are
HM, MA, hard EX, and soft EX in TIF format. These
images are pixel-level annotated. They were split into
54 and 27 for training and testing, respectively. EX and
HM are found in 80 different images, while MA is
found in 81 images. In DR grading, the dataset contains
516 images. The images are split into 413 and 103 as
training and testing sets, respectively.

• DIARETDB1 dataset [49]: It includes 89 images. The
experts ensured that only five of them are normal, and
the rest contain at least mild NPDR. The dataset has GT
for all images in hard EX, soft EX, HM, and MA signs.

• MESSIDOR dataset [51]: It includes 1200 images.
Two medical experts specified the DR grades and ME.
We utilized the 100 images of the dataset base1. We sep-
arated it evenly for training and testing.

• E-ophtha dataset [54]: It contains 82 and 381 color
fundus images for EX and MA, respectively. In EX,
the images with the sign are 47, and the others are
healthy. InMA, the images with the sign are 148 images,
and the others are healthy. We utilized it in training
the model on the MA signs to be tested on the other
eight datasets because it performs better than IDRiD in
detecting MA.

This work was implemented by using MATLAB R2018a
and python 3.7. We ran our experiments on a core i5/2.4 GHz
computer with 8 GB RAM and an NVIDIA/ (1 GB VRAM)
VGA card. As described in Table 2, DRIVE, HRF, STARE,
and chasedb1 datasets have no GT for MA, EX, and HM,
but has GT for BV. The DIARETDB1 dataset has no GT
for BV but has lesion level GT for MA, EX, and HM.
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TABLE 2. The main specifications of the nine used benchmark datasets (The ninth is used for training U-Net on MA GTs.

DIARETDB0 dataset has no GT for BV segmentation but has
.dot files that include the lesions occurrence in each image.
The MESSIDOR dataset has no EX, BV, HM, and MA GTs.
The experts provide specific values for each sign in rules.
These rules help in the diagnosis process. Finally, IDRiD has
no BV GTs. It has a pixel level GTs of HM, EX, and MA.

The DIARETDB1 dataset shows a GT type of lesion level.
Three retinal experts indicated EX,MA, and HM by amanual
annotation that was done by using a single pixel, the lesion
center, or using a coarse boundary. The manual annotation
was done by drawing a disk over the lesion, which covers
the entire lesion region, Therefore, the annotation does not
mark specific lesion regions’ contours. Therefore, the dataset
is not a pixel-level. Because of this fact, we couldn’t use
DIARETDB1 in training U-Net. Instead, we utilized the
IDRiD dataset in training. It is a pixel-level annotation of
typical DR lesions, as shown in Fig. 3.
Therefore, we segmented the BV and compared the result

with GTs of the CHASEDB1, DRIVE, HRF, and STARE
dataset. The complete BV segmentation performance is mea-
sured to ensure the custom U-Net model’s accuracy in BV
segmentation. After that, we predict the other four datasets
that have no BV GTs. We trained the U-Net model on the
IDRiD dataset’s training set to segment two lesions (EX, and
HM).We segmented the two lesions from the testing set of the
IDRiD dataset and compared the results. While we check the

performance, we apply the model on the other seven datasets
with no EX and HM GTs. But for the last lesion (MA),
we used the E-ophtha dataset for training the model as it gives
better performance. In the same way, we predictedMA lesion
on IDRiD and the others. Finally, wemeasured the ROIs areas
of the eight datasets. We compared the DR grades diagnosis
performance for each dataset using the formerly substantive
rules in MESSIDOR and IDRiD datasets.

B. PERFORMANCE METRICS
We utilized six different measures to evaluate the perfor-
mance of the proposed ML-CAD system, i.e., SEN, speci-
ficity (SPE), DSC, accuracy (ACC), positive predictive value
(PPV), and area under the curve (AUC), which are listed in
Eqs. 13, 14, 15 [55], 16, 17, and 18 [56] and [57].
SEN is the rate of true positive (TP). SPE is the proportion

of the true negatives (TN). The technique may be accurate
without being sensitive, or it may be sensible without being
specific. ACC is the ratio of true results, either TP or TN
overall images. False positive (FP) is the ratio of false pre-
dictive or incorrect positive predictions. False negative (FN)
is the ratio of incorrect negative predictions. DSC measures
the resemblance between the predictions and GT. PPV is the
proportion of the correct positive predictions over the correct
and incorrect positive predictions. Finally, AUC is nearly half
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of the summing of the SEN and SPE.

SEN/RE =
TP

TP+ FN
(13)

SPE =
TN

TN + FP
(14)

DSC =
2× TP

2× TP+ FP+ FN
(15)

ACC =
TP+ TN

TP+ TN + FP+ FN
(16)

PPV =
TP

TP+ FP
(17)

AUC ≈ 0.5 (SEN + SPE) (18)

C. BINARY CLASSIFICATION RESULTS
In this section, we feed the feature vector resulting from the
GLRLM to the binary SVM to differentiate the normal and
DR. We have two graded datasets, such as MESSIDOR and
IDRiD. Their images are graded to 5 grades from normal to
PDR. On the other hand, we have the HRF dataset, which
its images are obviously differentiated to only normal and
DR cases. In STARE datasets, we have the diagnose code of
the ocular disease in each image where DR is one of them.
DIARETDB0 has *.dot files that include the sign that is found
in the image. Of course, the dot file of the image containing
NaN is normal; otherwise, DR. The other datasets, such as
DRIVE, CHASEDB1, andDIARETDB1, have no graded and
not detected except by observation and the number of normal
andDR images of them. Therefore, it is reasonable to train the
model on the well-defined labels (normal and DR) dataset,
which is HRF, as we need the binary classification. As shown
in Table 3, we also trained the others to select the best-trained
model to predict the unknown labels. We trained the SVM
model on each feature vector of HRF, IDRiD, MESSIDOR,
STARE, and DIARETDB0 with 5-fold cross-validation.

From Table 3, we can notice that for the HRF dataset,
the binary DS comes in the first order, the ML IDRiD
dataset comes in the second order. The second ML dataset,
the DIARETDB0 is ranked in the third order. The model on
the STARE dataset is somewhat more balanced than in the
previous one. The ML MESSIDOR dataset comes in the last
order. From the results presented in Table 3, we generated the
SVM model that is trained and tested on the HRF dataset to
predict the other unknown labels. The images that are labeled
as DR cases or label 1 are supplied to the next phase.

D. SEGMENTATION RESULTS
In this subsection we present the BV and BP segmentation
results in part IV-D1 and the other lesions segmentation in
part IV-D2 as following:

1) BV AND BP SEGMENTATION
This part includes segmenting the BV network from the
color fundus images in the eight datasets and recording
performance measures metrics. After removing the noise
and enhancing the resized images’ contrast, we trained the

FIGURE 5. Examples of BV segmentation by using U-Net model on DRIVE,
CHASEDB1, HRF, and STARE datasets, respectively: (a) The original
images, (b) BV GT, (c) BV segmentation, and (d) BP extraction.

U-Net model on the DRIVE dataset (training set). After that,
we tested the other datasets. The average training ACC is
95.48%. Fig. 5 presents the examples of applying the cus-
tomized U-Net model on four datasets that have BV GTs in
addition to the BP extraction. The BP extraction was done
by skeletonizing the BV images and omitting the dummy
branches and BP. After that, marking the BP and resulting in
BP’s count. The increasing BP counts indicate the appearance
of NVs. It is noteworthy that the BV network size also leads
to the NVs occurrence. On the other hand, Fig. 6 presents
the examples of applying the customized U-Net model on the
four ML datasets that have not BV GTs in addition to BP.

Table 4 shows the six performance measures (AUC, ACC,
SPE, SEN, DSC, and PPV) of the BV segmentation by U-net
model on the four datasets (DS) that have BV GTs (DRIVE,
STARE, CHASEDB1, and HRF datasets). We compared the
resulting BV with the BV GTs of the four aforementioned
datasets. Besides, we compared the BV segmentation results
of the proposed ML-CAD system by U-Net model with cur-
rent five methods. In Table 4, we present the comparison
between the proposed system, soares et al. [58], B-COSFIRE
filter [59], Abdelmaksoud et al. [21], Gao et al. [60], and
Adapa et al. [61]. Soares et al. [58] utilized 2Dmorlet wavelet
transform in multiple scales with GMM. B-COSFIRE fil-
ter [59] calculates the weighted geometric mean of input
collinearly aligned DoG filters. Abdelmaksoud et al. [21]
combined a matched filter with a first-order Gaussian deriva-
tive and Coye Filter. Gao et al. [60] utilized U-Net with
Gaussian matched filter. Adapa et al. [61] utilized gray level,
shape, and Zernike moment features to differentiate between
BV and background pixels.
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TABLE 3. The average performance of the proposed ML-CAD system in the binary classification phase.

TABLE 4. Average performance of the BV segmentation by using U-net model.

FIGURE 6. Examples of BV segmentation by U-Net model on DIARETDB0,
DIARETDB1, IDRiD, and MESSIDOR datasets, respectively: (a) The original
images, (b) The segmenting BV, and (c) The BP extraction.

We divided Table 4 into four parts according to the
four datasets. In DRIVE dataset, the system accomplished
96.56%, 97.84%, 72.58%, 98.89%, 86.29%, and 78.84%
for ACC, AUC, SEN, SPE, PPV and DSC, respectively.
In CHASEDB1 dataset, it achieved 96.17%, 95.08%,

56.75%, 98.94%, 79.05%, and 66.07% for ACC, AUC, SEN,
SPE, PPV and DSC, respectively. In STARE dataset, the pro-
posed system achieved 95.55%, 94.93%, 66.1%, 97.93%,
72.25%, and 69.04% for ACC, AUC, SEN, SPE, PPV and
DSC, respectively. In HRF dataset, the system achieved
95.6%, 95.30%, 70.14%, 98.25%, 85.1%, and 76.2% for
ACC, AUC, SEN, SPE, PPV and DSC, respectively.

By comparing the results in DRIVE, we can notice that
the proposed system outperforms the others in ACC, AUC,
SPE, and DSC metrics, but B-COSFIRE filter [59] and
Gao et al. [60] are higher in SEN and SPE. B-COSFIRE filter
[59] is higher than ours by approximately 4 for SEN, while
Gao et al. [60] is highest by approximately 5.5,and 2.7 for
SEN, and PPV respectively. In STARE, the soares et al. [58]
is higher inACC andAUCby difference of 2.2 and 1.6 respec-
tively. But, the average ACC and AUC of our proposed
system is greater than the averages of them in DRIVE and
STARE datasets.

In CHASEDB1 and HRF, the proposed system outper-
forms the B-COSFIRE filter [59] in all matrices except in
SEN. It achieved 75%.

Finally, we can conclude that the proposed system achieved
95.97% 95.78%, 66.4%, 98.51%, 80.6%, and 72.5% for aver-
ages of ACC, AUC, SEN, SPE, PPV, and DSC, respectively
in BV segmentation.

2) EX, MA, AND HM SEGMENTATION
In this part, we present the results of segmenting the other
three lesions (EX, MA, and HM) using A customized U-Net
model. To segment the three lesions, we trained the model on
the IDRiD GTs and produced the weights that can be loaded
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FIGURE 7. Examples of EX segmentation by U-Net model on IDRiD and DIARETDB1 datasets compared with their GTs. First
row represents IDRiD dataset and the second one represents the DIARETDB1 dataset: (a) The original images, (b) The
segmenting EX, and (c) The EX GT.

to predict the other datasets. Fig. 7 shows EX segmentation on
two datasets (IDRiD and DIARETDB1), which have the EX
GTs for validation. Training the U-Net model with IDRiD is
more accurate than training with the DIARETDB1, as illus-
trated before in subsection IV-A. Figs. 8 and 9 show the EX
segmentation results on the other six datasets that have not
GTs of EX sign. Finally, we present a complete example
of segmenting EX, MA, and HM using the U-Net model
(23 layers) in Fig. 10.

Table 5 shows the comparisons between the proposed sys-
tem, Abdelmaksoud et al. [21], Yan et al. [62], Kou et al. [63],
and Khojasteh et al. [64] in EX, MA, and HM segmentation
on the IDRiD and DIARETDB1 datasets that have EX, MA,
and HM GTs. Abdelmaksoud et al. [21] utilized wavelet and
morphological operation in EX, MA, and HM segmentation.
Kou et al. [63] used residual U-Net in EX, and MA segmen-
tation. Khojasteh et al. [64] built CNN model to segment
the three signs. Yan et al. [62] utilized UNICOM feature.
They combined intensity uniqueness and spatial compactness
characteristics together.

In Table 5, we can observe that the proposed ML-CAD
system with the customized U-Net gives a full performance
in detecting the EX signs for all DR entered images. In MA,
and HM the system achieved better performance. The sys-
tem does a better performance in the IDRiD dataset than
in DIARETDB1 dataset. The results of detecting EX and
MA in DIARETDB1 are very near. Notably, the proposed
system and Abdelmaksoud et al. [21] give the same results in
EX detection from IDRiD, but other than that, the proposed
system outperforms the other systems in the six metrics.

3) THE ML CLASSIFICATION RESULTS
After segmenting the DR images and producing five images
(BV, BP, EX, MA, and HM) for each one image of the tested

FIGURE 8. Examples of EX segmentation by U-Net model on DRIVE, HRF,
and DIARETDB0 datasets. The left column is the original images and the
right one is the EX segmenting images.

datasets, now, the role is to grade the DR images into four
grades (mild NPDR, moderate NPDR, severe NPDR, and
PDR). For BV images, we compute the 12 descriptors of the
GLCM, which are stated in [65]. Then, the BP count, which is
stated while extracting the BP from the BV, is recorded in the
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TABLE 5. The performance of MA, EX, and HM detection for the IDRiD and DIARETDB1 dataset.

FIGURE 9. Examples of EX segmentation by U-Net model on STARE,
CHASEDB1, and MESSIDOR respectively, The left column is the original
images, and the right one is the EX segmenting images.

feature vector file. The four segmenting images of EX, BV,
HM, and MA are characterized as the ROIs are in white color
on a black background. We calculated the areas of the white
pixels in each image for each sign. In this respect, we added
the ROIs areas’ results in the feature vectors. We used the
10-folds cross-validation technique to avoid overfitting.

Table 6 presents the ML-CAD system grading results
via the utilized datasets. We compared the averages of the

six performance measures for Abdelmaksoud et al. [21],
decision tree (DT) classifier [66], Gaussian naive bayes
(NB) [67], logistic regression (LR) [67], random forest
(RF) [67], ML-k nearest neighbor (ML-KNN) [66], label
power set (LP) [68], and classifier chain (CC) [68]. DT,
GaussianNB, LR, and RF are based on ML binary rele-
vance (BR) classifier [68]. Table 7 presents the comparisons
of the averages of the six performance measures for the
proposedML-CAD system and the other aforementionedML
classifiers.

In ML classification, we can notice from table 6 that
the proposed ML-CAD system achieved total averages
of 95.05%, 91.85%, 86.11%, 86.8%, 84.7%, and 86.2% for
ACC, AUC, SEN, SPE, PPV, and DEC respectively.

From Table 7, we can observe that the proposed ML-CAD
system outperforms Abdelmaksoud et al. [21] and the seven
ML classifiers in DR grading. Except in PPV and DSC,
Abdelmaksoud et al. [21] is greater than the proposed one
by a difference of 7.3% for PPV and a small difference for
DSC, which equals 1.2%. In ACC, CC comes in the third
order, while ML-KNN in the fourth and RF in the fifth, then
LP in sixth, GaussianNB in the seventh, DT in the eighth
and LR in the final order. DT gives better results in SEN,
SPE, PPV, and DSC. It comes in the third order. Fig. 11
shows, the comparison between the eight classifiers, and the
proposed ML-CAD system in DR grading due to the six
measures.

V. DISCUSSION
In this section, we discuss and compare between kou et al.
[63], luo et al. [69], Abdelmaksoud et al. [21] system and the
proposedML-CAD system. kou et al. [63] improvedU-Net in
order to detect the two early signs of DR; EX, and MA. Their
system can be considered as a special step in diagnosing DR
grades. But, the authors extracted only EX, and MA. HM and
NV are very important signs in completing the grading of
DR. The same observation is for luo et al. [69]. They utilized
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FIGURE 10. Examples of MA, EX, and HM segmentation by U-Net model on IDRiD dataset with its GTs.

TABLE 6. The average of the six metrics for the proposed ML-CAD system DR grading on all eight datasets.

TABLE 7. The comparison between the proposed ML-CAD system and others.

U-Net with denseNet to extract the BV. BV is extracted in
order to notice the retina abnormality. It determines the NV
that leads to determining the severe NPDR and PDR. Our

proposed system extracts the four lesions and diagnoses the
DR grade. These two systems not need user interaction, and
hand crafted feature extraction. Moreover, they not utilized
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FIGURE 11. The comparison between the seven ML classifiers, abdelmaksoud et al., and the proposed ML-CAD system due to the six measures (ACC,
AUC, SEN, SPE, PPV, and DSC).

any ML classifiers in order to classify the DR grades. They
segmented all the images (healthy and DR cases), which
may happen confusion if the ophthalmologists checked for
diagnosing the absence/presence of DR.

Therefore, we take care this problem in the proposed
ML-CAD system. It extracts the GLRLM feature of the
color fundus images in four degrees and utilized binary SVM
classifier to differentiate between the healthy and DR cases
before segmentation. Then it makes the segmentation using
deep learning CNNmodel (U-Net) model to segment the four
retinal pathological changes. In the proposed system, there is
no need for user interaction besides, it utilized a universal seg-
mentationmodel unlike the previous system. So, the proposed
ML-CAD system prevents the ophthalmology confusion and
lessen the burden on the developer. The proposed ML-CAD
system was applied on eight datasets (DRIVE, STARE,
CHASEDB1, HRF, DIARETDB0, DIARETDB1, MESSI-
DOR, and IDRiD), four of them have been ML. The thing
that makes the proposed ML-CAD system is reliable, robust,
and can be applied on the real world. It is applied on various
color fundus imageswith different cameras’ settings and from
different patients (children and adults), (paired and unpaired),

different qualities, noise and illumination. Table 9 shows
the analytical comparison between the proposed ML-CAD
system and the three aforementioned systems.

In segmentation phase, We trained U-Net on CHASEDB1
dataset and used the resulting weights in testing the
other seven datasets. It resulted better BV segmenta-
tion in ML datasets (Messidor, IDRiD, DIARETDB0, and
DIARETDB1). We trained the U-Net model on DRIVE
datasets and it resulted best BV segmentation in (STARE,
CHASEDB1, and HRF). Training U-Net on IDRiD in case
of EX, and HM, gives best results in testing the others.

In training the U-Net on MA, It gave training ACC of
nearly 74.6% and loss 0.569 by utilizing different optimiz-
ers such as Adam, Adamax, Adagard, RmsProp and SGD
with different learning rate (lr). Therefore, we had to cus-
tomize the U-Net hyper parameters as shown in table 8 and
train it again on e-ophtha dataset to detect the MA in other
eight datasets. The main advantage of the e-ophtha dataset
is that it includes the images that only contain the MA
signs and detected as DR. On the other hand, the IDRiD
is a ML dataset in which each image contains at least
3 signs.
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TABLE 8. Training ACC and Loss of U-Net model based on the hyperparameter values.

TABLE 9. Analytical comparison between the current systems [21] and the proposed ML-CAD system for analysis and diagnosing health and DR grades.

VI. CONCLUSION
We developed a novel ML-CAD system that can be
applied on varied datasets to diagnose diabetic retinopathy
grades. We used nine public benchmark datasets; DRIVE,
CHASEDB1, STARE, HRF, IDRiD, DIARETDB1, MES-
SIDOR, and E-ophtha. At first, the proposed system filters
and enhances the contrast. Then, it utilizes 11 texture feature

descriptors by using GLRLM to determine the normal and
DR images. Then, prepares the DR images by postprocessing
steps for U-Net model. The U-Net model is trained four times
on the four variations (hemorrhages, exudates, Blood Ves-
sels, and microaneurysms). The system extracts 6 features;
2 for BV using GLCM with 11 descriptors and bifurcation
point’s count, 4 ROIs areas computations. Then, the system
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utilized the MLSVM for ML classification depending on the
problem transformation. Finally, we computed 6 performance
matrices averages of the proposed ML-CAD system. Our
system proved that it is reliable and robust. It can be applied
on the real world as it can be applied on different color
fundus images with different cameras’ settings, and different
patients.

In the future, we aim to apply the proposed ML-CAD
system on another retinal diseases such as glaucoma. In addi-
tion, we intent to apply it on the other imaging modalities
such as OCTA that can collect different diseases features
simultaneously such as Diabetic retinopathy and glaucoma.
We want to develop disease-based system not lesion-based
system for only one disease.
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