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ABSTRACT To optimize the energy efficiency of edge computing system with energy harvesting, this paper
proposes an energy-efficient task offloading method optimized by differential evolution. First, a wireless
edge computing network model is established to analyze the energy harvesting, task offloading and task
calculation of the system, as well as the total number of calculated bits and total energy consumption of the
system. Second, according to the total number of calculated bits and total energy consumption of the system,
an objective function is established to optimize the energy efficiency of system, and a differential evolution
based optimization method is proposed, with which the optimal energy efficiency of system calculation,
offloading time, calculation time and frequency are obtained. Experimental results show that the proposed
method can not only achieve better convergence effect, but also can effectively solve the energy shortage
problem of the micro-equipment and extend the service life of the equipment.

INDEX TERMS Edge computing, task offloading, energy harvesting, differential evolutionary algorithm.

I. INTRODUCTION
With the rapid development of mobile communication tech-
nology and the continuous popularization of the Internet
of Things (IoT), terminal equipment and data are growing
explosively. Meanwhile, the IoT industries such as intelligent
connected vehicles and autonomous driving, virtual reality,
industrial IoT, smart home and smart city are developing
rapidly. These emerging industries need to consume a large
amount of computing resources to meet their own needs. As
an effective solution to improve the energy efficiency of the
system, recent years mobile edge computing has attracted
great attentions [1]. The main service objects of mobile edge
computing are mobile devices, sensors, etc. These devices
basically rely on battery power, and when there are a lot
of computing tasks to be done in the device, the battery
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power will be consumed quickly. The miniaturized devices,
in particular, generally operate with limited battery power
and transmit data over an unlicensed spectrum. The problem
of energy shortage limits the service life of the equipment.
Owing to some devices are installed in hard-to-reach places,
it is difficult for workers to replace the batteries of these
devices. Even with sufficient energy supply, data transmis-
sion of devices conflicts with other networks that coexist in
the unlicensed spectrum band, which creates the spectrum
scarcity issue.

There have been many optimization research topics, such
as spectrum perception, spectrum access strategy, spectrum
management, spectrum decision making, cognitive radio net-
work, etc. [2]–[4]. In the existing cognitive radio models of
energy harvesting, the detection rate of spectrum perception
is only taken as a fixed parameter, so as to optimize the
number of channels, perception time, transmission frequency,
etc. To solve the problem of spectrum scarcity, Zhang et al. [4]
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proposed the cognitive radio theory to deal with the problem
of insufficient spectrum utilization in the way of opportunity
access. However, as the number of cognitive wireless devices
increases, the demand for power on devices is increasing. The
optimization of energy harvesting, storage and distribution
of equipment has attracted the attention [5]–[11]. Most of
the existing research schemes are based on energy harvesting
maximization or computational energy efficiency optimiza-
tion maximization. To solve these problems, a mainstream
method is that, first the objective function to be optimized is
designed, and then the non-convex optimization problem is
transformed into a convex optimization problem by the gen-
eralized fractional programming theory, and then the optimal
solution of the objective function can be obtained.

In the model of spectrum sensing and energy harvesting,
resource allocation has been one of the focuses of researchers.
Reasonable allocation of energy harvesting time, energy
transmission time and task offloading can guarantee the
communication quality of the whole system. However, with
the increase of the number of optimization parameters, the
complexity of the solution increases dynamically. Therefore,
to overcome this issue, this paper comprehensively considers
the limited energy and computing capacity of sensor nodes in
wireless communication networks, and proposes an optimiza-
tion scheme for energy harvesting and task computing based
on differential evolution. The main contributions of this paper
are as follows:

(1) First, a wireless edge computing network model is
established to analyze the energy harvesting, task offloading
and task calculation of the system, as well as the total number
of calculated bits and total energy consumption of the system.

(2) Second, according to the total number of calculated
bits and total energy consumption of the system, an objec-
tive function is established to optimize the energy efficiency
of system, and a differential evolution based optimization
method is proposed, with which the optimal energy efficiency
of system calculation, offloading time, calculation time and
frequency are obtained.

(3) Third, experimental results show that the proposed
method can not only achieve better convergence effect, but
also can effectively solve the energy shortage problem of
the micro-equipment and extend the service life of the
equipment.

The organization of the rest of this paper is as fol-
lows. Section II introduces in detail the work related to sys-
tem computing energy efficiency maximization, summarizes
the contributions made by predecessors and analyzes them.
Section III expatiates the scheme in detail, builds the system
model, and analyzes the model principle. Section IV gives the
experimental results and discussion, and Section V gives the
conclusion.

II. RELATED WORK
The optimization of energy harvesting, storage and distri-
bution of equipment has attracted the attention of many
researchers. Among them, Xu et al. [5] proposed a

competitive multi-channel multi-level user energy harvest-
ing cognitive radio network, and modeled the existence of
primary users through Poisson distribution instead of using
spectrum sensing method, so as to model the competitive
energy harvesting among multi-cognitive users to optimize
throughput. Chatterjee et al. [6] studied the combined spec-
trum efficiency and energy optimization for spectrum sensing
and energy harvesting by two groups of secondary users,
resulting in a 19% increase in energy efficiency and a 14%
increase in spectrum efficiency. Zareei et al. [7] studied the
control of transmission power, made dynamic adjustment
of transmission power, and used the high energy nodes to
transmit more information to reduce the load of energy nodes.
The proposed scheme improves the transmission rate by
at least 15% by simulation in an energy harvesting cogni-
tive wireless network with better end-to-end connectivity.
To achieve energy harvesting, Simultaneous Wireless Infor-
mation and Power Transfer (SWIPT) technology is used to
transmit both user signals and RF energy. SWIPT technology
was first discussed in the Single Input Single Output (SISO)
communication system designed in [8], which considered
flat fading and frequency-selective channels, and showed the
tradeoff between information rate and energy transfer for co-
addressable information decoding. Wang et al. [9] studied
a resource allocation method to maximize energy efficiency
in orthogonal multi-access wireless networks. A resource
allocation scheme is designed based on incomplete chan-
nel state information. By presenting the resource allocation
problem as a hybrid non-convex optimization problem, user
scheduling, data rate adaptation and power allocation are
designed under the constraints of maximum transmission
power and interruption probability to maximize the energy
efficiency of the system. Zlatanov et al. [10] proposed a
more practical and feasible power distribution scheme by
comprehensively considering the performance measurement,
interrupt probability and average SNR in the communication
theory. Ozel et al. [11] proposed the optimization problem
of energy harvesting and data transmission in wireless fading
channel communication under limited battery capacity for the
wireless system composed of rechargeable nodes.

The pursuit of both spectrum efficiency and energy effi-
ciency in the communication neighborhood gives rise to
the cognitive radio network based on energy and spectrum
harvesting technology. Although it can improve both spec-
trum efficiency and energy efficiency at the same time, the
allocation of resources in the spectrum sensing and energy
harvesting model brings certain challenges to researchers.
Reasonable allocation of energy harvesting time, energy
transmission time and task offloading can guarantee the com-
munication quality of the whole system. However, with the
increase of the number of optimization parameters, the com-
plexity of the solution increases sharply. In addition, sensor
nodes deployed in wireless networks generally need to meet
the requirements of small size, low price and low power
consumption. Due to these factors, sensor nodes are bound
to face the problems of weak computing capacity and low
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energy storage. How to use the limited computing resources
and storage energy to complete many collaborative tasks has
become one of the challenges faced by researchers.

Sensor nodes are small in size and can only carry batteries
with limited capacity. However, in the network environment,
usually there are many sensor nodes, and the distribution
area is wide. Meanwhile, some devices are installed in hard-
to-reach places, so it is difficult to replace the batteries of
these devices. Therefore, in the case of limited energy, it is
particularly important to find a way to reduce system energy
consumption and improve energy utilization. In addition, due
to cost and volume constraints, sensor nodes have limited
memory, resulting in relatively weak computing, storage, and
processing capabilities for data. So, how to complete the
task computing as fast as possible under the constraint of
limited computing power has become a difficult problem for
researchers.

To overcome this issue, Wang et al. [12] proposed a dis-
tributed task offloading strategy for low-load base stations
under mobile edge computing environment. By modeling the
communication resources, computing resources and comput-
ing tasks of low-load base stations, the energy consumption in
the process of task offloading was quantified. Chen et al. [13]
proposed a method for joint user offloading selection and
resource allocation in moving edge computing. The energy
efficiency maximization problem was described as a non-
linear optimization problem, which was converted into a
convex optimization problem by relaxation transformation
method, and the optimal solution for user selection and power
allocation was given. Wang et al. [14] described the prob-
lem of energy consumption minimization as an optimization
problem considering task relevance, and designed an efficient
collaborative task computing offloading strategy to solve this
problem. Li et al. [15] used execution delay and task success
rate as performance indexes to evaluate offloading strategy,
and proposed a low-complexity dynamic offloading decision
algorithm. You et al. [16] first optimized local calculation and
calculated offloading according to the known channel state,
then selected a more energy-saving mode among the above
two modes, and finally extended it to the dynamic chan-
nel to realize the optimal allocation scheme of computing
tasks. Zhang et al. [17] studied the energy saving calculation
scheme of offloading under wireless channel, and determined
the optimal operation region of local execution and edge
execution according to the relationship between data volume
and delay tolerance. Wang et al. [18] designed a cognitive
real-time forwarding condition that protects primary users
and mitigates forwarding delay, and proposed a OFBR pro-
tocol which can reduce the overhearing and duty cycles of
cognitive sensors by short preamble sampling. Wei et al. [19]
studied the health assessment methods for industrial robots,
to address the problems of accuracy degradation and equip-
ment failure. Based on radial basis function (RBF) neural
network, Bai et al. [20] proposed a method to establish power
model of the deep-sea electric manipulator. Song et al. [21]
proposed a cloud edge collaborative intelligence method of

insulator string defect detection for Power IIoT. However, the
main issue of current method is that it is difficult to transform
a non-convex optimization problem into a convex optimiza-
tion problem if too many parameters are involved and the
calculation is complex. Differential evolutionary algorithm
is a highly parallel and random search method for objec-
tive optimization, which is very suitable for multivariable
and non-convex problems. Therefore, in order to solve the
above problems, this paper proposes a scheme of systematic
calculation of maximum energy efficiency resource alloca-
tion based on differential evolutionary algorithm. Under the
constraints of transmitting power of dedicated energy station,
computing frequency of server and edge users, this paper
analyzes the changes of total energy consumption and the
number of calculated bits, and establishes a joint optimization
model to maximize the system’s computational energy effi-
ciency. By using differential evolution algorithm, the energy
efficiency of system calculation is optimized generation by
generation, so as to obtain the optimal energy harvesting
and task computing scheme and the optimal offloading time,
computing time and frequency.

FIGURE 1. Wireless edge computing network model.

III. THE SCHEME OF THIS PAPER
A. SYSTEM MODEL
In this paper, edge computing network for wireless power
supply is studied. The system framework model is shown in
Figure 1. The system consists of a dedicated power station,
K edge users, and an edge server. The power station provides
energy for the edge users. The edge users use the received
energy to unload part of the tasks that need to be calculated
to the edge server, and the other part to calculate locally. The
edge server calculates the data delivered by the edge user and
feeds back to the edge user after completion. The two interact
with each other through a wireless channel.

1) ENERGY HARVESTING PHASE
In the stage of energy harvesting, it is assumed that the
transmitting power of the energy station to the edge users
is P0, the transmission time is τ0, and the energy conver-
sion efficiency is η. Suppose the number of edge users is k
(k = 1, 2, 3 . . .K ), gk is the channel gain between the energy
station and the k-th edge user. In the energy harvesting stage,
the total energy collected by each edge user from the energy
station is as follows:

Ek = ηP0gkτ0 (1)
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2) TASK OFFLOADING
The computing power of smart mobile devices can be
enhanced by wirelessly migrating computing tasks to
resource-rich edge servers in an approach known as comput-
ing offload or task offload. Through the powerful processing
power of the server, the computing speed of tasks can be
accelerated, the completion time of tasks can be shortened,
and energy can be saved for mobile devices. In this way,
computing tasks are performed outside of the device to reduce
the burden on the mobile device. Through task offloading,
mobile devices do not need to have super computing power
and storage capacity. Therefore, in the case of limited com-
puting power and other hardware conditions, edge users can
still complete the processing of computing tasks.

After harvesting energy, edge users perform local compu-
tation and task offloading. And local computing is to directly
calculate and process locally. Task offloading is to unload the
computing task to the edge server. The edge server performs
the calculation operation and returns the result to the edge
user. By offloading the task, the computing task is offloaded
to the edge server for execution, which can achieve the pur-
pose of relieving the calculation and storage pressure of the
local device, thus extending the service life of the battery.
In this paper, it is assumed that all task programs can be
partitioned. Suppose that the time of the k-th edge user to
unload the task is τk , W is the system bandwidth, and hk is
the channel gain between the edge user and the edge server,
pk represents the transmitting power of the k-th edge user, σ 2

represents the noise power. Then the number of bits unloaded
from the k-th edge user to the server and the total number of
bits unloaded by all users to the edge server are as follows:

Rok = τkW log2

(
1+

pkhk
σ 2

)
(2)

R0 =
∑K

k=1
Rok =

∑K

k=1
τkW log2

(
1+

pkhk
σ 2

)
(3)

3) TASK COMPUTING
After receiving the tasks unloaded by the edge users, the edge
server starts to calculate the received tasks. In order to make
the system built in this paper closer to the actual situation, it is
assumed that the edge server has limited computing capacity,
and its working frequency is fm and working time is τc. Ccpu
is the clock period for calculating a bit. Then the maximum
number of task bits of the edge server is:

Rm =
τcfm
Ccpu

(4)

The final number of computing bits calculated by the edge
server is:

Rem = min (Rm,Ro) (5)

Assuming εm is the effective capacitance of the edge server,
the energy consumption of the edge server in the task calcu-
lation phase is as follows:

Eem = εmf
3
mτc (6)

Assume that tk and fk respectively represent the time and
frequency of the local calculation of the k-th edge user, and εk
is the effective capacitance coefficient of the k-th edge user.
Then the number of bits and energy consumption of the k-th
edge user for local computing are as follows:

Rek =
tk fk
Ccpu

(7)

Eek = εk f
3
k tk (8)

When considering energy consumption, most researchers
only consider edge users, but ignore the energy consumption
of power station and edge server. In this paper, the energy
consumption of dedicated energy station, edge server, sensor
and edge users are taken into account in the design of exper-
iments. The energy consumption of the dedicated energy
station, edge server, sensor and edge user are E1, E2 and E3
respectively, which are as follows:

E1 = (P0 + Psc) τ0 −
∑K

k=1
Ek (9)

E2 = Eem (10)

E3 =
∑K

k=1

(
pk + pc,k

)
τk +

∑K

k=1
Eek (11)

The total energy consumption of the system is:

Etotal = ξ1E1+ ξ2E2+ ξ3E3 (12)

where, Psc is the circuit loss of the dedicated energy station,
and pc,k is the circuit loss of the k-th edge user. The weighted
factors of dedicated energy station, edge server, sensor and
edge user’s energy consumption are respectively represented
by ξ1, ξ2 and ξ3. By setting different weights for them, the
weighted sum is taken as the total energy consumption of
the system. The total number of computing bits in the system
consists of two parts: the number of bits calculated locally by
edge users and the number of tasks unloaded by edge users
calculated by edge servers. The calculation Eq. is as follows:

Rtotal = Rem +
∑K

k=1
Rek (13)

Then the calculated energy efficiency of the whole wireless
functional computing network system is as follows:

fx =
Rtotal
Etotal

(14)

That is, the ratio of the total number of calculated bits and
the total energy consumption of the whole system is also
the objective function to be optimized for the whole joint
optimization system.

B. ESTABLISH MATHEMATICAL MODEL
In this paper, the cooperative relationship among dedicated
power station, edge user and edge server are comprehensively
considered. The transmission power, transmission time,
offloading time of edge users, local computing time and fre-
quency, and computing time and frequency of edge server are
optimized by differential evolution algorithm to optimize the
computing energy efficiency of the whole network system fx .
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There are many parameters to be considered in the whole
system. If the objective function is transformed into a stan-
dard convex function by the theory of generalized fractional
programming, and then the optimal solution is obtained by
iteration, the process will be very complicated. However, due
to its high parallel and random search characteristics, differ-
ential evolution algorithm is very suitable for the optimization
system with more parameters. Subsequent simulation experi-
ments also prove the efficiency and feasibility of this scheme.
According to the whole process above, the mathematical
model of the system is built as follows:

max
τk ,tk ,pk ,fk ,P0,τ0,τc,fm

fx (15)

τ0 +
∑K

k=1
τk + τc ≤ T (16)

Rtotal ≥ Lmin (17)(
pk + pc,k

)
τk + εk f 3k tk ≤ Ek , ∀k (18)

0 ≤ P0 ≤ Pmax , pk ≥ 0, ∀k (19)

0 ≤ fm ≤ fmax,

0 ≤ fk ≤ f max
k , ∀k (20)

0 ≤ tk ≤ T , ∀k (21)

τ0 > 0, τk ≥ 0, τc ≥ 0, ∀k (22)

where Eq. (16) indicates that the energy transmission of the
whole system, task offloading and task calculation of the
server should be completed within the specified time T, where
T is equivalent to setting a maximum delay. Eq. (17) gives
the minimum number of bits (Lmin) required by the system.
Eq. (18) indicates that the energy consumed by edge users
cannot exceed the energy they receive from the energy station.
Eq. (19) defines that the maximum transmitting power of
the energy station cannot exceed Pmax. Eq. (20) defines that
the maximum working frequency of edge server and the
maximum local computing frequency of edge users should
not exceed fmax and f max

k respectively. Eq. (21) is the time
constraint of local calculation for edge users, and the local
calculation time cannot exceed T. Eq. (22) is the time con-
straint of energy transfer time, edge user offloading task time
and edge server for calculation.

C. DIFFERENTIAL EVOLUTION ALGORITHM
Differential evolution algorithm is a global optimization algo-
rithm based on population adaptability [22]. Its advantages
are high parallelism and randomness, and it has good global
optimization ability. In addition, differential evolution algo-
rithm is also robust, simple, practical and efficient, and has
been widely used in artificial intelligence, big data and other
fields. Differential evolution algorithm has fast convergence
and global optimization ability, which can solve the energy
efficiency optimization problem of system computing pro-
posed in this paper. In addition, a large number of experiments
have proved that differential evolutionary algorithm is the
fastest evolutionary algorithm.

The basic idea of differential evolutionary algorithm is as
follows: using the difference component of two individual

vectors randomly selected from the population as the dis-
turbance quantity of the third random reference vector, the
variation vector is obtained. Then the variation vector and
the reference vector are hybridized to generate the test vec-
tor. Then compare the baseline vector with the experimental
vector, and the better ones are kept in the next generation.
This cycle is repeated several times to improve the population
quality generation by generation and guide the population to
focus to the optimal solution position.

The algorithm consists of five basic steps: population ini-
tialization, fitness function definition, variation operation,
crossover operation and selection operation. Its key link
lies in: variation, crossover, selection. Reasonable setting of
fitness function can effectively evaluate the environmental
adaptability of individuals in the population. Meanwhile, the
value of fitness function corresponds to the evaluation of
the performance of task assignment scheme, and ultimately
determines whether the task assignment scheme solved is
close to the optimal solution.

The fitness function of this scheme, namely the objective
function fx mentioned above, is optimized by differential evo-
lution algorithm generation by generation to make the value
of fx reach the maximum. By observing the fitness function
value, we can judge the quality of distribution scheme of dif-
ferential evolution algorithm to the whole system. When the
fitness function value reaches themaximum, that is, thewhole
allocation scheme reaches the best. The fitness function of
this scheme is as follows:

F(x) = fx (23)

Selection, crossover and mutation are the three key steps
of differential evolution algorithm. Selection, that is, accord-
ing to the fitness function value, select the excellent genes
that make the fitness function value larger, and save them.
Crossover, or recombination of genes, to create new indi-
viduals. In the process of gene recombination, differential
evolution algorithm will judge whether a gene is an excellent
gene or not according to the fitness function value of the
gene at the corresponding position on chromosome. There-
fore, the individuals generated after crossover all inherit the
excellent genes from their male and female parent, so they
can better adapt to the environmental requirements than the
previous generation. Mutation, that is, the mutation of one or
some genes on chromosomes increases the diversity of genes.
Crossover cannot produce new genes, but mutation can. The
existence of variation increases the probability of generating
more and better feasible solutions.

The differential evolutionary algorithm includes three
main parameters: Population size NP, scaling factor F , and
hybridization probability Cr. The increase of population size
can increase the diversity of the population and improve the
quality of the optimal solution. However, with the increase of
population size, the computation will increase and the con-
vergence speed will slow down. A small population size can
accelerate the convergence of thewhole optimization process,
but it is easy to cause the algorithm to be premature and fall
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into local optimization. In this system model, the value of
population size is set as 100. The scale factor represents the
degree of disturbance to the basis vector. If the scale factor
is large, the disturbance amount will be large, leading to the
value of the search step size within a large range, which
will improve the diversity of the population, but weaken the
local search ability of the algorithm. If the scaling factor is
small, the disturbance amount will be small, so that the new
individual and the reference individual will not change much,
and the local search ability is strong. The algorithm will
search in the neighborhood of the reference individual, and
the convergence speed will be improved, but it will cause the
local optimal problem. In the simulation experiment of this
paper, take the value of scaling factor as 0.5. The hybridiza-
tion probability is equivalent to a weight used to adjust the
historical information and current information. The higher
the hybridization probability, the more information comes
from the variation vector, which makes the hybridization
vector and the reference vector have a big difference, and
then improves the population diversity. If the hybridization
probability is small, the population diversity is relatively low,
which is not conducive to finding the global optimal solution.
In this experiment, the hybridization probability is 0.7, and
the maximum evolutionary algebra is 2000.

IV. ANALYSIS OF SIMULATION EXPERIMENT
This chapter will verify the feasibility and effectiveness of
the proposed method through computer simulation exper-
iment. Firstly, the mathematical model of the edge com-
puting network for wireless power supply is built through
Python language. Then the corresponding differential evo-
lutionary algorithm is designed according to the established
mathematical model. The optimal offloading scheme and
the optimal energy efficiency of the system were found by
differential evolutionary algorithm. The optimization process
of the whole system can be controlled within 1.6 seconds.
This chapter also analyzes the actual performance of the
proposed method for system energy efficiency optimization,
and compares the experimental results with other methods.
The simulation scenario includes a dedicated power station,
four edge users and one edge service. The relevant parameters
in the simulation experiment are shown in Table 1.

In order to measure the superiority of the proposed scheme
and the influence of relevant parameters on the energy effi-
ciency of system calculation, the scheme is compared with
other allocation schemes, and the influence of some indica-
tors on the computational energy efficiency of the system
is analyzed. As shown in Figure 2, the horizontal axis rep-
resents the population genetic algebra, and the vertical axis
represents the system’s computational energy efficiency. The
orange curve in the figure represents the change of the optimal
individual objective function value of the population with the
population algebra. The blue curve represents the variation of
the average objective function value of all individuals in the
population, and the recombination of the two curves tends
to a certain value, indicating that the proposed method can

TABLE 1. Simulation parameters.

FIGURE 2. Convergence of computational energy efficiency.

achieve a good convergence state. It is not difficult to see from
the figure that when the population evolution algebra reaches
750 generations, the calculated energy efficiency of the sys-
tem has reached a stable convergence state. The proposed
scheme can achieve good convergence in finite evolutionary
algebra, which means that the proposed scheme is feasible
and correct.

In Figure 3, the horizontal axis is the number of edge users,
and the vertical axis is the computational energy efficiency
of the system. It is not difficult to see from the figure that
with the increase of the number of edge users, the calculation
energy efficiency of the system is continuously improved.
This is because with the increase of K , the growth rate of
system computing bits is higher than the total energy con-
sumption of the system. With the increase of the minimum
number of calculated bits in the system, the energy efficiency
of the system calculation presents a downward trend. It can
be seen that with the increase of the minimum number of
calculated bits in the system, the total energy consumption of
the system also keeps increasing, and the increase of energy
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FIGURE 3. Edge users and minimum task bits.

consumption is faster than that of the number of calculated
bits in the system.

FIGURE 4. Comparison Test of different schemes.

In Figure 4, a comparison experiment is conducted
between the proposed scheme and the scheme for calculating
the maximum number of bits and the local scheme. The
horizontal axis is the minimum number of task bits for system
calculation, and the vertical axis is the energy efficiency for
system calculation. It is not difficult to see from the figure
that with the increase of the minimum number of calculated
bits in the system, the energy efficiency of the proposed
scheme, the scheme to maximize the number of calculated
bits and the local computing scheme presents a downward
trend. And the scheme proposed in this paper is superior to
the scheme of calculating the maximum number of bits and
the local computing scheme. This is because the calculation
of bit numbermaximization scheme is optimizedwith the cal-
culation of bit number as the objective function of the system,
without considering the energy consumption of the system.
The scheme proposed in this paper is aimed at maximizing
the computational energy efficiency of the system, taking

into account both the calculated bit number and the energy
consumption of the system. The local computing solution
is to complete all the computing tasks locally at the mobile
end user, instead of offloading them to the edge server for
computing. The scheme proposed in this paper is to screen
out the best offloading scheme through differential evolution-
ary algorithm, including local computing and all offloading
schemes. Therefore, this scheme is only a special case in
the scheme proposed in this paper, and its effect will not be
better than that of this scheme. It can be seen that the scheme
proposed in this paper can comprehensively consider various
situations and cover all parts of the whole system.

FIGURE 5. Maximum transmitting power of energy station.

Figure 5 describes the influence of the maximum transmit-
ting power of the energy station on the computational effi-
ciency of the system under the two scenarios of the proposed
scheme and the scheme with the maximum number of bits.
The figure is drawn with a double vertical axis, the horizon-
tal axis represents the maximum transmitting power of the
energy station, the left vertical axis represents the calculation
energy efficiency of the scheme in this paper, and the right
vertical axis represents the calculation energy efficiency of
the scheme with the maximum number of bits. As can be seen
from the figure, with the increase of the maximum transmit-
ting power of the energy station, the computational energy
efficiency of the two schemes also increases, but the increase
range of the computational energy efficiency is not large.
It can be seen from the figure that the scheme proposed in
this paper is obviously superior to the scheme of maximizing
the number of bits.

Figure 6 shows the change of energy efficiency of system
calculation under different weighting factor ratios. Suppose
that the weighted factor of energy consumption of energy
station (ζ1) is equal to 1, and that of edge server (ζ2) is equal
to 1. Taking the abscissa of ζ3 as the abscissa and taking the
system energy efficiency as the ordinate, we get the corre-
sponding graph of the weighting factor and the system energy
efficiency as shown below. With the increase of weighted
factor (ζ3), power station and edge server proportion rela-
tively reduced, but the energy consumption of the edge users
in proportion of the total energy consumption of the whole
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FIGURE 6. Sensor energy consumption weighting factor.

system is more and more big, leading to decrease computing
efficiency.

V. CONCLUSION
In order to solve the problem of resource scarcity in energy
and spectrum, an optimization scheme for energy harvesting
and task computing based on differential evolutionary algo-
rithm is proposed. Considering the constraints such as the
transmitting power of the energy station and the computing
capacity of the edge server, this scheme builds an edge com-
puting network model for wireless energy supply. This paper
also proposes a differential evolution algorithm to optimize
the computational energy efficiency of the systemmodel gen-
eration by generation, and get the optimal allocation scheme
of transmission power and transmission time of dedicated
energy station, offloading time and frequency of edge users,
local computing time and frequency of edge server. Experi-
mental simulation results verify the effectiveness of the pro-
posed optimization method. Compared with the non-convex
function converted into a convex optimization method, this
method can not only optimize more efficiently, realize low
energy consumption and high computation bit number, but
also can effectively alleviate the energy shortage problem of
micro-equipment and extend the service life of the equip-
ment. However, there is still some room for improvement in
this scheme. For example, every optimization of differential
evolution has a certain randomness, so the output results of
each time will have slight fluctuations. Future research work
will be aimed at this problem.
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