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ABSTRACT Identification of single-cell subtypes is one of the fundamental processes required to under-
stand a heterogeneous population composed of multiple cells, based on single-cell RNA sequencing data.
Previously, cell subtype identification was mainly carried out by dimension reduction and clustering
approaches that grouped cells with similar expressed profiles together. However, for high robustness to
noises and systematic annotation of the subtype in each cell, supervised classification approaches have been
widely used. Recently, deep neural network (DNN) models have been widely presented in various fields,
including biology. By capturing the composite relationship between sample features and target outcomes,
a DNN model enables significant performance improvements in biological data mining analyses. In this
paper, we constructed a DNN model, called scDAE for single-cell subtype identification combined with
representative feature extraction using a multilayer denoising autoencoder (DAE). The feature sets were
learned by the DAE and were further tuned by fully connected layers using a softmax classifier. The model
was compared against four state-of-the-art cell subtype identificationmethods and two conventional machine
learning algorithms. From multiple tests, scDAE significantly outperformed competing methods especially
on data sets having a large number of cell subtypes and noises. Extracted cell features from the proposed
model were clearly clustered with respect to subtype. The results of the experiments indicated that our
proposed model is effective in identifying single-cell subtypes and molecular signatures representative of
each cell subtype. scDAE is publicly available at https://github.com/cbi-bioinfo/scDAE.

INDEX TERMS Cell subtype, classification, gene expression, scRNA-seq, single-cell.

I. INTRODUCTION
Gene expression profiling technologies such as microarray
and RNA sequencing have allowed the investigation of the
gene expression levels of tens of thousands of genes simul-
taneously. By measuring the transcriptome levels of genes,
we can identify the differentially expressed genes in a specific
disease, search enriching gene sets in a biological group, and
construct gene regulatory networks. However, the conven-
tional methods detect gene expression levels using bulk cells,
that is, it is impossible to explore gene expression profiles
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at the single-cell level [1]. Individual cells are composed of
heterogeneous subtypes in a given tissue, and gene expression
levels show variations, even within the same cell subtype.
Thus, the precise expression profiling of individual cells
and the accurate annotation of cell subtypes is essential to
elucidate the understanding of biological systems.

In recent years, the development of single-cell
RNA-sequencing (scRNA-seq) is leading to facilitate a novel
in-depth biological founding. For example, scRNA-seq helps
to understand cell lineages and pathogenesis [2]–[4]. In par-
ticular, within the aspect of cancer genomics, scRNA-seqs
have been widely used to resolve tumor evolution processes,
to segregate primary and metastatic tumors, to investigate
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tumor immune infiltration, to develop clinical application
strategies, and so on [5]–[9]. To date, cell subtype compo-
sition has been estimated by several deconvolution methods
from bulk gene expression profiles [10]–[12], but the advent
of scRNA-seq not only directly detects cell composition but
also determines gene expression levels in each cell subtype.

The subgrouping of the cells based on scRNA-seq data
has been mainly carried out by unsupervised learning, such
as principal component analysis (PCA) or other clustering
approaches. For instance, RaceID proposed resolving differ-
ent cell subtypes in a complexmixture based on identified cell
clusters by k-means clustering [13], and SNN-Clip presented
single-cell transcriptomes clustering with a shared nearest
neighbor graph construction [14]. To uncover multiple layers
of biological populations in scRNA-seq datasets, DendroS-
plit developed an interpretable clustering framework based
on a separation score using feature selection [15], while
SIMLR [16] and MPSSC [17] employed multiple kernel
learning and spectral clustering to learn cell-to-cell similar-
ities among heterogeneous populations of samples, respec-
tively. RAFSIL implemented a random forest model in an
unsupervised way to apply similarity learning for exploratory
analysis of cell subtype discovery [18], and SinNLRR was
developed as a scRNA-seq cell subtype detection method,
which identified non-negative and low-rank representations
of gene expression matrix from all candidate subspaces [19].
However, despite the advantage of not requiring specific
cell subtype information but using the expression pattern of
marker genes, most of the unsupervised cell subtype identi-
fication suffer when the subtype-specific marker genes are
poorly selected due to lack of prior knowledge [20].

Recently, several supervised approaches were developed
for the characterization of individual cell subtypes. Scmap
selected top N residuals as informative features from a fitted
linear model capturing the relationship between gene expres-
sion value and dropout rate of existing reference dataset [21].
Based on these features, to predict a cell subtype, projection
of a new cell was performed to identify the most similar cell
subtype. CaSTLe performed feature selection based on the
highest mean expression and mutual information between the
genes and cell subtypes [22]. Then, a classification model
based on XGBoost was constructed, improved by transfer
learning, and classified the target data. ScPred decomposed a
gene expression matrix using a singular value decomposition
method to identify important features and a support vector
machine (SVM) model that was trained as a classification
model [23]. CHETAH created a classification tree model
based on reference profiles having average gene expression
values for each cell subtype [24]. By traversing the tree,
the input cell is classified based on the similarity with each
node. Garnett [25] and CellAssign [26] performed cell sub-
type assignment based on the user-specified marker gene set
for each cell subtype with raw scRNA-seq read counts, where
Garnett trained an elastic-net regression-based classifier and
CellAssign identified cell subtypes by computing a proba-
bilistic assignment for each cell to a cell subtype. Although

the proposed methods have shown reasonable performance
based on the conventional machine learning and statistical
models, they are limited in processing raw data that requires
careful engineering procedures to transform the raw dataset
into a suitable representation form that machine learning
systems can understand [27], [28] or require an additional
process to select markers for each cell subtype manually.

To solve this issue, deep neural network (DNN) models
have been presented. These models can automatically learn
informative features of the input within the latent space,
where each layer of DNN captures patterns of the raw input
data in different perspectives by optimizing the objective
function [28]. Several studies employed a DNN model due
to the ability of the latent feature extraction. For example,
ADAGE and an ensemble ADAGE integrated diverse gene
expression data and predicted the involvement of biolog-
ical processes based on low-level gene expression differ-
ences without requiring prior knowledge [29], [30]. A DNN
approach using a variational autoencoder (VAE) trained on
pan-cancer RNA seq data identified specific patterns of
gene expression data and profiled a biologically relevant
latent space [31], [32]. For studies using scRNA-seq data,
Lin, et al. employed DNNmodels combining prior biological
information to reduce the dimensions of expression values,
and evaluated performance by comparing their model to
prior clustering and dimensionality reduction methods [33].
To perform fundamental analysis for single-cell transcrip-
tome dataset, the single-cell variational inference (scVI)
model was introduced for probabilistic representation [34]
and ACTINN implemented a DNN model to assign each
cell a cell type [35]. To improve the problem of clustering
scRNA-seq data caused by low RNA capture rate, scDeep-
Cluster integrated a zero-inflated negative binomial model
with a clustering loss function to optimize clustering explic-
itly [36]. However, identification of individual cell subtypes
employing deep neural networks based on scRNA-seq data
still needs improvement.

In this paper, we present a simple, but significantly more
stable DNN-based cell subtype classification model uti-
lizing the scRNA-seq dataset, named scDAE. Due to the
high level of noise introduced by technical biases that vary
across cells, such as amplification bias and library size dif-
ferences, and dropout events caused by low RNA capture
rate, misclassification of cell subtypes can occur. This could
affect downstream analysis significantly and lead to the false
interpretation of the results. The impact from these noises
becomes more significant as the number of cell subtypes
increases. Recently, several approaches to characterize the
individual cell subtypes have been developed, and analysis
for single-cell transcriptome dataset composed of multiple
cell subtypes has been performed. But still, these studies
suffer from the high level of noises due to the increased
number of subtypes. To prevent this issue, a cell subtype
prediction model robust to noise is needed.

We implemented a denoising autoencoder (DAE) to
transform the high-dimensional scRNA-seq data into
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FIGURE 1. Illustration of the proposed cell subtype classification model based on a DNN using scRNA-seq data. The classification procedure consists
of three main phases: (1) preprocessing to normalize the data for accurate prediction, (2) representation learning through multi-layered DAE to
extract latent features and (3) classification of cell subtypes by FC neural network with softmax layer based on extracted latent features.

low-dimensional data to extract informative representations
and fully connected (FC) neural network models with soft-
max layers for cell subtype classification. We evaluated
the performance of our proposed method with the state-of-
the-art classifier models. Our comparison results indicate
that the proposed model provided the highest classification
performance and successfully extracted latent features related
to the multiple cell subtypes.

II. METHODS
In this section, we introduce multiple steps to extract latent
features from scRNA-seq datasets and describe the details of
the model structure to predict cell subtypes. A flowchart is
shown in Fig 1.

A. PREPROCESSING
Recently, it was highlighted that scRNA-seq datasets
typically reflect biological heterogeneity and technical
biases [37]. To eliminate the effects originating from these
issues, raw scRNA-seq read counts were pre-processed using
R package DESeq2 [38]. First, we removed genes with no
count in any cell. Second, size factors were calculated, and
read counts were normalized by library size. For the last step,
read counts were log-transformed.

B. REPRESENTATION LEARNING
To extract informative signatures from the genes in a
scRNA-seq dataset, which are robust to the high level of
noises caused by the technical biases from current scRNA-seq
protocols, we designed and implemented multi-layered
DAEs. The DAE is an addition of a noising layer to a regular

autoencoder (AE), where the AE is a symmetrical neural
network learning a compact representation of the input data
by reconstructing output as close as possible to the input.
As the number of hidden nodes is smaller than the number
of input nodes, the latent features of the input data can be
extracted by minimizing reconstruction errors [39]. The AE
consists of encoding and decoding layers, where encoding
layers perform a deterministic mapping with a non-linear
activation function, transforming input node x of raw data into
a latent representation in an unsupervised way. Conversely,
decoding layers try to reconstruct the original input from the
extracted features by minimizing reconstruction errors.

Given a set of original input data x ∈ Rn, where n is the
dimension of data, an encoder tries to convert x to x̃ by adding
Gaussian noise to the input to obtain a feature representation
by learning the approximation function:

z = hW ,b(x̃) = fe(We · x̃ + be), (1)

where W is a weight matrix, b is a bias term, fe(·) is a
non-linear activation function and e represents the encoder,
whereas the decoder reconstructs the original signal as close
as possible to the uncorrupted original input x:

x̂ = fd (Wd · z+ bd ), (2)

where d represents the decoder. For activation function,
empirically-selected exponential linear units (ELUs) [40] and
the tanh function [41] were applied. During the training
phase, the proposed DAE was trained to minimize the recon-
struction error, which was formulated as follows,

LDAE =
1
2n

n∑
i=1

∥∥xi − x̂i∥∥2, (3)
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where xi and x̂i are the original input and the recon-
structed output, respectively. Allowing the model to robustly
reconstruct the output from partially destroyed input, DAE
separates signals from noises and learns the latent features
capturing the distribution of the training dataset.

C. CLASSIFICATION
We constructed a FC neural network followed by a soft-
max [42] layer for the final cell subtype classification phase.
Informative features learned from the representation learn-
ing procedure were delivered as an input, and the posterior
probability of the ith cell subtype was estimated through the
softmax function Si:

Si =
efi∑C
i=1 e

fi
, fi = WX + b, (4)

where fi is a logit computed from input X from the FC layer,
C is the number of cell subtypes, and W and b are a weight
matrix and a bias vector of FC layer, respectively. Theweights
are trained by minimizing cross-entropy, defined as follows:

LSM = −
n∑
i=1

yi · log(ŷi), (5)

where y is the correct target label and ŷ is a predicted label.
After training the FC layers with the softmax classifier based
on learned features, we performed additional fine-tuning (FT)
to adjust the weights of the trained model for improving the
prediction outcome, where we simultaneously minimized the
reconstruction error and loss from the FC layers as follows:

LFT =
1
2n

n∑
i=1

∥∥xi − x̂i∥∥2 − n∑
i=1

yi · log(ŷi) (6)

To prevent overfitting, we applied dropout [43], by randomly
removing a few nodes to ensure that they had no effect on
network decisions and that the network learned more robust
features. L2 regularization was also added to the loss func-
tion. We used the RMSprop algorithm [44] and the adaptive
optimization algorithm, Adam [45] for DAE and FC layers
training, respectively. Our proposed model based on a DNN
was built by Tensorflow library (Version 1.8.0) [46] and is
publicly available at https://github.com/cbi-bioinfo/scDAE.

III. RESULTS
A. EXPERIMENTAL DESIGN
1) DATASET
To rigorously evaluate model performance, we obtained the
total 21,679 number of cells for 78 cell subtypes across
four scRNA-seq datasets that are publicly available with cell
subtype annotations from Gene Expression Omnibus [47]
or ArrayExpress [48]. They were organized into two groups
of comparable datasets. The number of samples and classes
used for training and testing datasets is shown in Table 1
and SupplementaryTable S1. The pancreas group dataset
profiled islets of Langerhans cells generated from pancreas
tissue: alpha (α), beta (β), delta (δ), and gamma (γ ) cells.

TABLE 1. Datasets used for scDAE optimization and evaluation.

It consists of four datasets generated from different plat-
forms, where [49]–[51] were produced on SMARTer, inDrop,
CEL-Seq2 platform, and [52] was based on the Smart-
Seq2 protocol. Cells with the annotations ‘‘not applicable’’
and ‘‘contaminated’’ were removed due to uncertainty, which
resulted in a total of 10,134 cells. Based on these datasets,
the proposed model was optimized and the performance was
compared to the other methods.

The second group consists of three datasets covering major
mouse organs, which are bladder, lung, and neonatal muscle,
obtained from a mouse cell atlas by Microwell-Seq [53].
Bladder and neonatal muscle dataset contained 16 subtypes
of 2,746 cells and 27 subtypes of 4,873 cells, respectively,
and lung dataset had 31 cell subtypes with 3,926 cells. It was
used for testing the robustness of our model. For each dataset,
we randomly selected 70% of samples as a training dataset
and 30% of samples as a testing dataset.

2) MODEL OPTIMIZATION
The hyperparameters in scDAE including the depth of hidden
layer, number of hidden nodes, learning rate, training epochs,
and dropout rate were optimized, and each experiment was
repeated ten times. For optimization, we randomly selected
70% of samples as a training data set and 30% of samples
as a test data set from the pancreas group described in the
Experimental data section. The training set was used for
unsupervised pre-training of DAE, as well as, training the
FC layers. For the hidden layers and nodes, the proposed
DAE architecture was composed of an encoder of two hidden
layers, each with 1000 and 500 nodes; and a decoder of two
layers, each with 500 and 1000 nodes, and 125 for latent
representations (1000-500-125-500-1000), which achieved
the best average accuracy (Table 2). Two FC layers, each
with 125 hidden nodes, were trained for a final classifier.
The learning rate of pre-training and fine-tuning was set to
0.001, the dropout rate was set to 0.3 for fine-tuning, and
the corruption level was set to 0.4 for the first layer of the
encoder in DAE, showing the best average accuracy. The
maximum training epochs for pre-training and fine-tuning
were set as 3000 and 1000, respectively. Accuracy results
from the experiments with different parameters are shown in
the SupplementaryTable S2.

In addition to optimizing the number of hidden nodes,
the learning rate, and training epochs, we also performed

VOLUME 9, 2021 14543



J. Choi et al.: Cell Subtype Classification via Representation Learning Based on a DAE for Single-Cell RNA Sequencing

TABLE 2. Performance of scDAE under different numbers of hidden
nodes and latent representations.

experiments to find the optimal depth of a hidden layer.
We constructed multiple models having different numbers of
hidden layers. From the experiments, increasing the number
of hidden layers from one tomany and repeating that ten times
for each model, resulted in a model having two layers showed
the best average accuracy of 98.93%, compared to 98.83%
and 98.89% for a one-layeredmodel and three-layeredmodel,
respectively. Increasing more than three layers dropped the
accuracy due to the limited number of raw data.

B. PERFORMANCE EVALUATION OF scDAE
To evaluate scDAE for classifying cell subtypes, we com-
pared our model to the state-of-the-art cell subtype classifica-
tion methods. The conventional machine learning algorithms
such as support vector machine (SVM) with linear kernel
[54] and random forest (RF) [55] were also included for
the performance comparison. Default parameter settings for
each method were used for performance evaluation. Since
the pancreas group dataset was used to optimize and evaluate
the competing models in previous studies [22]–[24], scDAE
was trained using the pancreas group dataset as well, and
the performance was measured by 10-fold stratified cross-
validation. As scDAE is an unsupervised feature learning
classification model, the performance was compared to mod-
els that do not require manual feature extraction or marker
gene selection. From the experimental results, our proposed
model outperformed all other models with respect to the
highest average Matthews correlation coefficient (MCC)
score of 0.9859 (Table 3, Fig 2). The other models had an
average MCC score as follows: ACTINN: 0.9766, SVM:
0.9845, CaSTLe: 0.9795, scPred: 0.9303, RF: 0.9206, while
CHETAH showed the lowest MCC score of 0.6573. Statisti-
cal significance test for the performance comparison between
the scDAE and other methods was also performed based on
the Student t-test to MCC scores, where all the comparison
results showed P-value < 0.01.

We also further investigated the average precision and
recall results for the delta and gamma cell subtypes hav-
ing relatively low number of samples. scDAE showed
the precision and recall higher than 0.98 for both sub-
types, while SVM, ACTINN, and CasTLe achieved higher
than 0.95. RF showed a low precision of 0.79 and 0.50,
high recall of 0.96 and 0.97, respectively for delta and
gamma subtype, predicting the alpha and beta cells as them.
scPred also showed a low precision of 0.41 and high recall

TABLE 3. Average classification performance results conducting 10-fold
cross validation based on the pancreas dataset.

FIGURE 2. Performance comparison of four state-of-the-art cell subtype
classification methods and two machine learning algorithms with scDAE
conducting 10-fold cross-validation.

of 0.95 for the gamma subtype, however having a high
precision of 0.90 and low recall of 0.75, misclassifying the
other cells, especially predicting the delta cells as gamma
subtype. CHETAH showed low precision and low recall less
than 0.82 for both subtypes. Although our proposed model
showed improved performance compared to other methods
and the ability to learn complex hidden relationships between
the high-dimensional gene expression dataset for individual
cell subtypes, due to the small number of cell subtypes in the
pancreas dataset leading to the relatively easier classification
problem compared to the single cell subtype prediction for
more than 15 subtypes, the evaluation results did not show a
significant performance difference.

Since there was not much room for improving the clas-
sification MCC score on the pancreas dataset due to the
relatively simple goal, we used three additional data sets.
scDAE and competing algorithms were further tested on
the bladder, neonatal muscle, and lung tissue dataset, where
each of the dataset has 16, 27, and 31 cell subtypes respec-
tively (Table 1). From the result, our proposed model could
maintain the average MCC score above 0.9 in classifying
more than 30 varying cell subtypes, while others showed
significant performance drop when increasing the number of
cell subtypes (Fig 3, Table 4). scDAE showed the highest
averageMCC score of 0.9330 for predicting 31 cell subtypes,
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FIGURE 3. Performance validation for predicting a large number of cell
subtypes using Mouse cell atlas group dataset.

TABLE 4. Performance comparison based on the average MCC scores for
classifying cell subtypes for each tissue dataset in the Mouse cell atlas
group datasets.

compared to ACTINN: 0.8583, scPred: 0.6958, CaSTLe:
0.7161, and CHETAH: 0.7696. scDAE also outperformed
conventional machine learning methods (SVM: 0.8978,
RF: 0.6972).

As the mouse cell atlas group dataset has the different
number of cells for each subtype, the data imbalance prob-
lem can occur. To address this issue, we randomly sampled
50 cells for each cell subtype from the lung tissue dataset
and used them for the training and testing dataset by dividing
them into a 7 to 3 ratio. Samples for 11 cell subtypes were
excluded due to the small number of samples (<50) and the
experiment was repeated five times. Our scDAE showed the
highest average MCC score of 0.9310, while SVM showed
0.8845, ACTINN: 0.7803, RF: 0.7338, CHETAH: 0.8396,
CaSTLe: 0.6466, and ScPred: 0.3318. From the results,
the robustness of scDAE was validated both for predict-
ing the cell subtypes using the balanced and imbalanced
datasets.

In addition, to visually assess the effect of our proposed
representation learning method, we utilized the t-distributed
stochastic neighbor embedding (t-SNE) method [56]. The
representative features extracted from our model were further
compressed into two or three-dimensional t-SNE spaces and
labeled for each corresponding cell subtype (Fig 4, Supple-
mentaryFigure S3). Although the loss of information may
occur when high-dimensional features are mapped directly
to t-SNE spaces, from a visual assessment of our learned
features, cell subtypes were clearly separated into individual
clusters.

FIGURE 4. t-SNE visualization of the latent features extracted from the
proposed representation learning.

FIGURE 5. Performance change results with different noise rates for
scDAE and other methods.

C. TESTING FOR THE ROBUSTNESS OF scDAE
Inmeasuring gene expression profiles in single-cell transcrip-
tomics, various technical factors such as amplification bias,
cell cycle effects, and low RNA capture rate can introduce
substantial noise in scRNA-seq experiments. These factors
can lead to biological signal corruption and false interpre-
tation of analysis results. The impact from these noises
becomes more significant as the number of cell subtypes
increases. In this experiment, we tested whether scDAE could
maintain the stable performance for cell subtype prediction
within noises, by generating two noisy datasets based on the
lung dataset from the mouse cell atlas group. The first dataset
was provided with label noise by randomly shuffling the cell
subtype labels of 10%, 30%, and 50% of the training dataset.
Label noise brings difficulties for machine learning-based
models to extract discriminative features and consistent pat-
terns for classification, leading to degenerate the robustness
of learned models [57]. As the noise increases, MCC score
for predicting cell subtypes dropped significantly in the com-
peting methods, while scDAE could reasonably maintain
(Fig 5, Table 5). When the label noise was introduced up
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TABLE 5. Average classification MCC scores on noisy lung dataset for six
competing methods.

to 50% of the dataset, scDAE still perform well, with slight
8% performance drop, while others showed 20% to 45%
decrease. scDAE could predict most of the cells maintaining
the MCC score of 0.86, while the performance of other mod-
els decreased less than 0.66. scPred could not predict cells
with 50% noise, as it could not identify informative principal
components for conventional dendritic cell (H2-M2 high)
having noisy 15 cells for the training dataset.

The second dataset for noise test was generated another
noisy dataset by converting non-zero read counts to zero
values. Dropout event is one of the main problems caused
by the low RNA capture rate in scRNA-Seq experiment
[58]. Due to the non-trivial distinction between true and
false zero counts, not all zeros cannot be considered missing
values, where true zero counts represent the lack of gene
expression. We randomly selected 30%, 50%, and 70% of
genes for each cell in the training dataset and converted the
non-zero read counts to zeros. The experiment was repeated
five times. In this dropout simulation test, scDAE showed
a stable performance compared to other methods (Table 6).
From the experiments testing the models for predicting
scRNA-seq datasets with substantial noises, our proposed
model could provide reliable performance for different input
datasets.

Furthermore, we tested our proposed model to validate
whether it can accurately identify cell subtype when using
a heterogeneous scRNA-seq dataset generated across differ-
ent sequencing platforms. Training dataset of the pancreas
group composed of gene expression profiles from multiple
platforms was used, and the prediction accuracy for datasets
sequenced on different platforms was measured. From the
result, scDAE trained on datasets generated from SMARTer,
inDrop, CEL-Seq2 platform, and tested on a dataset based
on the Smart-Seq2 protocol, achieved an average accuracy
of 99.43%, which demonstrated the proposed model is robust
to platform bias. Other results based on different combina-
tions of training and testing datasets are available in Supple-
mentaryTable S4.

TABLE 6. Average prediction MCC score result on lung dataset adding
zero count noises.

D. IDENTIFICATION OF NEW CELL SUBTYPES
In scRNA-seq experiment, it could be possible that the new
cell subtype is only introduced in future data but not in the
training data set. To show whether our proposed model can
be utilized for identifying a new cell subtype, we designed
an additional experiment. We output the probabilities for
each cell subtype estimated through the softmax function
in the classification step from our scDAE and labeled the
cell ’uncertain’ if the highest probability is lower than 0.95,
otherwise classified as a predicted cell type. From the bladder
dataset in the mouse cell atlas group, we excluded ‘‘Basal
epithelial’’ cells from the dataset, and only added 100 samples
of those cells to the testing dataset as new cell subtype (Train-
ing data: 15 cell subtypes, Testing data: 16 cell subtypes).
From the results, most of 15 cell subtypes were classified
correctly with an accuracy of 93.20%. Moreover, 90% of
Basal epithelial cells were assigned ‘‘uncertain’’ showing
that our proposed model is able to identify cell subtype that
was not introduced in the training dataset. We added this
use case to the manual provided from our github repository
(https://github.com/cbi-bioinfo/scDAE).

IV. DISCUSSION
ScRNA-seq has provided the characterization of transcrip-
tomic profiles at the single-cell resolution and has been
widely applied in biological and medical research. Identifica-
tion of single-cell subtype is an essential step before in-depth
investigations and further analysis of their functional roles.
Several supervised-based methods utilizing machine learning
algorithms have been developed, but they still suffer from the
high level of noises. To address those issues in cell subtype
classification, we developed a DNN-based model employ-
ing a multilayer DAE to extract informative representations
robust to the noises and trained the model to predict cell
subtypes.

We first obtained two datasets, the pancreas group and
mouse cell atlas group dataset, and evaluated our proposed
model for classifying cell subtypes. The performance com-
parison with the state-of-the-art cell identification methods
shows that scDAE provides more accurate prediction results
and stable performance by maintaining the MCC score above
0.9 for classifying more than 30 cell subtypes. We also visu-
ally assessed the effect of the representation learning method
utilizing t-SNE, and it is proved that our representation learn-
ing through the proposed DAE-based model has the potential
to correctly extract features from a high-dimensional dataset
and map them to a low-dimensional space.

Moreover, we tested our model’s robustness to the noises
caused by technical factors, which could lead to false bio-
logical analysis and corrupt the investigation of functional
roles for each cell subtype. Two noisy datasets were gener-
ated based on the lung tissue dataset from the mouse cell
atlas group by introducing the label noises and false zero
counts to simulate the dropout event. From our experiments,
scDAE showed robust cell subtype classification for both
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noises. By employing a DAE to separate signals from noises,
allowing the model to robustly reconstruct the output from
partially destroyed input, scDAE could learn complex hidden
relationships between the high-dimensional gene expression
dataset for individual cell subtypes and predict most of the
noisy cells maintaining the classification performance com-
pared to the competing method.

Overall, these findings indicate that scDAE can help
understand a heterogeneous population composed of vari-
ous cells by providing the accurate annotation of cell sub-
types and minimizing the bias caused by noises. It is also
expected that our proposed model will facilitate in-depth
biological findings by discovering new cell subtypes, which
can support to study complex differentiation and develop-
mental trajectories and explore the cell basis of human
disease.

V. CONCLUSION
In this paper, we presented a DNN-based cell subtype clas-
sification model utilizing a scRNA-seq dataset, scDAE. The
proposed model was designed to employ DAEs to learn infor-
mative representations from input data and learned features
were further tuned through FC layers to improve the classi-
fication accuracy. The model was then evaluated with four
different state-of-the-art cell subtype classification methods
and two conventional machine learning methods with 10-fold
cross-validation. scDAE outperformed all other models with
the highest MCC score and demonstrated stable performance
for three group datasets with various cell subtypes. Themodel
also showed stable performance for predicting cell subtypes
when the noise was introduced. Moreover, the effect of our
representation learning method using DAE was assessed
through t-SNE visualization, and it was shown to have the
ability to extract significant features from input data and to
capture discriminative patterns automatically by learning the
relationship between features. We believe that our classifier
will efficiently predict cell subtype on a well-trained repre-
sentation learning model, which may help to improve the pre-
cision of single-cell analysis. In future research work, we will
consider developing an interpretable neural network-based
cell subtype classification model, which can help us to iden-
tify marker genes for each cell subtype.
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