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ABSTRACT Energy storage system (ESS) possesses tremendous potential to counter both the rapid growth
of intermittent renewable energy resources (RESs) and provide frequency support to the microgrid (MG).
Since the deployment of ESS has overcome the imbalance between generation and consumption, however,
their massive cost, as well as degradation tendency, are the restricting considerations that demand alternative
solutions to provide stable microgrid operation. To assist ESS, the electric vehicles (EVs) are incorporated
into the system. EVs have been gradually commercially viable and considerable focus has been paid
to vehicle-to-grid technologies. Appropriate collaboration between ESS and EVs has good capability to
manage the frequency irregularities to ensure the efficient operation of the MG. This article presents a novel
combination of two control techniques i.e., model predictive control (MPC) and adaptive droop control
(ADC), to tackle the frequency regulation issue in the isolated MG, by effectively controlling the ESS and
EVs during the large-scale integration of RESs or huge change in load demand. Firstly, the MPC regulates
the ESS according to the system frequency deviation, and secondly, the ADC manages the power of EVs
according to system specifications by retaining the least possible power for potential usage of EVs.Moreover,
an advanced genetic algorithm is applied to tune theMPC and ADC parameters in order to achieve optimized
performance. An isolated MG is modeled and verified in MATLAB/Simulink using the above-mentioned
control techniques. Further, different case studies are taken into account to validate the combination of ADC
andMPC for frequency regulation of an isolatedMG.Additionally, the proposedMPC controller is compared
with fuzzy logic proportional-integral (FPI) controller and proportional-integral (PI) controller, the MPC
provides better performance results as compared with FPI and PI controllers.

INDEX TERMS Electric vehicles, adaptive droop control, energy storage system, model predictive control,
frequency regulation, GA optimization technique.

I. INTRODUCTION
In an electrical power grid, one of the biggest challenges is
preserving the power balance between power supply and con-
sumption. In other terms, energy production needs to be com-
parable to the energy consumed. This limitation is to some
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degree relaxed by the power system’s inertia. The system’s
inertia is defined by a revolvingmass of synchronous generat-
ing units primarily used in traditional power systems [1], [2].
For instance, if a system encounters failure in one of its
generating units by any accident, an imbalance of power is
observed due to a substantial fall in the generation. Hence,
the other generators attached to the system will try to recover
the power deficit faced by the system by increasing their
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power generation. The generator rotor’s kinetic energy has
the ability to even the imbalance to some extent by supporting
the system to restore its frequency. Moreover, in modern elec-
trical power systems, the overall inertia is inclined towards
the reduction due to the increased integration of renewable
energy resources (RESs).

Integration of RESs on a large-scale into the power grid
contributes to frequency and voltage instabilities [3]. In gen-
eral, RESs possess no or low inertia, the converters are
required for the integration of photovoltaic (PV) system to
the grid which doesn’t provide inertia to the grid. Simi-
larly, variable frequency converters are required for wind tur-
bines (WT) that again lowers the inertial response of the WT
and does not contribute to the grid stability. Subsequently,
as RESs penetration increases, the inertia of the power system
decreases [4]. As a result, a power grid with a significant
degree of renewable energy production has little potential to
respond to power imbalances, which are further amplified
by the intermittent existence of RESs. The rate of change
of frequency increases due to reduced inertia of the power
system which leads to the frequency fluctuation in a very
short period of time, and the power imbalance resulting in
system frequency instability [5].

Frequency is a continually evolving entity in power sys-
tems that is determined by the power production and the
demand. For the safe operation of the power grid, the sys-
tem frequency is maintained within the allowable limits.
Therefore, various sets of operating standards for frequency
are defined independently by the system operators accord-
ing to their own system specifications. In the majority of
Asian countries and European states, the nominal frequency
is 50 Hertz (Hz), while in North and South America this
value is 60 Hz. The lower allowable limit of the frequency
in China is 49.8 Hz and the upper limit is defined as 50.2 Hz.
Meanwhile, under normal situations, the operational range of
frequency in France, Great Britain, Belgium, and Austria this
range is 50 Hz ± 0.5 Hz [6]. As stated earlier the operational
band of frequency in China is small, therefore the inclusion
of RES in the electric network needs additional fortification
for smooth operation especially in islanded MG. For this
purpose, the energy storage system (ESS) is emerged as a vital
entity to be deployed in the power network to support the grid
and to make possible the realization of microgrid and smart
grid.

In certain cases, the implementation of ESS is essential
to ensure the adequate and reliable functioning of the MG.
The ESS can adapt to load variations and consume surplus
electrical power available in the system. Moreover, the power
variability of RESs such as solar and wind generation units
can be compensated by the deployment of ESS [7]. Sim-
ilarly, a mixture of various ESSs with different features
will provide a reasonable solution to the MG challenges.
The electric vehicle (EV) battery storage also known as
mobile battery banks is utilized to lessen the burden on the
ESS. The microgrid can benefit from the vehicle to grid
(V2G) system in terms of frequency control, spinning reserve,

load matching, and support to the reactive power [8]–[10].
The existing microgrids primarily depend on huge syn-
chronous generators for regulating the frequency by the
adjustment of their active output power. The combination
of the ESS and large EVs fleets can be utilized in regu-
lating the frequency of the system rather than using huge
synchronous generators through a proper control strategy
for battery charge and discharge [11]. The complexity of
control will increase dramatically provided the increase in
the share of ESS and the rise in the number of EVs. This
postures a new obstacle in designing control strategies to
regulate the frequency of isolated MG. The application study
of various control schemes is explored in literature since
their development. The proportional, integral and derivative
or commonly known as PID controllers were used due to their
simple structure and easy deployment [12]. However, with
the passage of time fuzzy controller [13], co-operative con-
trol [14], robust [15] and adaptive virtual control [16], virtual
droop based synchronous generator [1], and neural network-
based [17] techniques were developed for the frequency con-
trol of the system. Moreover, the optimization algorithms
including ant colony optimization, bat algorithm, particle
swarm optimization (PSO), artificial neural network (ANN),
and genetic algorithm (GA) were developed to improve the
performance of the of these controllers [18]–[20]. These
optimization schemes like ANN provides good results in
non-linear systems however it has some control limitation to
be applicable in PID controller, similarly, the PSO has the
propensity to fall into a local optimum [20], [21].

The ESS provides partial power support due to its limited
capacity, therefore a cooperative control schemes between
the generating units and ESS is essential for smooth oper-
ation [14], [22]. ESS is implemented in power system to
support RES [4], [23], PV [1], wind [24], [25] to alleviate the
frequency irregularities. Different controllers are deployed
in MG to regulate the RES and ESS according to system
frequency. Furthermore, droop control [1], fuzzy logic [23],
co-operative control [14], andMPC [4], [25] are implemented
on ESS to provide frequency support to MG. For the deploy-
ment of the EVs in MG and their active participation, a lot of
research is carried out on designing appropriate controller or
control schemes that can effectively control/regulate the EVs
storage [14], [15]. The authors proposed droop and modified
droop control techniques to regulate the EVs battery accord-
ing to system frequency deviations [26], [27]. Moreover,
in [28] fuzzy PI and adaptive droop control are used to cater
to the frequency in isolated MG.

The above authors either use ESS or EVs to address the
frequency issues in MG, they didn’t consider the combined
effect of both ESS or EVs fleets in isolated MG. Moreover,
in [28], [29] the control effort to regulate the controller output
is too large to be applied in a specific control application.

The contributions of this article are:
• Frequency regulation of an isolated MG comprising
RESs, DG, and prosumers is studied in this work, where
two separate control techniques MPC and adaptive
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droop control (ADC) are employed to regulate the MG
power imbalance by effectively controlling the charg-
ing/discharging of the ESS and EVs battery system,
respectively.

• The proposed control schemes effectively operate and
avoid the destabilization of MG from collapsing during
the large-scale integration of RESs or huge change in
load demand. Moreover, the ADC provides leverage to
EVs to retain the desired power for their potential usage.

• An advanced genetic algorithm optimization toolbox-
extension for control and modeling (GAOT-ECM) is
used to optimize the parameters of the MPC and ADC
for optimal operation. Besides, this GAOT-ECM is also
used for optimizing the PI and Fuzzy PI controllers,
which are utilized for comparisons with the proposed
MPC.

This article is divided into five sections, the microgrid model
is presented in section II, the proposed control system design
in section III, the results and simulations are presented in
section IV, and lastly, the conclusion is drawn.

II. MICROGRID MODELING
In order to verify the stable and reliable operation of the
microgrid (MG), extensive research has been conducted on
it in recent years. As mentioned above, there are many types
of MGs with different operational roles. Here, in this study,
an isolatedMG is studied in order to validate the performance
of various controllers on frequency regulation. The main
energy sources are diesel generators (DG) and renewable
energy sources (RESs), including wind farms and solar pho-
tovoltaic systems. Secondly, the prosumers are introduced,
which includes the electric vehicles (EVs) and energy storage
system (ESS), and finally, the domestic loads are used as the
power consumers as shown in Fig. 1. The eq. (1) provides
the complete structure of the isolated MG used for frequency
regulation, while the detailed information of each part is given
next subsections.

1PDG︸ ︷︷ ︸
diesel_generators

+1PPV +1Pwind︸ ︷︷ ︸
renewable_generator

±1PEV ±1PESS︸ ︷︷ ︸
prosumers

−1PL︸︷︷︸
load

= M .s+ D︸ ︷︷ ︸
system_inertia_damping

. 1f︸︷︷︸
frequency_deviation

(1)

A. RENEWABLE ENERGY RESOURCES
Sunlight and wind energy are available all over the world.
Therefore, solar photovoltaic (PV) systems and wind turbines
system (WTS) are commonly used for power generation. The
PV system comprises an array of PV cells to convert the sun-
light into DC power, a converter to boost DC voltages, and an
inverter to get the required AC voltages [30]. The generated
PV power depends on the solar irradiance, PV panel voltage
and current, and PV cell temperature [31]. Due to the ease of
installation and ample solar irradiance, the solar PV system
is the first option among the RERs to be deployed in isolated

FIGURE 1. The isolated microgrid dynamic model.

MG. The output PV (PPV ) can be calculated by eq. (2):

PPV = ψ.ϕ.S. (1− 0.005(TA − 25)) (2)

where ψ , ϕ and S is the irradiance, conversion efficiency,
and effective area of the solar array. While TA is ambient
temperature.

The WTS is comprised of an induction generator which
is driven by a wind turbine and further controlled by the
governor through the turbine blades’ pitch angle (β).

FIGURE 2. The wind turbine system dynamic model.

The inputs to the turbine are wind speed (V ) and mechan-
ical speed (ω) of the machine attached to the turbine [32].
In Fig. 2, the output increment in wind turbine system (WTS)
is represented by 1Pwind , Tw is the WTS turbine constant
and ±δw is the ramp limits [33]. Generally, the WTS out-
put power (Pwind ) depends technical parameters, which are
defined in the following equation [33, 34]:

Pwind =
1
2
Cp (λ, β)AηρaV 3 (3)

Cp is the capturing efficiency, λ is tip speed ratio and β is
the blade pitch angle of the wind turbine, moreover, A, η, ρa
and V is efficiency, air density, and wind speed, respectively.
Moreover, the converters’ losses are not included in this
work.
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FIGURE 3. The first-order transfer function of diesel generators.

B. DIESEL GENERATOR MODEL
Generally, a diesel generator (DG) is placed in those areas
where there is no grid connection or used as an alternative
emergency power source to supply power when there occur
some faults in the main-grid. Moreover, DG is not only
deployed for backup or emergency units, but they have auxil-
iary functions to supply power to counter the intermittency
of RESs in isolated MG. Besides these, the DG has the
advantages of fast start-up, high efficiency, and less mainte-
nance cost. Moreover, it has the ability to vary its generation
instantly according to the load variations through its power
control mechanism. The DG’s transfer function is presented
in Fig. 3, where the first block is the governor, followed by
the DG block and then the saturation block. Based on the
frequency deviation (1f ), the governor regulates the state of
the valve (1XG), R represents the droop and the increment
in the DG output power is given by 1PDG. In order to meet
the power balance, the ramp rate limit (±δdg) determines the
rate at which the output power of the DG can be changed.
Tt and Tg are the generator and governor time constants,
correspondingly.

C. PROSUMERS
The EVs were initially developed in the late 19th century
for transportation but due to the advancement in the internal
combustion engine vehicles and lack of battery advancement,
they were extinct. In 2008, the reemergence of EVs occurred,
where they not only provide transportation service but also
provide ancillary services to the grid in order to make the
modernworld clean and green [35]. In order to facilitate a safe
and reliable substitution of traditional power sources, EVs are
prominent viable assets of the power system, given that their
individual responses are fairly aggregated. By controlling the
EVs battery (EVBs) system charging/discharging procedure,
they can effectively regulate the peak load, increase the grid
reliability, indemnify the effect of intermittent RES on-grid
fluctuations and manage the frequency instability by the ade-
quately charging and discharging mechanisms.

Moreover, in isolated MG the EVs deliver the vehicle to
grid facilities to the MG for frequency stabilization through
battery regulation of EVs. Recent studies have shown that
EVs are idle most of the time during the day. More specif-
ically, the three folded benefits of EVBs are: (a) they effec-
tively manage the MG frequency by regulating their storage
according to system load variations, (b) they provide addi-
tional storage to the MG resulting in the decrease in the
expanse/cost of consumption by an extra energy storage sys-
tem, and (c) they also provide economic benefits to the owner

FIGURE 4. First-order transfer function model of an EV battery system.

by selling power during peak hours to MG. The detailed
model is explained in [28], [36], is shown in Figure(4). The
K ,CEV and TEV is the droop, rated capacity and time constant
of EV battery, respectively. Moreover, the battery internal
characteristics are not studied, as they do not affect the main
theme of this work. The increment in the EV output power
(1PEV ) is the difference between the regulation power (PDEV )
and charging power (PCEV ) of the EV (1PEV = PDEV − P

C
EV ).

This 1PEV is regulated by 1f as given in eq. (4).

1PEV = 1f .
KEV

1+ TEV s
(4)

Due to its short reaction time and organizational versatility,
the energy storage system (ESS) is among the most desir-
able candidates that provide frequency regulation services
in isolated MG. ESS technology can insert a huge amount
of electricity into the grid in a limited period due to quick
reaction time that can be utilized as virtual inertia [1]. The
ESS offers upward / downward control by considering the
need to inject/absorb power according to the grid require-
ments, as comparing to the fast-traditional generation units
that are held on-line to provide primary frequency regulation
by controlling the power output in case of any frequency
deviation event occurs [37].

It’s the first line of defense which rescue the isolated
MG under load-generation unbalance condition. Normally
the ESS operates its state of charge between (SOC) between
20 and 90 because the behavior of the output power of ESS
(1PESS ) is linearly increased and decreased in this range
according to frequency variations. The ESS transfer function
is presented in Fig. 5.

III. THE PROPOSED CONTROL SYSTEM DESIGN
A. THE PROBLEM FORMULATION
In this work, an isolated MG is studied to check the effect
of both ESS and EVs on the frequency regulation of MG.
An adaptive droop control (ADC) technique is used for the
regulation of EV’s battery (EVB) while an MPC controller
is used to manage the energy storage system (ESS) output
according to the system frequency deviation. Furthermore,
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FIGURE 5. A dynamic model of the proposed system.

an advanced genetic algorithm (GA) is employed on theMPC
and ADC parameters in order to achieve the optimal solution.

B. FUZZY LOGIC PI CONTROLLER
The proportional-integral (PI) and fuzzy logic PI (FPI) con-
trollers are implemented in order to compare their perfor-
mance with the model predictive controller (MPC). The
inputs to the FPI controller are frequency deviation (1f ) and
its derivative (d1f ) as shown in Fig.6. The fuzzy process
consists of fuzzification, fuzzy inference system (FIS), and
defuzzification. Fuzzification begins its process on the crisp
input data, where the crisp value is mapped to a fuzzy input
value dependent on the corresponding membership function.

FIGURE 6. Fuzzy PI Controller.

FIGURE 7. Mamdani type FIS output pattern.

The Mamdani-type FIS output variables are presented
in Fig. 7. In the next stage, the FIS utilizes the membership
functions (MF’s) and fuzzy rules to yield the output. Here five
fuzzy sets are used to provide 25 rules base for the system
as given in Table 1. MF’s is comprehended as a contour
that portrays the mapping of membership value of every
step.

TABLE 1. Fuzzy rule base.

The MF’s are spread from negative big (func1) to positive
big (func5), encompassing negative small (func2), positive
small (func4), and zero (func3). IF-THEN function is used
to map the fuzzy rules as given in Table 1.

IF1f is func5AND d1f is func4, THEN output is func5.
Moreover, the FL approach is described as a set of prin-

ciples and rules which are mathematically defined by mem-
bership degrees instead of binary logic [38]. The recently
developed genetic algorithm optimization technique (GAOT-
ECM) is implemented to optimized the controllers for better
results under unenviable situations based on eq. (24) [19].

C. ADAPTIVE DROOP CONTROLLER FOR THE
ELECTRIC VEHICLE
Before connecting to MG, the initial state of charge (S in), the
desired state of charge (Sd ) and the time of arrival (tarr ) of
the EV is calculates. The total power of the EVs (PTEV ) is
the resultant of the power possessed by EVB during charging
(PcEV ) and provided during regulation (PdEV ) as given in the
following set of equations.

PTEV = PdEV − P
c
EV

PdEV = PmaxEV K d
EV

PcEV = PmaxEV K c
EV

(5)

where K d
EV and K c

EV is discharging and charging droops of
the EVB, respectively. The EV regulate the batteries SOC by
Ireg current. It is calculated by the difference between the Sd

and S in, the total plugin time (tp), the rated capacity (CEVB)
and EVB voltage (VEVB). This regulation current is solely
dependent upon the former three parameters, as the last two
parameters remain constant. The mathematical equation of
Ireg is given below:

Ireg =
(
Sd − S in

tp

)
.
CEVB
VEVB

(6)

As the EVs provide supplementary support to isolated MG,
so the first goal is to charge the EVBs to their desired level
(Sd ). The adaptive droop controller (ADC) manages the K c

EV
and K d

EV based on the following set of equations.

If S in ≤ Smin
{
K c
EV = Kmax

K d
EV= 0

(7)
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If Smin ≤ S in ≤ Sd , then
K c
EV= 0.8Kmax

1+

√
Sd − S in

S in − Smin


K d
EV= 0.2Kmax

1−

√
Sd − S in

S in − Smin

 (8)

If Sd ≤ S in ≤ Smax , then
K c
EV= 0.5Kmax

1−

√
S in − Sd

Smax − S in


K d
EV= 0.5Kmax

1+

√
S in − Sd

Smax − S in

 (9)

where S in, Smin, Sd , Smax and Srated are the initial, minimum,
desired, maximum, and rated SOC of the EVB, respectively.
For better performance the SOC of EVB is classified into
four distinct zones as 0 <Smin < Sd < Smax < Srated .
These zones are vital as the EV batteries SOC show a linear
behaviour between Smin and Smax , which is set at twenty and
ninety percent, respectively. Moreover, to preserve the EVBs
health and avoid their degradation, Sd is introduced. The Sd

is that mark until which the EVB SOC must be preserved for
future transportation usage of the EV. The ADC regulates the
EVBs power according to the frequency deviation (1f ) in the
MG and, the S in of EVBs based on the eq. (7,9). The pictorial
representation of ADC is presented in Fig. 8.

FIGURE 8. EVBs power regulation based on frequency deviation.

The EV having S in less than Smin is put in charging state,
until and unless the S in is greater than Smin, the K d

EV is zero as
the EVB doesn’t provide power toMG in this state.Moreover,
when S in lies between the Smin and Sd , the ADC will observe
the 1f situation at the isolated MG. When the 1f is posi-
tive, the K c

EV charging droop is set greater for fast charging.
However, when 1f is negative, the EVBs having greater
power, releases energy in order to cater the system frequency.

The parameter kmax of the ADC is optimized by the genetic
algorithm, which is investigated in the next subsection B.2.

D. MPC CONTROL DESIGN FOR THE ENERGY STORAGE
SYSTEM
MPC is implemented here to regulate the input signal to
ESS according to the frequency deviation. The continuous
state-space model of the complete microgrid in Fig. 5 can be
expressed by Eq. (10):

ẋ = Ax + Bu

y = Cx (10)

where A,B,C are the continuous state-space matrices and
these matrices are presented as follows A,B, and C , as shown
at the bottom of the next page. The input is u = [1uESS ], the
output is y = [1f ], the states are defined as follows:

x

=
[
1PESS 1Pwind 1PDG 1XG 1f 1ω 1PL 1PEV1PPV

]T
The optimization phase and state estimation phase are the
two main model predictive control (MPC) operation phases
as presented in Fig. 9 [39]. The current state variables State
estimation can be obtained by measuring the, in which the
prediction model in eq. (11) is utilized to estimate the future
state variables prediction.

FIGURE 9. Model predictive control operation.

The discrete state-space model of the continuous model
in (6) with sampling time Ts, which is utilized to design the
MPC, can be stated by:

x (k + 1) = Adx (k)+ Bdu (k)

y (k) = Cdx(k) (11)

where Ad ,Bd , Cd are the discrete state-space matrices.
The predictive control design is to calculate the pre-

dicted system output with future control inputs as the
adaptable variables. By choosing the new states vectors as
xa (k) = [1x (k)T y (k)]

T
. The following augmented model

is utilized for the MPC design:[
1x (k + 1)
y(k+1)

]
=

[
Ad 0
CdAd 1

] [
1x (k)
y(k)

]
+

[
Bd
CdBd

]
1u (k)

y (k) =
[
0 I

] [1x (k)
y(k)

]
(12)

The above-augmented model can be put in the following
compact form:

xa (k + 1) = Aaxa (k)+ Ba1u (k)

y(k) = Caxa(k) (13)

VOLUME 9, 2021 14963



M. U. Jan et al.: Frequency Regulation of an Isolated MG With EVs and ESS Integration

where Aa, Ba, Ca represent the augmented model’s
state-space matrixes. Typically, at each sample k: the future
control trajectory is based on the current input measurements
1U . Using the augmented model in eq. (13), the predicted
states for future Np (prediction horizons) are getting based on
the measured states x(k) at sample k as follows:
xa (k + 1 | k) = Aaxa (k)+ Ba1u (k)

xa (k + 2 | k) = A2axa(k)+ AaBa1u(k)+ Ba1u(k + 1)
...

xa
(
k + Np | k

)
= A

Np
a xa(k)

+A
Np−1
a Ba1u (k)+ . . .

+A
Np−Nc
a Ba1u(k + Nc − 1)

xa (k + 2 | k) = Aaxa (k + 1 | k)+ Ba1u(k + 1) (14)

The control action of MPC is predicted for future Nc (control
horizons) samples. The future outputs trajectories are defined
based on the predicted states, as follows:

y (k + 1 | k) = Caxa (ki + 1 | k)

y (k + 1 | k) = CaAaxa(k)+ CaBa1u(k)

y (k + 2 | k) = CaAaxa (k + 1 | k)+ CaBa1u(k + 1)

y (k + 2 | k) = CaA2axa(k)+ CaAaBa1u(k)

+CaBa1u(k + 1)
...

y
(
k + Np | k

)
= CaA

Np
a xa(k)

+CaA
Np−1
a 1u (k)+ . . .

+CaA
Np−Nc
a Ba1u(k + Nc − 1) (15)

To collect all the equations at the different samples, the fol-
lowing vectors are defined:

Y = [y (k + 1 | k) y (k + 2 | k) y (k + 3 | k)

. . . . . . ..y
(
k + Np | k

)
]T

1U = [1u(k)1u(k + 1)1u(k + 2)

. . . . . . ..1u(k + Nc − 1)]T

By combining all equations in (12) and (13) the following
equation can be written for the predicted output:

Y =Fxa (k)+∅1U (16)

where F , as shown at the bottom of the page. At each sample
k , the following objective function in terms of1U , Y , and X
is minimized as follows:

J = (Rs − Y )T (Rs − Y )+1UT R̄1U (17)

where Rs =
[
1 1 · · · 1

]T
1∗Np
∗ rs, R̄ = Identity (Nc,Nc) ∗

kmpc. R̄ is supposed positive definite matrices. The Rs is
the reference input, the R̄ is weight matrix on 1U over the
predictive horizon.

The objective is designed to find the best control parameter
vector of 1U . This can happen by converting the previous
objective function in a quadratic form in terms only on 1U .
By substituting Equations (11) into Eq. (12), the resulting
objective function will be as following:

J = (Rs − Fxa (k))T (Rs − Fxa (k))

−21UT
∅
T (Rs − Fxa (k))+1UT

(
∅
T
∅ + R̄

)
1U

(18)

where (Rs − Fxa (k))T (Rs − Fxa (k)) can be ignored as it is
not related to 1U .
The objective function’s derivative J are given as follows:
∂J
∂1U

= −2φT (Rs − Fx (ki))+ 2
(
∅
T
∅ + R̄

)
1U (19)

The necessary condition to find the minimum J can be
obtained as follows:

∂J
∂1U

= 0 (20)

A =



−1/TESS 0 0 0 0 0 0 0 0
0 − 1/Tw 0 0 1/Tw 0 0 0
0 0 − 1/Tg 0 − 1/(R ∗ Tg) 0 0 0 0
0 0 1/Tt 0 0 0 0 0 0

−1/DH 1/DH 0 − 1/DH − D/DH 0 − 1/DH 1/DH 1/DH
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1/TEV 0
0 0 0 0 0 0 0 0 0


B =

[
1/TESS 0 0 0 0 0 0 0 0

]T
;

C =
[
0 0 0 0 1 0 0 0 0

]

F =


CaAa
CaA2a
CaA3a
...

CaA
Np
a

 ,∅ =


CaBa 0 0 · · · 0
CaAaBa CaBa 0 · · · 0
CaA2aBa CaAaBa CaBa · · · 0

...
...

... · · ·
...

CaA
Np−1
a Ba CaA

Np−2
a Ba CaA

Np−3
a Ba · · · CaA

Np−Nc
a Ba

 .
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From eq. (19-20), the optimal control signal solution is asso-
ciated with the state variable x(ki) and the setpoint reference
rs(ki) as follows:

1U =
(
∅
T
∅ + R̄

)−1
∅
T (Rs − Fx (ki)) (21)

where Rs =
[
1 1 · · · 1

]T
1∗Np

∗ rs, R̄ =

Identity (Nc,Nc) ∗ kmpc.
The final input rate signal 1u (with receding control pol-

icy) is expressed as follows:

1ufinal =
[
1 0 0 · · · 0

]
Nc∗1
∗1U (22)

The final input signal u is expressed as follows:

ufinal = u0 +1ufinal (23)

where u0 represents the previous control input. The parameter
kmpc of theMPC is optimized by the genetic algorithm, which
is investigated in the following subsection.

GENETIC ALGORITHM OPTIMIZATION OF THE MPC
PARAMETERS
GA is an optimization technique that can perform fast
searches in a huge amount of ambiguous or partial data set
with an in-built structure that permits parallelization. As GA
has an empirical nature, therefore, it can integrate into the
limits of the fitness function, performance indexes, and objec-
tives which are not essentially well-defined in a good way.
Moreover, more restrictions are added to state a possible
entity as a fit solution the given issues are not a computational
burden. In amodern study, GA has been used to cater to issues
in different fields. Their popularity keeps increasing due to
their ease of use, effectiveness, or applicability. GA has been
effectively used in the control system [40] with feedforward
and feedback controllers, parameter approximation [41], and
modeling [42]. Furthermore, GA has been applied in several
other areas for different issues as a standalone technique [19],
distributed control system [43], in coordinationwith new state
of the art techniques such as neural networks [44], or virtual
synchronous generator [45]. An advanced GA is used to get
the optimized results of the droop controller for frequency
regulation.

The following series of steps are executed to run an evolu-
tionary algorithm (EA) as given in Fig. 10:

(a) Initialization of solution population, followed by the
evaluation of fitness function; (b) given that a formerly
declared termination state is not reached, for each genera-
tion based on their measured fitness, certain individuals are
chosen and recombined to produce offspring; and (c) the
fitness of the current population is assessed to be included
in the next period. EAs conduct simultaneous searches in
multiple directions in order to find the solution within a
given population by assessing the adequacy of each entity,
as a fitness variable calculated using a parameter or index
that models the desired target. In addition, in order to locate
the desired solution within a given population of possi-
ble solutions, multi-criteria searches can be carried out.

FIGURE 10. The advanced genetic algorithm steps.

The definition of the fitness function is problem-specific,
used to model the general goal of the treatment, while its aim
is to remove insufficient solutions from the gene pool. This
feature returns the value of the output criterion (for example,
the minimization index) used to pick new-generation parents.
The efficiency of the entire algorithm is given by the fitness
during its run of the best population, or by the fitness of the
returned final solution.

IV. SIMULATION RESULTS
The isolated MG is modeled in MATLAB/Simulink
(R2019b), the parameters’ values of themicrogrid are defined
in Table 2. The proposed controllers are validated for four
cases based on the addition of generating entities. Initially,
the effectiveness of model practice control (MPC) is com-
pared with the proportional-integral (PI) controller and fuzzy
PI (FPI) [29] by considering the energy storage system
(ESS). In the second case, renewable energy resources are
added, the electric vehicles are considered along with other
entities. Lastly, the real data of wind and solar are used for
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TABLE 2. System parameters.

TABLE 3. Genetic algorithm parameters.

the validation of MPC and adaptive droop control (ADC)
techniques. The MPC’s prediction horizon is Np = 10 and
control horizon is Nc = 2. The genetic algorithm parameters
are represented in Table 3. The proposed fitness function is
given in eq. (24).

Fitness function = 0.001 ∗
(
(UESS)2 + (UADC )2

)
+ 0.999 ∗ (|1f |) (24)

After performing optimization, the MPC and ADC param-
eters after GA optimization are kmpc= 0.1 and kmax= 0.5,
respectively. For comparison purposes, the PI controller is
optimized using the advanced GA. The cost function and
the options of the GA are the same as used for the MPC
parameters optimization. In industrial applications the upper
and lower bounds of the PI parameters (Kp and Ki) are kept
between 0 and 10. The final parameters of the PI controller
after optimization are Kp= 1.16 and Ki= 1.74.

A. CASE 1
In the first case, a load disturbance (1PL) of 0.02 p.u.
is applied at a time (t= 1s) to validate the performance of the
proposed MPC as shown in Fig 11(a). Simulations are done
on the proposed model by considering the energy storage
system. The control signals (UESS ) which regulates the ESS
is presented in Fig 11(b).

Fig. 11(c) shows the output of ESS power (1PESS ). The
frequency variations (1f ) of the isolated MG by deploying
PI, FPI, and MPC controllers are given in Fig. 11(d). From
the results, it is evident that the overshoot, settling time, and

FIGURE 11. The performance results for ESS for load variations by PI, FPI,
and MPC controllers. (a) step-change load variation in p.u. (b) The input
signal of ESS. (c) the power of the ESS (d) The frequency response.

frequency minimization of MPC is much better than PI and
FPI controllers.

B. CASE 2
Here, variations in wind power (1Pwind ) and solar PV system
(1PPV ) are considered in order to demonstrate the perfor-
mance of the proposed controllers. Moreover, the unit step
load 1PL is increased to 0.2 p.u. as shown in Fig. 12(a),
where Fig. 12(b) depicts the input UESS to the ESS under
this variable load, which regulates the output power of ESS
(Fig. 12(c)) according to the system needs. The wind gen-
erator speed and the irradiation of the PV cell (Fig. 12(i)),
which are responsible for the wind and the PV output power
generation are presented in Fig. 12(k). The 1f restoration
of the system by using the PI, FPI, and MPC controllers are
given in Fig.12(d). The PI surpasses±0.021f at t= 1sec and
t = 7.5sec, similarly, the optimized FPI crosses this limit at
t = 1sec.

Although all the controllers bring back the1f to operating
value, however, the overshoot, settling time, and frequency
minimization performance of the optimized MPC is better
than the remaining two controllers.

C. CASE 3
In this case, the same load variation, the ESS, and the RESs
penetration are used, however, the electric vehicle batteries
(EVBs) are the additional entity included checking the MG
frequency stability. The input signal (UEV ) which regulates
the EVBs, the voltage, current and the power of the EVs
are given in Fig. 13(e), 13(f), 13(g), and 13(h), respectively.
Initially, the ESS tries to charge its battery storage, but at
t= 1sec a step load change of 0.2 p.u. is applied. As the EVs
connected to the system tries to achieve their desired SOC
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FIGURE 12. The performance results for ESS/EV for load variations with
RESs penetration by PI/ADC , FPI/ADC , and MPC/ADC controllers.
(a) step-change load variation in p.u. (b) The input signal of ESS. (c) the
power of the ESS (d) The frequency response (i) The generator speed and
the irradiation of the PV cell (k) The wind and the PV output power.

for future utilization therefore the ESS discharge its power
until the system becomes stabilized. The first goal of EVBs
is to provide the necessary power to fulfill their own needs,
which means they should preserve their desired power first
and then interact with MG frequency deviations. Here the
adaptive droop controller (ADC) regulates the output power
of EVBs (1PEV ) according to 1f in order to participate
effectively in frequency regulation of the isolated MG. The
1PEV is uniformly managed by PI−ADC , FPI−ADC, and
MPC − ADC as these controllers (PI, FPI, and MPC) don’t
affect the performance of the ADC to regulate the cumulative
power of the EVBs. Moreover, ADC and optimized MPC
reduces the frequency deviations by regulating their respec-
tive energy storage in order to bring back the MG frequency
to the normal operating position as given in Fig. 13(d).

The damping, overshoot, settling time and the sustainment
of the system frequency within the desired limits are not
effectively managed by the combination of PI−ADC and
FPI−ADC controllers.

D. CASE 4
The real-time data of wind speed and solar irradiance is con-
sidered beside the random load variations. The 1PL varies

FIGURE 13. The performance results for ESS/EV for load variations with
RESs penetration by PI/ADC , FPI/ADC , and MPC/ADC controllers.
(a) step-change load variation in p.u. (b) The input signal of ESS. (c) the
power of the ESS (d) The frequency response (e) Input single of EV. (f) The
voltage of the EV battery. (g) The current of the EV battery. (h) The output
power of an EV. (i) The generator speed and the irradiation of the PV cell
(k) The wind and the PV output power.

between 0.15 and 0.75 p.u., the wind speed and the solar irra-
diance as shown in Fig 14(a), 14(i), and 14(k), respectively.

During huge and sudden load variations, the PI − ADC
violates the upper and lower limits of 1f . For instant at
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FIGURE 14. The performance results for ESS/EV for load variations with
RESs penetration by PI/ADC , FPI/ADC , and MPC/ADC controllers.
(a) step-change load variation in p.u. (b) The input signal of ESS. (c) the
power of the ESS (d) The frequency response (e) Input single of EV. (f) The
voltage of the EV battery. (g) The current of the EV battery. (h) The output
power of an EV. (i) The generator speed and the irradiation of the PV cell
(k) The wind and the PV output power.

time t = 2sec when the 1PL suddenly decrease from 0.72 to
o.35 p.u. the PI−ADC couldn’t manage the system frequency

properly as the1f crosses the -0.04 at this instant. Similarly,
the optimized FPI and ADC combination show better perfor-
mance than PI−ADC controllers. However, at time t= 60sec,
it violates the limits as evident in Fig. 14(d). The combination
of optimized MPC − ADC controllers shows much better
results and good performance regarding damping, overshoot,
settling time, and the sustainment of the system frequency
within the desired limits.

V. CONCLUSION
In the isolated microgrid (MG) mode of operation, the sta-
bility of frequency is a significant control issue. Therefore,
this article presented the control techniques that regulate
the frequency of isolated MG in an effective manner. The
adopted control technique is comprised of proportional inte-
gral controller (PI), adaptive droop control (ADC), fuzzy
logic proportional integral controller (FPI) and model predic-
tive controller (MPC) controller. The system including elec-
tric vehicles (EVs), an energy storage system (ESS), a wind
turbine, a solar system, and a diesel generator are studied.
The PI, FPI, and MPC controllers are used to control the
output of the ESS. Whereas, ADC is used for regulating the
EVs batteries. The impact of load variation on the system’s
frequency is also analyzed. Meanwhile, the PI, FPI, and
MPC controllers’ parameters are well-tuned with the help
of genetic algorithm optimization in order to enhance the
system stability and frequency response under fixed as well
as various load variations. Moreover, a high RESs penetration
(by wind and solar) is considered to observe their impact on
the mentioned controllers’ design and, on the frequency of
isolated MG. MATLAB/SIMULINK is used as a tool to val-
idate the performance of the presented control techniques on
the frequency of isolated MG. The simulation results depict
that the frequency deviation is restored effectively with the
help of the proposed control techniques. In addition, the per-
formance of MPC − ADC controllers are fairly better than
the PI−ADC and FPI−ADC controllers regarding damping,
overshoot, settling time, and the sustainment of the system
frequency within the desired limits.

In future works, a single controller will be designed in
order to regulate the SOC of both ESS and EVs. Moreover,
the role of converters which control the wind and solar power
will be taken into account in the frequency response model.
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