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ABSTRACT With the explosion of multi-modal Web data, effective and efficient techniques are in urgent
need for cross-modal data retrieval with relevant semantics. Among all the possible solutions, the hashing
techniques provide compact and measurable binary representation, thus gain much attention in related
research domain. To better deal with diversified real world data, we propose MSC, a novel cross-modal
hashing approach based on the generalized lp-normMultiple Subgraph Combination. Specifically, by jointly
considering the content similarity, the correspondence and other weak correlation among cross-modal
documents, we build the intra-modal similarity with multiple affinity subgraphs, and encode the inter-
modal correlation with a bipartite subgraph. Then these subgraphs are combined into one multi-modal
similarity graph for all the data from heterogeneous modalities, where the weights of multiple intra-modal
visual similarity subgraphs are regularized by lp-norm penalty. The optimal hash codes and the combination
coefficients are learned simultaneously by efficient alternating optimization. The hash functions for different
modalities are learned separately by utilizing nonlinear classification models, encoding the complicated
semantic relations among cross-modal data. Experiments on challenging real world datasets demonstrate
the advantage of our method over existing approaches.

INDEX TERMS Cross-modal hashing, feature combination, information fusion.

I. INTRODUCTION
Due to the development of Web and multimedia technol-
ogy, the amount of Web multi-modal data is growing with
an astonishing speed. Meanwhile, the diversified Web con-
tent is delivered by multiple information carriers. For exam-
ple, the concept ‘‘European Football Championship’’ can be
described by text, photographs and videos contributed by pro-
fessional journalists or amateur users. For better understand-
ing of interesting concepts or events, the user would search
the images or videos by textual queries, or the textual descrip-
tions by image queries. This new application demand is
known as the cross-modal retrieval [1]–[3], which is very dif-
ferent from traditional single-modal image retrieval [4]–[7],
where the queries and database documents are from the same
modality. For cross-modal retrieval, how to effectively and
efficiently retrieve multi-modal data with rich content and
context becomes a very interesting yet challenging problem.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiangqiang Yuan.

As great endeavors have been dedicated, a widely accepted
paradigm for large scale retrieval is the neighborhood search.
Instead of linear scan search, Locality Sensitive Hashing
(LSH) [8] is an approximated neighborhood search method
on high dimensional data where the collision probability
of the hash codes is related to the similarity between the
hashed data. Learning-based hash models, to name a few,
Spectral Hashing [9], [10], Semantic Hashing [11] and task
specific hashing [12] obtain the retrieved results with more
semantic consistency. To exploit nonlinear similarity mea-
sure, Kulis et al. [13] construct LSH on some given kernel
instead of original space (KLSH). Liu et al. [14] propose
to learn the hash function based on the kernel and side
information. They can only construct hashing system on
single modality and are not applicable when the queries and
database are from different modalities.

This paper studies the hash learning method for cross-
modal retrieval, which corresponds to mapping heteroge-
neous modalities into a unified Hamming space. However,
in real cross-modal retrieval applications, images and texts
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FIGURE 1. Examples of real-world correlated image-text data. The words and phrases in red, green, orange, blue and
purple represent the visual content descriptions from color, shape, object, action and person aspects.

are correlated from different aspects and from different lev-
els. First, take an image as an example, the correlated text
may describe the visual content from multiple and comple-
mentary aspects, e.g., color, shape, object, scene and action.
Some examples are shown in Fig. 1, where we mark the
textual description from different aspects with distinguished
colors. The visual content can be described by different
visual features from complementary aspects. Accordingly,
the visual-linguistic relation on feature level is also encoded
by the correlation between different visual features and tex-
tual feature. Therefore, given that the textual features can be
sufficiently represented by single feature extraction pipeline
(e.g., bag-of-word model, text CNN [15], LSTM [16], etc.), it
is necessary to model the cross-modal correlation by consid-
ering multiple visual features for learning good cross-modal
hash codes and functions.

Second, images and texts are correlated from different
levels. For example, an image in a web page is strongly
correlated with its surrounding textual description (as shown
in in Fig. 1), while it can also be weakly related (or partially
related) to those texts that are located in the web-pages that
are linked to this web page, as discussed in [17].

To perform cross-modal hash learning, a good model
should meet the following requirements. First, the hash codes
of the semantically similar (dissimilar) data within the same
modality should be similar (dissimilar), where the intra-
modal relation can be described by local affinity [9], [10]
or side information [18], [19]. Second, the hash codes of
the correlated (uncorrelated) data from different modalities
should be similar (dissimilar) [18]–[20].

In this paper, we study the cross-modal hashing method by
addressing the following issues. First, beyond existing main-
stream approaches which mainly learn to fit the given seman-
tic relation among cross-modal data objects, we categorize
the cross-modal correlation into strong correlation and weak
correlation for hashing. The strong correlation corresponds to
those image-text pairs discussing exactly the same topic. The
weak correlation indicates that the topics of the two cross-
modal documents are relevant, where the relevance can be

reflected by their structure relation, e.g., the hyperlinks, or
semantic relevance of the two categorywords. By considering
weak correlation among cross-modal data, we can utilize the
correlation information more comprehensively to learn the
cross-modal hash codes.

Second, considering that the visual information can be
described by multiple features, combining their descriptive
power is a potential way to obtain better intra-modal rela-
tion in visual modality, where the feature combination has
been well studied in related research [21]–[25]. However,
existing approaches consider feature combination for hash
learning [23]–[25] using simple fusion schemes, i.e., aver-
age weight or sparsity regularization. By jointly consider-
ing feature combination and diversified correlation among
cross-modal documents, we construct a cross-modal hashing
method based on lp-norm multiple sub-graph combination
(MSC), which projects each document from multiple modal-
ities into a B-dimensional Hamming space. To regularize
the combination of multiple features, we add the lp-norm
constraint on the weight vector corresponding to different
features types, which encourages higher order nonlinearity on
the feature combination, thus it leads to better model learning
results and more semantically consistent hash codes.

The advantages of our method can be summarized as
follows:
• We propose MSC, a cross-modal hash code learn-
ing with a generalized lp-norm subgraph combination,
which deals with content and correspondence diversity.
By effectively combining information frommultiple fea-
tures and many-to-many correspondence information,
our model is more capable of processing real world
cross-modal data.

• We learn the hash function with nonlinear binary mod-
els, which better captures the complicated semantic
correlation among different modalities. Compared with
existing approaches, the semantic consistency of the
learned hash codes is significantly enhanced. It can also
be applied to real world unseen data to generate high
quality hash codes.
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• Experiments performed on challenging cross-modal
datasets demonstrate the advantages of our method over
existing approaches.

Section 2 discusses related work. Section 3 introduces our
hashing approach. Section 4 presents the experiment and
discussion. Section 5 concludes the paper.

II. RELATED WORK
Towards learning compact representation and hash codes
for efficient cross-modal retrieval, relevant studies can be
roughly categorized into ‘‘subspace learning’’ and ‘‘proba-
bilistic models’’.

Subspace learning finds the subspace that maximizes the
correlation of twomodalities. Canonical CorrelationAnalysis
(CCA) [26] and its variants [27] provide direct solutions,
while they ignore the intra-modal similarity information.
Based on the subspace learned by CCA, cross-modal topic
classifiers [1] map heterogeneous modalities into a unified
semantic space. Bronstein et al. [20] propose a boosting based
hashing method where the ‘‘weak coders’’ and their weights
are jointly learned for weighted cross-modal Hamming dis-
tance calculation. Gong et al. [28] propose an iterative quan-
tization method which finds a rotation of zero-centered data
to minimize the quantization error of mapping data to vertices
of a zero-centered binary hypercube. Masci et al. extend [20]
by multi-layered neuro-networks [18] which are trained with
both the intra-modal similarity and inter-modal correlation.
Wang et al. [29] propose a struture preserving image-text
embdding approach which learns a pair of multi-layered
neuro-networks by employing triplet loss function on hard
negatives. A tailored feed-forward neuro-network approach
[30] obtains sparse hash codes. Wu et al. [31] propose a
quantized correlation hashing for fast cross-modal retrieval,
which jointly optimize the quantization process and correla-
tion learning process.

Graph-based methods [19], [32] encode the intra-modal
similarity and inter-modal co-occurrence into a unified graph
representation. Existing approaches require cross-modal
data to be strictly aligned and organized into one-to-one
correspondence. However, the relation among cross-modal
documents are more complicated. For example, the corre-
spondence of the real cross-modal data is not completely
provided [17], [33]. Moreover, there may be other structure
relation among cross-modal documents that may provide
relevant description for a given topic, i.e., the hyperlink
between two documents indicates that one provides expla-
nation to a certain concept of the topic discussed by the
other. Similar to our study, Xie et al. [34] propose an
unsupervised multi-graph hashing methods for large-scale
multimedia retrieval, which assigns different weights to
different modalities. However, it cannot deal with multiple
features inside a modality. Zheng et al. [35] propose a hetero-
manifold regularisation for cross-modal hashing, which inte-
grates multiple sub-manifolds defined by homogeneous data
with the help of cross-modal supervision information for hash
learning.

As another possible solution, probabilistic models are con-
structed to describe how the multi-modal documents are
correlated in a probabilistic way on either the feature level
[36] or the latent topic level [37]–[41]. Correspondence LDA
(Corr-LDA) [37] captures the topic-level relations between
images and semantic annotations. Xiao et al. [38] combine
LDA and Corr-LDA to link images and sounds via words.
The model in [39] can be seen as Markov random field
over LDA topic models which does not require the one-to-
one data correspondence in [37]. Zhen et al. [40] develop
a latent binary embedding approach, which learns the latent
topics and the hash codes based on the observed intra-modal
and inter-modal similarities. Chen et al. [41] propose a large
margin multi-view latent subspace learning method. Xie et
al. [42] propose a self-supervised cross-modal hashing meth-
ods based on hierarchical topic models. Although being suc-
cessful in modeling the topic level inter-relation of multi-
modal data, they are not flexible in processing real world
cross-modal data with heterogeneous intra-modal and inter-
modal relations.

Recently, deep learning has been widely used in study
on hashing techniques. For example, Jin et al. [43] propose
to learn ordinal representations to generate ranking-based
hash codes by leveraging the ranking structure of feature
space from both local and global views. Great endeavors
have been devoted to deep learning method for image-
sentence retrieval. Cao et al. [44] propose a deep visual-
semantic hashing for cross-modal retrieval which consists of
a visual-semantic fusion network to learn the joint embed-
ding and two modality-specific networks for learning visual
and textual representations. Jiang et al. [45] propose a deep
cross-modal Hashing method which tries to use deep neural
network to fit the intra-modal and inter-modal relationmatrix.
Yang et al. [46] train the deep cross-modal hashing model by
fitting the pairwise relations. Deng et al. [47] propose to train
the deep cross-modal hashing function by minimizing the
triplet loss.

Similar as the cross-modal representation learning,
Shu et al. [48] propose a deep transfer networkwhich encour-
ages the knowledge sharing and transferring between the
network layers of source domain and target domain, which
actually pursues the distribution alignment between differ-
ent data domains. This idea is later developed into a more
gneralized framework [49] which encourages more flexible
distribution alignment between domains.

The above-mentioned cross-domain or cross-modal deep
hashing networks can also be employed in our study. How-
ever, since we study the problem of feature combination via
graph, this is beyond the scope of this paper. Besides, deep
learningmodel usually involves intensive computational cost,
which may bring about low efficiency in hash code learning
and construction.

III. APPROACH
Given Nx data from T1 modality and Ny data from T2 modal-
ity, we denote them with X and Y, respectively. Note that

19684 VOLUME 9, 2021



D. Ren et al.: Cross-Modal Hashing by lp-Norm Multiple Subgraph Combination

Nx and Ny do not have to be equal in this paper. X =
{X1, . . . ,XM } represents the data with multiple feature repre-
sentations ofT1 modality, where Xm denotes them-th feature.
The aim is to learn a set of B dimensional binary codes for
each data from both T1 and T2, denoted by Cx and Cy,
respectively.We denote the real value relaxation ofCx andCy
as Cx and Cy, respectively, and C = [Cx;Cy] ∈ R(Nx+Ny)×B

is the matrix to be learned.

A. THE OVERALL FRAMEWORK
MSC provides a robust information fusion strategy than the
existing hashing models, and are mainly includes the follow-
ing key steps:
Step 1 (Multiple Subgraph Construction): By considering

the content similarity in different feature channels, the visual
similarities w.r.t. multiple features are represented withmulti-
ple visual subgraphs. The textual similarity is constructed by
considering both the content similarity and structure relations
among textual documents. These intra-modal subgraphs can
be easily encoded with the label information, which makes
them more semantically consistent. The inter-modal corre-
lation are encoded with an asymmetric bipartite subgraph,
where both the strong correlation (correspondence) and weak
correlation (hyperlink and within-Webpage co-occurrence)
are employed for cross-modal relation modeling. The inter-
modal modeling method better deals with the diversified
correlation information existing inWeb cross-modal data, and
allows certain level of correspondence information missing.
Step 2 (lp-Norm Hash Code Learning): When the

intra-modal subgraphs and inter-modal subgraph have been
constructed, we combine them into a unified multi-modal
similarity graph with a set of weight coefficients correspond-
ing to different visual feature channels. Then we establish the
cross-modal hash code learning with a generalized lp-norm
(p ≥ 1) combination of multiple subgraphs. With different
settings of p, our model automatically identifies different rel-
ative importance of the visual features. We design an efficient
alternating optimization process to iteratively learn the hash
codes and the weight coefficients. Compared to the existing
approaches, our method better deals with the topic divergence
among real world cross-modal data by incorporating com-
plementary visual descriptions and complicated cross-modal
correlation. Specifically, it is tolerant with correspondence
missing by propagating the Hamming embedding along the
neighborhood data.
Step 3 (Hash Function Learning): Based on the learned

hash codes, we design a cross-modal self-taught hash func-
tion learning procedure. Given the cross-modal training data,
the hash code learning is conducted on the cross-modal sim-
ilarity graph. After that, two sets of linear / nonlinear hash
functions are learned separately on different modalities by
treating the learned hash codes as the binary labels as [10].
For any query, we obtain the hash codes by using the hash
functions of the corresponding modality, and then feed them
into the database for cross-modal data retrieval. Experiments

performed on challenging cross-modal datasets demonstrate
the advantage of our method over the existing approaches.

B. CORRELATION DEFINITION
Before introducing our method, let us first explain two types
of correlations among cross-modal documents.

1) STRONG CORRELATION
The strong correlation indicates that the cross-modal docu-
ments are discussing exactly the same topic. If an image is
co-occurred with a textual paragraph on a Webpage, and they
are adjacent with each other, it is highly possible that they are
describing the same topics. The one-to-one correspondence
discussed in traditional cross-modal learning [18], [20], [32],
[40] can be seen as the strong correlation.

2) WEAK CORRELATION
The weak correlation indicates that the topics of the cross-
modal documents are relevant. For example, if an image and
a textual document are located in the same Webpage, they
may describe relevant topics even their positions are not close
to each other. If a document is linked to other documents,
they are likely to discuss relevant topics or concepts. Such
structure relations (co-occurrence, hyperlink, etc.) reflect that
two cross-modal documents are semantically related to a
certain extent.

C. INTRA-MODAL SIMILARITY CONSTRUCTION
Given data with high-dimensional representation on single
modality, a well studied paradigm for intra-modal similarity
modeling is using the graph Laplacian [9], [10]. When the
data is represented with multiple features, a straight way
to model the intra-modal similarity is constructing a uni-
fied affinity graph on the concatenated feature using RBF
or heat kernel. However, such a strategy suffers from sev-
eral limitations. First, nearest neighbor search on extremely
high dimensional space tends to be sensitive to noise. Sec-
ond, different physical structures exist on different feature
channels, making their dimensions incomparable. Moreover,
relative importance of different features is ignored, leading
to inappropriate estimation of the true affinity structure. To
overcome these drawbacks, we construct M subgraphs on
each feature channel using the domain specific similarity
calculation, i.e., RBF, χ2 and histogram intersection kernels,
and combine them to represent the visual similarity among
images.

We denote the pairwise similarity matrix of X calculated
with the m-th feature asW x

m which satisfies:

W x
m(i, j) =

{
K x
m(i, j), if i↔ j

0, else,
(1)

where i ↔ j denotes that the i-th and j-th data are mutually
nearest neighbors, and K x

m(i, j) denotes the pairwise visual
similarity (kernel) on m-th feature channel. Such a definition
guarantees that Wm,m = 1, ..M is positive semi-definite.
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In many cases, data can be assigned with certain degree of
side information. Intuitively, the hash codes of similar and
dissimilar labeled data is required to be similar and dissimilar,
respectively, which tends to enhance semantic consistency
of the learned hash codes. To encode the side information,
especially the dissimilar information, we adopt the dissimi-
larity graph construction method in [50], and the intra-modal
similarity of m-th feature is given as:

W x
m(i, j) =

{
I (δxi , δ

x
j ) · K

x
m(i, j), if i↔ j

0, else,
(2)

where δxi denotes the label information of the i-th data in
T1 modality. I (·, ·) denotes the indicator function, where
I (δxi , δ

x
j ) = 1 when δxi is identical with δxj , otherwise

I (δxi , δ
x
j ) = −1. Such a definition enforces that the hash codes

of data from different categories have opposite signs as ci =
−cj. Note that if there is no dissimilarity information, W x

m is
identical to the original similarity matrix. According to [50],
W x
m is also positive semi-definite. The overall neighborhood

similarity between data i and j within visual modality can be
represented by W x(α), which is a weighted combination of
M similarity subgraphs as:

W x(i, j;α) =


M∑
m=1

αmW x
m(i, j), if i↔ j

0, else,
(3)

where αm ≥ 0,∀m denote the non-negative weight parame-
ters for all the feature channels. The definition is similar with
the kernel combination in Multiple Kernel Learning [22],
where the weights need to be learned towards the optimality
of some objective function.

Similar as the visual modality, we construct the intra-modal
similarity matrix W y for the textual modality T2 using the
domain specific representation and similarity, e.g., TF-IDF
and cosine similarity. Moreover, as there are weak correlation
among textual documents (they appear on the sameWebpage,
or there is hyperlink between i-th and j-th document fromT2),
the definition of the intra-modal relation of textual modality
can be represented as:

W y(i, j) =

{
I (δyi , δ

y
j ) · (K

y(i, j)+ τ ), if i↔ j

0, else,
(4)

whereK y indicates the content similarity of two textual docu-
ments, and τ ∈ (0, 1] denotes a predefined gain that measures
the impact of the weak correlation. The value of τ is dataset
dependent.

Note that we do not consider the weak correlation in intra-
modal visual similarity modeling, since the weak correlation
is more subtle among images. For example, on the Wiki
page ‘‘Zurich’’, the visual contents cover many aspects of
the city, include art, satellite photo, street views, sports event,
etc. Identifying the weak correlation requires the guidance of
certain knowledge base or extra image understanding process,
otherwise, it will be misleading.

D. INTER-MODAL CORRELATION MODELING
The inter-modal correlation is crucial to describe the semantic
relation of cross-modal documents. We encode the inter-
modal correlation information with a correlationmatrix Sxy ∈
RNx×Ny . Sxy(i, j) = 1 if the two documents from heteroge-
neous modalities are co-occurred or they are adjacent on the
same Webpage, they describe the same topic and are seman-
tically related; otherwise, Sxy(i, j) = 0. Note that there can be
multiple non-zero elements, or there can be all zeroes in one
row or one column. With such a definition, the commonly
existing one-to-many or many-to-many correlation among
real world cross-modal documents can be described. The
requirement in previous study [1], [19], [26], [40], i.e., cross-
modal documents should be organized into strict one-to-one
correspondence pairs, can be treated as a special case of Sxy.
We further consider the weak correlation among cross-

modal documents. Specifically, on some Web cross-modal
dataset with complicated structure information (e.g., the
WIKI-CMR dataset [33]), if there is a hyperlink between i-th
document from T1 and j-th document from T2, or they occur
in the same Webpage but their positions are far away, there
is weak correlation between the two document. In this case,
Sxy(i, j) = τ , where τ is a predefined gain which has been
explained in Section 2.1.

E. CROSS-MODAL HASH CODE LEARNING
Based on the intra-modal similarity matrix (W x(α) and W y)
and the inter-modal correlation matrix Sxy, we define a sym-
metric multi-modal similarity graph as:

2(α) =
[
W x(α) Sxy

(Sxy)> W y

]
. (5)

Based on 2(α), we learn the cross-modal hash code matrix
C for all the data with the orthogonality constraints, where
the weights of different visual subgraphs are regularized by
squared lp-norm penalty [22]:

min
C,α

tr
(
C>

(
I − D−

1
22αD−

1
2

)
C
)
,

s.t. ||α||2p = s0, C>C = I , αm ≥ 0, (6)

where p ∈ R+ and p ≥ 1. D denotes the diagonal matrix
where D(i, i) =

∑
j
|2α(i, j)|. The definition is slightly dif-

ferent from traditional approaches because we model the
label information by performing Hadamard product between
the label similarity (dissimilarity) indicator matrix and the
pairwise similarity matrix. Note that

(
I − D−

1
22αD−

1
2

)
is

the normalized graph Laplacian. Since C>C = I , the term
tr
(
C>C

)
in the objective function can be omitted. Moreover,

the orthogonality constraint makes the problem hard to solve.
By relaxing this constraint and relaxing ||α||2p = s0 into
||α||2p ≤ s0, we obtain the following equivalent objective
function:

min
C,α
−tr

(
C>D−

1
22αD−

1
2C
)
+ ρ||C>C − I ||2F + λ||α||

2
p,

s.t. αm ≥ 0, (7)
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where ρ and λ denote positive coefficients. The new objective
function penalizes the large values of α by imposing lp-norm
penalty, where the regularization level is controlled by
λ (i.e., 1

s0
). Equation (7) has certain tolerance to nonorthog-

onality, where the tolerance is controlled by ρ.
In fact, the lp-norm can be considered as adding some prior

information on the kernel weight. If the proposed method
ignores the lp-norm, themethodwill degrade to the traditional
multiple kernel learning setting, i.e., the mechanism like the
canonical MKL in [51]. Using different values of p equals
to applying different norms on the weight vectors, resulting
in different shapes of the loss contour. The lp-norm penelty
brings about significant influence on the model structure.

To efficiently learn the hash codes and the weight param-
eters, we develop the following alternating optimization pro-
cess in which C and α are optimized iteratively until a local
optimal solution is achieved.
Step 1 (Fixing α, Optimize C:)When α is fixed, the equiv-

alent subproblem in Eq.(7) is:

J (C) = −tr
(
C>D−

1
22αD−

1
2C
)
+ ρ||C>C − I ||2F . (8)

By calculating the derivative with respect to C , we have:

∂J (C)
∂C

= 0⇒ CC>C =
(
I +

1
ρ
D−

1
22αD−

1
2

)
C . (9)

According to [52], the matrix I + 1
ρ
D−

1
22αD−

1
2 is positive

definite if ρ > max
(
0,−λmin

)
, where λmin is the smallest

eigenvalue of D−
1
22αD−

1
2 . If the positive definiteness is

satisfied, the solution is C = LUB according to [52], where
L denotes the Cholesky decomposition of I + 1

ρ
D−

1
22αD−

1
2

and UB denotes the top B eigenvectors of D−
1
22αD−

1
2 . If

the positive definiteness is not always guaranteed, a small
diagonal matrix εI to 2α can be added to avoid the ill-posed
solution.
Step 2 (Fixing C, Optimize α:)When C is fixed, we obtain

the following equivalent problem in Eq.(7) as:

J (α) = −
M∑
m=1

αmtr
(
C>x PmCx

)
+ λ||α||2p s.t. αm ≥ 0,

(10)

where Pm = (Dx)−
1
2W x

m(D
x)−

1
2 . The Lagrangian is:

J ′(α) = −
M∑
m=1

αmtr
(
C>x PmCx

)
+ λ||α||2p −

∑
πmαm,

s.t. πm ≥ 0. (11)

By setting ∂J ′(α)
∂αm
= 0, we have:

2λ(
M∑
m=1

(αm)p)
2
p−1(αm)p−1 = tr

(
C>x PmCx

)
+ πm. (12)

When p = 1, we directly obtain the solution as:

αm =
1
2λ
tr
(
C>x PmCx

)
, αm′ = 0, ∀m′ 6= m, (13)

where m denotes the feature channel index with the largest
1
2λ tr

(
C>x PmCx

)
. When p > 1, by considering the KKT

condition, we obtain the following equation:

αm =
1
λ
bm

1
p−1

(
M∑

m′=1

(bm′)
p

p−1

)
, m = 1, . . . ,M , (14)

where bm = 1
2 tr

(
C>x PmCx

)
. The weight α is determined by

the relative performance of different feature channels w.r.t.
bm. When p is 1 or close to 1, α is sparse and only the feature
channel with the best performance is selected by the model.
When p is large, all αm tend to be identical, and the model
will be equivalent to the average combination. The setting of
p is application dependent.

The learning process is shown in Algorithm 1. The time
complexity of Step 1 is O(s2N 3), where s denotes the sparse
degree of the multi-modal similarity matrix, which is about
[0.005, 0.015] in this paper, N denotes the number of cross-
modal data. The time complexity of Step 2 is O(sMN 2)
in computing bm. The total time complexity of hash code
learning is O(s2N 3T ), where T ≤ 10 denotes the number
of iterations.

F. HASH FUNCTION LEARNING
After learning and binarizing the hash codes of the training
data on both modalities, B hash functions are learned for
each data modality separately by mapping the features to the
learned hash codes. There are mainly three types of hashing
functions. The first choice to obtain the hash functions is
training linear SVM on the original features by using each
column of C as the label vectors similar as [10]. Second, a
multi-layer neuro-network trained with back propagation can
be trained based on the learned codes C for each modality,
similar as [18], [29]. To deal with the complicated distribution
of real world multi-modal data, we employ Multiple Kernel
Learning [21], [22] to learn the hash functions for visual
modality and kernel SVM for textual modality, where the
parameter p ≥ 1 used in the lp-norm weight regularization
in MKL is identical to the regularization of the weight α.
The following hash functions are obtained for X and Y ,
respectively:

hxk (z) = sgn(
Nx∑
i=1

θxi,kci,k
M∑
m=1

αxmK
x
m(xi,m, zm)+ γk )

hyk (z) = sgn(
Ny∑
j=1

θ
y
j,kcj,kK

y(yj, z)+ υk ),

(15)

where k = 1, . . . ,B, θ·,k and c·,k denote the support vectors
of the k-th hash function and the k-th dimensional binarized
hash codes of the training data, αxm denotes the learned kernel
weight by using [22], γk and υk represent the bias term
of the k-th hash functions. Compared with other hashing
strategies which either learn a set of linear functions [10]
or directly learn a set of linear projection during hash code
learning [19], [23], [32], our hash code learning strategy fully
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Algorithm 1 Cross-Modal Hash Code Learning

αm(0) = 1
M , t = 0.

while t <= tmax or not converged do
Get 2α using α(t)
Get D using 2α
Optimize Eq.(8) with C(t) = L(t)UB(t)
Optimize Eq.(10) with Eq.(13) or Eq. (14)
t = t + 1

end while

discovers the nonlinear semantic relation across modalities,
and encodes unknown data with more semantically consistent
binary codes. For convenience, in the consequent sections we
denote our model using linear, neuro-network and multiple
kernel functions as MSC-l, MSC-n and MSC-k , respectively.

G. RELATION TO OTHER APPROACHES
Our model can be recognized as the random walk among
heterogeneous nodes, where each node represents a visual
or textual document. When the intra-modal feature weights
are fixed, it can be seen as Spectral Hashing [9] on the com-
plicated multi-modal similarity graph 2α . Our method can
be viewed as a generalized version of two other graph based
cross-modal hashing approaches [19], [32] since it is capable
of dealing with multiple features and represent the inter-
modal relation in a more reasonable way. It is related with
[52] in using label information and orthogonality relaxation.
Compared with other multi-feature hashing approaches [23],
[24], we provide a more generalized lp-norm weighted com-
bination on multiple features and information fusion strategy
for processing cross-modal data.

IV. EXPERIMENTS
Datasets. We conduct experiments on two cross-modal
datasets: (1) NUS-WIDE [53] consists of 269,648 images
and the associated tags collected from Flickr. Six types of
low level visual features are provided. The 1000-dim tag
vectors of images are treated as the textual description and
81-dim tag vectors are treated as ground-truth class labels.
(2)WIKI-CMR is a collection of 6382 Wikipedia webpages
constructed by [33]. Each Webpage is categorized into 11
topic categories by Wikipedia. Each page is split into sev-
eral paragraphs, and each image in the page is associated
with the paragraph where it was originally placed. For this
dataset, multiple cross-modal documents belong to one orig-
inal Webpage, and each cross-modal document may have
several hyperlinks pointing to or pointed by other cross-
modal documents. Consequently, the whole dataset con-
tains 74961 paragraphs (textual documents), 35149 images,
their category labels and cross-modal correlation. The tex-
tual paragraphs are represented by TF-IDF (70K-dim) after
a stop word removal. Eight types of visual features are
calculated for each image, including color, texture and
bag-of-words.

Training/retrieving data partition. For NUS-WIDE, we
randomly choose 10K (image,text) pairs as the training data,
and the rest are treated as the retrieval database. Note that
such setting is different from traditional data partition scheme
of using NUS-WIDE. Our scheme is more suitable for eval-
uating the model generality of the hash code and function
learning using small number of training data and database
with larger size, where similar setting has been adopted by
IMH [19]. Since the structure information on NUS-WIDE
is missing, we model the intra-modal relation with only the
content similarity, and the inter-modal relation with only the
correspondence information. ForWIKI-CMR,We select 20%
of the data from both modalities as the training data, and
the rest are treated as the retrieval database for cross-modal
retrieval.

Compared Approaches: Our approach includes three ver-
sions, i.e., MSC-l, MSC-n and MSC-k . For the hash code
learning, the number of nearest neighbors is set to be 71 for
constructing intra-modal affinity. For hash function learning,
we use hinge loss and C = 10 for MSC-l and MSC-k , and
use the optimal setting for MSC-n.

To better show the performance of our approach, we com-
pare our model with the following approaches which are
models with hand-crafted features: (1) SSH [20]: Cross-
modal similarity-sensitive hashing method. (2) MMNN [18]:
the multi-layered neuro-network method. (3) MLBE [40]: a
probabilistic multi-modal hashing approach. (4) CVH [32]:
the graph based cross view hashing method. (5) IMH [19]:
an inter-media linear hashing method. (6) SVG: cross-modal
hashing with the best visual kernel and linear hash functions,
which is the simplified version of our model. OnWIKI-CMR,
the compared methods are working on a 500-dim visual
feature using dimension reduction on the concatenated visual
feature (22K-dim), and 1000-dim reduced feature using SVD.

Evaluation Criteria: For NUS-WIDE, we evaluate the
Mean Average Precision (MAP) using the 81-dim tag set as
the ground-truth. We treat each data in the retrieval database
as query, and the other as the database. Then the results of
all the queries are averaged. For WIKI-CMR, each text docu-
ment may either have more than one corresponding image or
no image. Therefore, we randomly choose the text documents
which have at least one corresponding image as the queries.
Each retrieving process for a query input is considered to
be successful if any one of the ground-truth corresponding
image appears in the top 10 returned documents. We record
the average success rate at top 10 results (ASR@10).

The experiments are conducted using Matlab on a desktop
computer with Intel i5 3.1GHZ dual core CPU and 12G
RAM.

A. IMAGE→TEXT RETRIEVAL
The results of Image→Text retrieval w.r.t. the code length
on both datasets are recorded in Table 1. The bold numbers
indicate the highest performance among all the compared
methods, and ∗ denotes the higher performance among each
version of our approach with/without weak correlation. For

19688 VOLUME 9, 2021



D. Ren et al.: Cross-Modal Hashing by lp-Norm Multiple Subgraph Combination

TABLE 1. Performance of Image→Text w.r.t. the code length.

example, when B = 32, the ASRs of MSC-l (wt. WC) (learn-
ing with weak correlation) and MSC-l (wo. WC) (learning
without weak correlation) are 0.1311 and 0.1309, respec-
tively. We mark 0.1311 with ∗ as it outperforms the other.
There is no weak correlation on NUS-WIDE, so we learn
our hash codes on the setting of (wo. WC), and perform both
versions on WIKI-CMR.

For our method, we set ρ = 0.1. p = 1.6 and λ =
0.8 for NUS-WIDE, while p = 2.5 and λ = 1 are
used for WIKI-CMR. When the code length is increased,
the performance of all the methods is enhanced. On both
datasets, the MAP and ASR@10 become stable with 64-bit
or longer Hamming codes. On NUS-WIDE, the textual and
visual data are organized with one-to-one correspondence
and the data has been well annotated with 81-dim labels, so
they can be fully exploited by all the compared approaches.
On WIKI-CMR, Image→Text is a very challenging task,
because the textual database contains many data items with-
out corresponding images, and the category information of
the cross-modal documents, i.e., the topic domain (such
as politics and history), does not provide direct guidance
towards the evaluation criteria of ASR@k . In this case, meth-
ods without intra-modal similarity modeling (SSH) or with-
out good inter-modal modeling (e.g., CVH) tend to perform
poorly. Under different settings, MSC consistently outper-
forms other approaches. Moreover, our model fully utilizes
both the intra-modal similarity and inter-modal correlation
information, so that more semantically consistent codes are
learned. The results show that both intra-modality similarity
(dissimilarity) and inter-modal correlation are of equivalent
importance for constructing effective cross-modal retrieval
model. Finally, by incorporating the weak correlation on
WIKI-CMR, we observe certain improvement on all the
versions of our method under nearly all the settings of B.
Such a performance gain explains the rationality of using the
structure context information of real world cross-modal data.

B. Text→Image RETRIEVAL
The results of Text→Image retrieval are recorded in
Table 2. The parameter setting of our method is identi-
cal to Section IV-A. Compared with Image→Text retrieval,

our approach outperforms the other approaches more
significantly, especially on WIKI-CMR. Similar as the
Image→Text retrieval, MMNN tends to have the best perfor-
mance among all the benchmark approaches, and its perfor-
mance is consistently increasing even when the code length
is longer than 64. The performance of MSC are slightly
increased when the number of bits is larger than 64. In gen-
eral, the performance of all the approaches tends to become
stable with 64-bit or longer codes. MSC-l outperforms other
baselines. MSC-k performs the best. The results once again
show that our approach achieves better generalization power
by combining heterogeneous information.

To be more specific, as shown Table 1 and 2, our
methodMSC achieves the highest MAP among the compared
approaches, which is at least relatively 10% higher than other
approaches. On NUS-WIDE dataset, due to the data diversity,
it appears that the multi-kernel and neural network hash
functions used in different versions of MSC (i.e., MSC-k and
MSC-n, respectively) perform up and down over each other
under different code lengths. The phenomenon demonstrates
that different hash functions have different data fitting abili-
ties on real-world large-scale data.

C. SENSITIVITY ON PARAMETERS
Our method has four parameters: the weak correlation influ-
ence τ ∈ (0, 1], the tolerance ρ of nonorthogonality, the
structure of the feature weights p and the penalty λ on α.
According to our empirical observation, τ is dataset depen-
dent and cannot be too large, otherwise the solution tends to
be unstable. For experiments on WIKI-CMR, we perform an
empirical validation on τ , and find that τ = 0.3 is the optimal
setting.

When ρ becomes large, the hash codes will be more
orthogonal to each other, leading to better hash coding perfor-
mance [52]. However, large ρ also brings in more difficulty
on the convergence since the solution will be pushed more
tightly towards the identity matrix. We conduct experiments
on ρ = [10−2, 10−1, 100, 101, 102]. The results show that
when ρ is large, e.g., 10 or 100, the training time is at
least 2 times longer than small ρ, while the performance
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TABLE 2. Performance of Text→Image w.r.t. the code length.

FIGURE 2. Sensitivity analysis on different p and λ on NUS-WIDE (a) and WIKI-CMR (b).

improvement is not statistically significant. On the other
hand, the generalization power of the nonlinear hash function
may be a good compensation of nonorthogonality. By consid-
eration of both efficiency and effectiveness, we set ρ = 10−1.
To ensure the structure balance among different modalities,

the penalty λ should not be too large or too small. By fixing
the code length as B = 64, we test different settings of λ
and p, the experimental results are demonstrated in Fig. 2.
When λ is small, we see from Eqs. (13) and (14) that less

penalty is imposed on α, thus the model variance is likely
to increase, leading to unstable or even ill-posed solution.
When λ is large, α would fail to capture the relative feature
importance adequately, thus over-smooth solution is likely to
occur.

In our method, the value of p determines the whole inter-
modal and intra-modal correlation structure captured by the
model. As discussed in previous sections, when p is small, α
would be sparse, where the discriminating power of different
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FIGURE 3. The learned α on NUS-WIDE (top) and WIKI-CMR (bottom). The bars from left to right on the top row are BOW, CH, CM, CORR,
EDH and WT, respectively. The bars from left to right on the bottom row are PHOG180, PHOG360, CM, GIST, GIST4× 4, LBP, SS and BOW,
respectively.

features cannot be effectively combined. When p is too large,
α would be over-dense, leading to inappropriate feature com-
bination. To experimentally verify the influence of differ-
ent p, we conduct experiments under different values of p to
report the results on a randomly sampled validation data from
NUS-WIDE training data by fixing other parameters. The
results indicate that an appropriate value of p is neccessary
to guarantee the optimal performance. Also, according to the
results in Fig.2 by checking different combinations of p and λ,
following similar validation process, we set p = 1.6 and
λ = 0.8 for NUS-WIDE, and p = 2.5 and λ = 1 for
WIKI-CMR.

Based on the fixed λ, we record the learned α with different
p on both datasets in Fig. 3. We see that when p = 1,
only the BOW feature is selected on both datasets, which
means that the intra-modal similarity provided by BOW is
more semantically consistent. When p becomes large, the
learned feature weights tend to be uniform. The weights for
good visual features are consistently larger than other features
under all the settings of p.

D. EFFICIENCY
We record the training time under optimal parameter setting
in Table 5 on WIKI-CMR. We use partial generalized Schur
decomposition for optimizing CVH. We implement SSH
where each weak coder in the boosting learning is learned
by SVD. For MMNN, we use stochastic gradient as in [18].
We see that our method is efficient among the compared
approaches except CVH, as our method involves an itera-
tive process for both hash code learning and kernel weight
learning. SSH and MMNN are time consuming because the

TABLE 3. Sensitivity on p on NUS-WIDE dataset (in MAP, λ = 1, B = 128).

dimensions of visual feature are very high, leading to time
consuming SVD calculation and slow convergence rate using
stochastic gradient. IMH is slow because it requires two
O(N 3) operations, namely, the inverse matrix calculation and
eigen decomposition. Our model training is composed two
steps, i.e., hash code learning and hash function learning. The
hash code learning is efficient according to the analysis in
Section III-E. For hash function learning, the SMO algorithm
we use in MSC-k has O(N 3) complexity in the worst case,
and is generally close to O(N 2). In fact, an early stopping
criterion for training any type of hash functions of our method
is enough to guarantee good performance.

E. PERFORMANCE EVALUATION ON MSCOCO
We conduct experiment onMSCOCO dataset which is a chal-
lenging cross-modal retrieval dataset. This dataset contains
82,783 images with 80 labels. Each image is also annotated
by 5 independent sentences via Amazon Mechanical Turk.
Following [54], after removing images without labels, we
randomly select 10,000 image-text pairs for testing, and the
remaining 72,081 pairs are used for training. For image rep-
resentation, we use the multi-layer CNN features extracted
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FIGURE 4. Examples of Image→Text retrieval on WIKI-CMR, where the ground-truth documents are denoted with red dots.

from conv4, conv5, fc6 and fc7 of a pre-trained VGG-19
model. For representing text instances, we use 1,000-dim
BoW vector with the TF-IDF weighting scheme. We com-
pare our method with several recent methods using the same
visual and textual feature extractors. For deep learning based
method, we use the original image and text as the input. We
compare with some recent competitors including:

(1) CMOS [3]: a cross-modal retrieval method which per-
forms the multi-layer CNN feature aggregation for deriving
an asymmetric image-text similarity.

(2) Harmonized GPLVM [54]: a harmonized multi-modal
GPLVM which performs topological alignment between the
hyperparameter space of multi-modal GPLVM and the kernel
matrix of the joint latent space.We report the results using the
best variants hm-SimGP (tr) and hm-RSimGP (tr) with trace-
norm kernel alignment.

(3) DCCAE [55]: a deep extension of the popular CCA for
deep multimodal representation learning.

(4) ml-CCA [56]: a multi-label CCA-based method to
perform cross-modal retrieval.

(5) 3V-CCA [57]: a three-view CCA-based method which
treats the label space as the third modality.

(6) PRGDH [46]: a pair-wise relation guided deep cross-
modal hashing method.

Note that for shallow models, we reproduce the results
of the above mentioned methods based on features of the
same network. Therefore, the results may be different from
the original paper. For all the compared methods, we used

TABLE 4. Cross-modal retrieval comparison in terms of mAP on MSCOCO
dataset.

the optimal parameter settings to produce nearly optimal
performance. Code length of our methods are set to 128 for
optimal performance, and p is set to 1.6. We report the mean
Average Precision (mAP) for all the methods, as shown in
Table 4.

From the table we can see that, our method MSC-k ranks
the second best compared to many recent state-of-the-art
approaches. MSC-k is only outperformed by the end-to-end
trained deep cross-modal hashingmethod PRGDH. Themerit
of our method comes from the ability of aggregating differ-
ent visual features, self-supervised hashing function learning
mechanism, which better fits to the diversed data distribution.

F. DISCUSSIONS ON THE EXPERIMENT RESULTS
1) ON PERFORMANCE GAIN
According to the experiment results in Tables 1 and 2, the per-
formance gain depends on the following factors, i.e., feature
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FIGURE 5. Examples of Text→Image retrieval on WIKI-CMR, where the ground-truth documents are denoted with red dots.

TABLE 5. The training time statistics on WIKI-CMR.

combination, better correlation modeling and the nonlinear
hash functions. By effective feature combination and corre-
lation modeling, we obtain hash codes with high semantic
consistency. Therefore, promising performance is achieved
even with linear mapping function. The neuro-network func-
tions capture certain level of complicated nonlinear relations
of cross-modal data, but they suffer from local solutions and
high dimensionality.

2) ILLUSTRATIVE EXAMPLES
Some examples of Image→Text and Text→Image retrieval
onWIKI-CMR are illustrated in Figures 4 and 5, respectively,
where the top 5 retrieved documents are shown and the
ground-truth corresponding documents are denoted with red

dots. We mark the relevant textual words with red colors, and
we see that the retrieved documents are semantically relevant
with the query with respect to these keywords. Specially, in
the bottom example of Fig. 5, all the ground-truth correspond-
ing images are ranked as the top 3 results.

3) MODALITY IMBALANCE
The performance of Image→Text is consistently worse than
Text→Image for all themethods. The reason can be attributed
to the modality imbalance. For example, on NUS-WIDE,
the textual information is very sparse. On WIKI-CMR, the
number of textual documents is larger than that of visual
documents. For Image→Text retrieval, the semantics in sin-
gle visual query cannot be directly inferred, leading to large
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semantic gap between the visual query and textual database.
For Text→Image retrieval, the semantic gap between queries
and visual data can be alleviated by modeling the intra-
modal visual affinity using feature combinations of database
documents.

V. CONCLUSION
We propose MSC, a cross-modal hashing approach based on
multiple subgraph combination. By jointly considering the
content similarity and structure relation among cross-modal
documents, we encode the intra-modal multi-feature similar-
ity and inter-modal correlation withmultiple subgraphs. Then
they are combined into one similarity graph among all the
data from heterogeneous modalities with an lp-norm regu-
larized weight coefficients on visual modality. The optimal
hash codes and the weight coefficients are simultaneously
learned in an alternating optimization process. The hash func-
tions for different modalities can be separately constructed
by utilizing linear or nonlinear binary classification models,
which captures the complicated semantic relations among
different modalities. Experiments on two challenging cross-
modal datasets demonstrate the advantages of our approach
over existing approaches.
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