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ABSTRACT An efficient numerical method for the wideband scattering analysis of the freestanding
large-scale finite periodic array is presented using themacro block-characteristic basis functionmethod (MB-
CBFM) and the improved frequency-independent reaction (FIR). In the MB-CBFM, the blocks (unit cells)
are divided into some types of macro blocks. By analyzing the subarray with the macro blocks, the CBFs for
the macro blocks will be obtained. The blocks in the same macro block share the same CBFs. Substituting
the CBFs into the moment matrix equation, a reduced matrix equation whose size does not depend on the
number of the blocks can be obtained and handled utilizing direct methods. When the MB-CBFM is applied
for wideband analysis, the matrix needs to be recomputed. The reduced matrix can be efficiently generated
by using the improved FIR, in which the matrix elements are expressed as the product of the geometrical
elements and the phase factor. The geometrical elements are computed one time and reused. Only the phase
factor needs to be recomputed. Several numerical examples are carried out. Simulation results show that the
results of the proposed algorithm agree well with those of other numerical methods. The total CPU time is
significantly reduced.

INDEX TERMS Finite periodic array, macro block-characteristic basis function, improved
frequency-independent reaction, scattering, wideband.

I. INTRODUCTION
The method of moments (MoM) is an accurate numerical
method and has been used to analyze electromagnetic prob-
lems for decades [1]. The resultant matrix is dense. When
applied to analyze an electrically large object, both huge
memory and very long CPU time are needed. Hence, it is
unsuitable to analyze the large-scale finite periodic arrays.
The finite periodic array can be analyzed as the infinite
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one [2]. However, the induced currents on the edge unit cells
are not very accurate [3].

The fast algorithms are suitable for analysis of the
large-scale arrays, i.e., the multilevel fast multipole method
(MLFMM) [4], the adaptive integral method (AIM) [5],
etc. By using the MLFMM and the AIM, the computa-
tional complexity is reduced to O(N logN ), where N is
the number of unknowns. Several basis function methods,
i.e., the macro basis function method [6], the characteris-
tic basis function method (CBFM) [7], [8], the synthetic
basis function method [9], the subentire-domain (SED) basis
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function method [10], the macro block-CBF method (MB-
CBFM) [11], etc., are also suitable for analysis of large-scale
arrays, by which the number of unknowns is decreased. In the
CBFM, the original object is divided into B blocks. The
B2 × B2 reduced matrix is obtained [7]. In the SED basis
function method, the SED basis functions for cells are solved
by analyzing a subarray problem [10]. The Nc × Nc matrix
equation is obtained, where Nc is the number of unit cells.
For the large-scale array, the iterative methods have to be
applied. The CPU time depends on the condition number.
In the MB-CBFM, the blocks (unit cells) are classified as
P types of macro blocks [11]. The CBFs are solved firstly.
Then, the PM × PM reduced matrix can be obtained and
resolved using a direct method, where M is the number of
the elementary basis functions defined on block. The solu-
tion time is not affected by the condition number. The CPU
time and the memory cost are O(N ) [11]. These methods
can accelerate the single-frequency simulation. For the fre-
quency sweep, the matrices need to be recalculated. For the
MB-CBFM, the computation of the reduced matrix is still
very time consuming.

Several efficient frequency sweep techniques have been
proposed, i.e., the interpolation [12]–[14], the asymptotic
waveform estimation (AWE) [15], the frequency-independent
reaction (FIR) [16], etc. For the interpolation, the matrix
elements must vary slowly with frequency. To this end,
the wide band usually has to be divided into several sub-
bands. In [14], the wide scattering was analyzed by using
the CBFM and the interpolation. In [17], the ASED basis
function was combined with the interpolation to analyze
the electromagnetic scattering by the finite periodic arrays.
For the AWE [15], the accuracy will be reduced when the
frequency is not near the center frequency. In the FIR [16],
the impedance element is approximated as the series summa-
tion withQmax+1 terms, in which every term is the product of
the geometrical elements and the phase factor. The former are
computed and saved once, while the latter is recomputed. This
method is suitable for the wideband response analysis without
the frequency-band division. The accuracy can also be tuned.
The memory cost of this technique is (2Qmax + 5)N 2 [16].
Therefore, it is unsuitable for electrically large objects if is
not combined with other techniques. In [18], it was com-
bined with the higher-order basis function for analysis of
the electrically large objects. In [19], the combination of the
ASED basis function method with the FIR was applied for
wideband analysis of the finite periodic arrays. The improved
FIR has been presented in our recent work [20], in which the
far-field matrix elements are computed using the concept of
the frequency-independent reaction and the equivalent dipole
model. In the new version, less geometrical elements are
needed. Thus, it is more efficient than the conventional FIR.
At the same time, the memory cost is also reduced.

In this work, we combine the MB-CBFM with the
improved FIR to compute wideband electromagnetic scat-
tering from the finite periodic arrays. The number of
unknowns can be significantly reduced using theMB-CBFM.

FIGURE 1. (a) Finite periodic array with Nc unit cells (blocks).
(b) subarray with 9 blocks; (c) subarray with 25 blocks.

The frequency sweep can be accelerated using the improved
FIR. In Section II, the MB-CBFM and the improved FIR
are briefly reviewed. In Section III, numerical examples are
implemented to test the proposedmethod. In Section IV, some
conclusions are drawn.

II. FORMULATION
A. MB-CBFM
Figure 1a shows the finite periodic array with Nc unit cells
(blocks). Only the perfectly electric conducting blocks are
considered. Each block is discretizedwith the triangles. There
are M RWG basis functions [21] on each block. The elec-
tric field integral equation (EFIE) is used to formulate the
problem. Applying the conventional MoM with Galerkin’s
procedure to solve the EFIE, one has [1], [21]

ZI = V (1)

with the matrix element

ztb =
1

jωε0

∫
s

∫
s′
g(r, r′)

[
k2f t (r) · f b(r

′)

−
(
∇ · f t (r)

) (
∇
′
· f b(r

′)
)]
dS ′dS (2)

where Z and V are the impedance matrix of sizeNcM×NcM ,
and the excitation vector of size NcM × 1, respectively. I
is the current vector of size NcM × 1 to be solved. ω and
ε0 are the angular frequency and the permittivity of the free
space, respectively. k is the wavenumber. ft (r) and fb(r’) are
the testing and the basis functions, respectively. g(r, r’) =
exp(−jkR)/4πR is the Green’s function, where R = |r − r’|.

In the MB-CBFM, the blocks are classified as P (P =
(2n + 1)2, n = 0, 1, . . . ) kinds of the macro blocks. Each
macro block includes Q blocks (Q may differ for different
macro block). Consider that a uniform plane wave normally
illuminates the object. If mutual couplings are considered,
there are 9 (n = 1 case), 25 (n = 2 case) or more macro
blocks as shown in Figs. 1 (b) and (c). The CBFs of the macro
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blocks need to be determined firstly. Analyze the subarray
with P macro blocks by solving the matrix equation:

Z sub11 Z sub12 · · · Z sub1P
Z sub21 Z sub12 · · · Z sub2P
...

Z subP1 · · · Z subPP



J sub1
J sub2
...

J subP

 =

V sub
1
V sub
2
...

V sub
P

 (3)

where Z subii (i = 1, 2, . . . ,P) is the self-impedance matrix of
the ith macro block in the subarray. Z subij (i 6= j) is the mutual
impedance matrix between the ith and the jth macro blocks.
J subi is the current vector of the ith macro block. Themth CBF
of the ith macro block is [11]

Jmbim =
(
xTimJ

sub
i

)
xim, m = 1, 2, . . . ,M (4)

where the superscript ‘T ’’ denotes the transpose. xim is the
mth eigenvector of sizeM×1 of Z subii . Because the self-matrix
is symmetric, its M eigenvectors are orthogonal. Using the
CBFs, the current vector of the ith macro block can be
expressed as [11]

Imbi =
M∑
m=1

αimJmbim (5)

where αim is the unknown coefficient.
The CBFs of the blocks in the same macro block are

identical. Thus, the CBFs of all blocks can be obtained by
analyzing the subarray problem. Thus, the current vector of
the blocks belonging to the ith macro block is(

Ii1, Ii2, . . . , IiQ(i)
)
= Imbi (6)

whereQ(i) is the number of the blocks in the ith macro block.
Substituting (6) into (1), one has [11]

P∑
p=1

M∑
m=1

upmαpm = V (7)

where

upm =
[[
Z1p
]
Jmbpm ,

[
Z2p
]
Jmbpm , . . . ,

[
ZNcp

]
Jmbpm

]T
(8)

where [Zip] (i = 1,2,. . . , Nc) denotes the NcM × M
mutual impedance matrix between the ith block and the pth
macro block. The matrix in (7) of size NcM × PM is over-
determined. The PM × PM matrix can be obtained using the
least square method.

B. EFFICIENT COMPUTATION OF Z USING THE
IMPROVED FIR
TheMB-CBFM is the frequency-based technique. Recompu-
tation of the matrix is required for the frequency sweep if no
other methods are used. The impedance matrix can be effi-
ciently generated by using the improved FIR. The impedance
elements are divided into two categories: the near-region and
the far-region ones. They are calculated using the conven-
tional FIR [16], and the improved one [20], respectively.

The near-region impedance element ztb is approximated
as [16]

ztb ≈
φ

4π jωε0

Qmax∑
q=0

kq
(
k2Aqtb − B

q
tb

)
(9)

with

Aqtb =
(−j)q

q!

∫
S

∫
S ′

(R− Rtb)q

R
f t (r) · f b(r

′)dS ′dS (10)

Bqtb =
(−j)q

q!

∫
S

∫
S ′

(R− Rtb)q

R

(
∇ · f t (r)

)
×
(
∇
′
· f b(r)

)
dS ′dS (11)

whereRtb is the distance between the centers of the tth and the
bth RWG edges. Aqtb, B

q
tb(q = 0, 1,. . . , Qmax), and Rtb depend

on the geometry. φ = exp(−jkRtb) is the phase factor. Qmax
is set to 4 for wideband scattering [16].

When applying the FIR, the geometrical elements are
computed once and saved before the frequency sweep. The
phase factor φ is recomputed each frequency. Substituting
the precomputed geometrical elements and the phase factor
into (9), the near-region elements can be computed.

The far-region elements are computed using the improved
FIR that is based on the equivalent dipole model [22], [23].
The plus-minus triangle pair can be equivalent to the elec-
tric dipole when the distance between the testing and the
basis functions is greater than the limit value. In this work,
the average length of the triangle sides is 0.1λmin, where λmin
is the minimum wavelength within the frequency range. The
limit value is 0.3λmin [20]. Using the equivalent dipolemodel,
the far-region element ztb can be rewritten as [20]

ztb ≈ η
e−jkDtb

4πDtb
[jk (Mb −mb) ·mt

+ (3Mb −mb) ·mt

(
1
Dtb
+

1

jkD2
tb

)]
(12)

where

Mb = (Dtb ·mb)Dtb/D2
tb (13)

mb/t = lb/t
(
rc−b/t − r

c+
b/t

)
(14)

where η is the wave impedance of the free space. Dtb = rdb
− rdt , where rdb, rdt are the coordinates of the centers of the
bth and the tth dipoles, respectively. Dtb is the length of Dtb.
mb/t is the moment of the bth/tth dipole [23]. lb/t is the length
of the bth/tth RWG edges. rc+b/t and r

c−
b/t are the centers of the

bth/tth plus and minus triangles, respectively.
Mb,mb,mt , and Dtb depend on the geometry. exp(−jkDtb)

is the phase factor. When applying the improved FIR, these
three geometrical elements (Mb − mb)·mt , (3Mb − mb)·mt
andDtb should be computed and stored firstly. The phase fac-
tor is recomputed every frequency. Using these geometrical
elements and the phase factor, the far-region elements can
be efficiently calculated. Comparing with the conventional
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FIGURE 2. Geometry of the unit cells. (a) the stepped-impedance (SI)
loop resonator. w1 = 0.04m, w2 = 0.02m, h = 0.005m, d = 0.008m,
l = 0.004m; (b) the circular split ring resonator (SRR).

FIR, the improved one is more efficient because it has less
geometrical elements [20].

The percentage of the near-region elements is β for the
reduced matrix in the MB-CBFM. The memory cost of the
near/far-region geometrical elements are O(3β(Qmax+1)N ),
and O(3(1− β)N ), respectively. The total memory cost is
3(βQmax + 1)O(N ). For the large-scale array, β is very

small. The memory cost is approximately equal to 3O(N ).
The memory cost of the proposed technique, including the
impedance matrix, is 4O(N ). It is still proportional to the
number of unknowns.

For more details of the FIR and the improved version,
the readers can refer to [16] and [20].

III. NUMERICAL RESULTS
In this section, some numerical examples are carried out.
Wideband monostatic scatterings by the finite periodic arrays
are calculated by using the proposed technique. To compare
the accuracy, the results obtained using the MB-CBFM and
the conventional MoM are also provided. The arrays located
in the xoy-plane are with the x-polarized plane wave inci-
dence. The incidence angle is θ i = ϕi = 0. The gap between
the cells is 0.01 m. The frequency increment is 0.02 GHz.
For the far-field analysis, accurate results can be obtained by
solving the subarray with nine blocks for MB-CBFM [11].
Therefore, nine macro blocks are considered. All examples
are implemented on the personal computer with the Intel Core
i7-6700K processor 4.0 GHz and 32 GB of RAM.

Firstly, the 5 × 5 stepped-impedance (SI) loop resonator
array shown in Fig. 2a is computed. There are 299 RWG
basis functions on unit cell. The total number of unknowns
is 7475 for the entire array. The wideband monostatic radar

FIGURE 3. Wideband monostatic RCSs of the 5× 5 SI loop resonator array
obtained using different techniques.

TABLE 1. Generation time of Z per frequency for different
methods (Unit: s).

TABLE 2. Total solution time of the SI loop resonator arrays (Unit: s).

cross sections (RCSs) ranging from 0.6 to 6GHz are shown
in Fig. 3. It can be seen that the results of the proposed
technique agree well with those of the conventionalMoM and
the MB-CBFM. The results of the ASED-FIR are also given
and agree well with other techniques at most frequencies.
There is a small discrepancy around 2.1GHz.

Generation time of impedance matrix Z per frequency
in the MB-CBFM and the proposed technique is shown in
Tab. 1. The periodicity is considered. It can be observed that
generation time is significantly reduced using the proposed
technique. In the MB-CBFM, the matrix element needs to
be recomputed. In the proposed technique, the geometrical
elements are computed once and reused. The phase factors
are recomputed. Therefore, the matrix can be efficiently gen-
erated. The total solution times for the ASED-FIR and the
proposed method are shown in Tab. 2. The former is more
efficient than the latter for this example. In the ASED-FIR,
the 25 × 25 matrix equation needs to be solved for each
frequency while the 2691 × 2691 matrix equation has to
be handled in the proposed technique. For small array, the
ASED-FIR may be more efficient than the proposed tech-
nique if accurate results can be obtained using the former.
Asmentioned above, the results of the proposed technique are
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FIGURE 4. Wideband monostatic RCSs of the 8× 8 circular SRR array
computed using different methods.

TABLE 3. Generation time of impedance matrix Z per frequency using
different techniques (Unit: s).

TABLE 4. CPU time of the 30× 30 arrays (Unit: s).

more accurate than those of the ASED-FIR around 2.1GHz.
Therefore, the proposed technique has an advantage over the
ASED-FIR in terms of the accuracy.

Secondly, the 8 × 8 circular split ring resonator (SRR)
array shown in Fig. 2b is analyzed. Each cell has 157 RWG
basis functions. The total number of unknowns is 10,048.
The wideband monostatic RCSs obtained using different
numerical methods are shown in Fig. 4. One can see that the
results of the proposed technique agree well with those of
the conventional MoM and the MB-CBFM. There is a con-
siderable discrepancy between the results of the ASED-FIR
and other techniques around 2.5GHz, which may be due to
the inaccuracy of the ASED basis functions. To efficiently
analyze the wideband RCS of the circular SRR arrays, it is
better to apply the proposed technique.

Generation time of the impedance matrix Z per frequency
using different methods are shown in Tab. 3. From Tab. 3, one
can see that the time is also significantly decreased using the
proposed technique.

Finally, the 30×30 circular SRR array with 141,300 RWG
basis functions is analyzed. The wideband monostatic RCSs
are shown in Fig. 5. One can see that good agreement is
achieved again. The total CPU time for the MB-CBFM and
the proposed method are shown in Tab. 4. The total solu-
tion time is reduced by 81% using the proposed technique.

FIGURE 5. Wideband monostatic RCSs of the 30× 30 circular SRR array.

Therefore, the proposed technique is suitable to analyze the
wideband scattering by the large-scale finite periodic arrays.

IV. CONCLUSION
The efficient algorithm combining the MB-CBFM with the
improved FIR has been presented to analyze the wide-
band electromagnetic scattering from the large-scale finite
periodic arrays. The number of unknowns is tremendously
reduced by using the MB-CBFM. The reduced matrix equa-
tion can be handled using direct solvers even for the large-
scale arrays. During the frequency sweep, the MB-CBFM’s
impedance matrices can be efficiently calculated by utiliz-
ing the improved FIR. Numerical simulation examples have
demonstrated the accuracy and efficiency of the proposed
algorithm. In this work, only the freestanding finite periodic
arrays are analyzed. In the future work, the periodic arrays
with the substrate will be considered.
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