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ABSTRACT Aiming at alleviate the detrimental effect of similar object interferences and target state changes
in SiamRPN tracker, a Channel Positive and Negative Feedback Network (CPFN) is proposed, in which the
Gaussian score map is generated by the feature channels selected by a Gaussian kernel, and the map is
combined with the classification branches of SiamRPN. In this way, the feature channels are divided into
positive feedback channels and interference channels, and these feature channels are effectively utilized.
In addition, a channel weight update strategy is proposed to enhance the robustness of the tracker and avoid
template pollution caused by inadequate template update. Extensive experiments on tracking benchmarks
including VOT2016, VOT2018, VOT2019, OTB100, UAV123, LaSOT and GOT-10k show that the proposed
CPFN outperforms the state-of-the-art methods based on small backbone network in terms of accuracy and
achieves high-speed tracking.

INDEX TERMS Target tracking, Siamese network, Gaussian kernel, feature combination.

I. INTRODUCTION
Target tracking is one of the most challenging visual process-
ing tasks for tracking uncertain targets. Given the bounding
box of the target in the first frame, the location of it in subse-
quent frames needs to be predicted. Due to the deformation,
scale variation, fast motion, occlusions, background clutter in
scene, it is hard to accurately calibrate the target, which is the
main challenge of target tracking. In order to apply the target
tracking algorithm to actual scenarios, e.g., autonomous driv-
ing, security monitoring, and human-computer interaction,
a more accurate and efficient target tracking algorithm is
required.

There are currently two main research directions in target
tracking: (1) Traditional tracking algorithm based on corre-
lation filter; (2) Tracking model based on deep convolutional
network. As one of two research directions, correlation filter
plays an important role in target tracking. Corresponding
template is calculated from the current frame to determine the
target position in the next frame. However, previous hand-
crafted feature of the correlation filter is too simple, and
it cannot handle the complex circumstances of target state
changes and the interference of similar objects, resulting in
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the tracker fails to track the target accurately [1], [3], [13].
With the development of deep learning, deep features have
shown excellent effects in image processing and are widely
used in image classification, face recognition, object segmen-
tation [11], [28], [32], [35]. Therefore, deep features instead
of hand-crafted feature are introduced into correlation filter
methods [6], [8], [9], [14], [16], which greatly improved
the tracking accuracy. In addition, channel feature combina-
tion, Bayesian and domain adaptation [20], [21] schemes are
combined with target tracking, thus some new methods are
proposed [15], [22], [23], [39].

Although early deep learning models have shown desir-
able tracking accuracy in the tracking task, the tracking
speed is very slow and cannot meet the requirement of real-
time tracking [14], [30], [33], [38]. In recent years, Siamese
network architectures have shown desirable accuracy and
speed for tracking, which have drawn widespread attention.
A series of Siamese models convert the target tracking prob-
lem into a template matching problem, and achieve real-
time tracking combining offline training with online tracking
[2], [18], [24], [25], [34], [42]. One of the most promi-
nent model is the SiamRPN [18], which uses region pro-
posals to solve the problem of tracking rate drop caused by
multi-scale feature extraction, and pushes the tracking rate
up to 160fps.
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FIGURE 1. Comparison of CPFN, SiamRPN and TADT on three challenging
video sequences. Our CPFN can better deal with similar object
interference and pose variation.

Although the SiamRPNmodel shows good accuracy, it still
exists two problems: (1) SiamRPN has a higher response
value for similar objects, and target response value decreases
when the target state changes. (2) In the tracking process,
SiamRPN takes the target in the first frame as the fixed tem-
plate feature, lacking update strategy. These problems will
lead to the target drift during the tracking process. As shown
in Figure 1, the SiamRPN is more susceptible to interference
from target state changes and similar objects, and is easier to
deviate from the target.

In this paper, based on SiamRPN, a novel Channel Posi-
tive and Negative Feedback Network is proposed, named as
CPFN. In the network, a feature channel selection module
based on Gaussian kernel is added, by comparing the nor-
malized target location features with background features,
it searches positive feedback feature channels that distinguish
the target from surrounding objects and interference feature
channels that interfere with the judgment of the target. The
Gaussian score map generated by combining the two types
of feature channels is used to judge the target. In Figure 1,
CPFN shows better robustness and can determine the target
position more accurately.

Extensive experiments are conducted with the proposed
CPFN model on 6 benchmark datasets, including VOT2016,
VOT2018, VOT2019, OTB100, UAV123, LaSOT, GOT-10k.
In summary, the main contributions of this paper are as
follows:
1. According to the feature of tracking task, we design a

fast feature channel selection scheme based on Gaussian
kernel, which can quickly select the positive feedback
feature channel. The positive feedback feature channel
can better highlight the feature difference between tar-
get and background in tracking, and it is conducive to
determine the target.

2. Different from previous methods that discard of interfer-
ence feature channels, e.g, TADT only uses some feature

channels that can distinguish target instances, and a
large amount of other feature information is discarded.
By analyzing the characteristics of the interference fea-
ture channel, CPFN uses the interference feature channel
for negative feedback excitation to suppress the back-
ground and improve recognition performance of target
recognition, moreover, the model can make use of depth
features effectively.

3. A new update strategy is proposed to deal with the
changes of environment and target posture during the
tracking process, and it avoids the template pollution
caused by the simple template update scheme, hence the
robustness and accuracy of tracker can be enhanced.

II. RELATED WORKS
A. USE CNN AS FEATURE EXTRACTION
In recent years, due to the wide use of deep features in
image processing, some correlation filter trackers begin to
use Convolution Neural Network (CNN) to extract the deep
feature of images, so as to improve the tracking performance.
The most typical models are DeepSRDCF [8] and CF2 [29],
which use different levels of pre-trained CNN features com-
bined with correlation to improve the robustness and accu-
racy of tracking. Traditional correlation filter models such as
KCF [13] and fDSST [7] greatly improve tracking accuracy
and robustness by replacing hand-crafted feature with deep
feature. C-COT [9] and ECO [6] use continuous convolution
operators to enhance the feature extraction of the tracker,
which can achieve the most advanced tracking accuracy in
terms of tracking performance, however, when the size of
input image is large, tracking rate cannot support real-time
tracking. CNN-SVM [14] regards the tracking problem as a
classification problem, and uses CNN to extract features, and
SVM for division. The FCNT model [37] uses a regression
framework for feature selection, looking for feature channels
that reflect the difference between the target and the back-
ground in the deep feature. The advantage of these methods is
the deep feature is utilized to improve performance. Although
these models all need the deep feature, they all use pre-trained
classification feature extractors and do not perform offline
training for tracking tasks. Tracking speed decreases if online
training or updating of deep features is required, which limits
the richness of tracking model.

B. SIAMESE NETWORK FOR TRACKING
Bertinetto et al. proposed the Siamese-FC model based on
templatematching [2], which is one of themost representative
deep learning models of target tracking. Utilizing a backbone
networkwith shared parameters, deep features of the template
and the search area are extracted. In the previous online
tracking process, the target in the first frame is used as a tem-
plate to extract features, but these features are not updated in
subsequent tracking, and the search area is directly matched.
Without online updating, the speed of the tracker can exceed
the requirements of real-time tracking. Both Siamese-FC and

VOLUME 9, 2021 15005



Y. Chen et al.: Channel Positive and Negative Feedback Network for Target Tracking

FIGURE 2. RPN module architecture, including classification branch and
regression branch, ϕ(·) is feature extractor.

DCF [7], [26] use a multi-scale method to estimate a rough
target size, which requires a lot of additional calculations.
Bo Li et al. proposed the Siamese-RPN model based on
Region Proposal Network (RPN), which introduced the prior
information on the anchor box to quickly estimate the change
of target scale, and improving the tracking rate to 160 FPS.
Fig.2 shows the RPN module structure, including classi-
fication branches and regression branches. By analyzing
the essential difference between tracking and classification,
Xin Li et al. proposed to integrate target-aware features into
Siamese architecture, and established a TADTmodel [25] for
target tracking tasks. They analyzed the difference between
instance distinction and class distinction in the target tracking
process, and judged that only a few channels is distinguish-
ing for instance distinction, so they explore channels with
distinguishing power. In addition, some channels, are more
sensitive to scale changes of target. The TADT model uses
pre-trained classification features, and the filtered channel
features are directly used for tracking tasks without additional
offline training. In this paper, a feature selection module
is designed to explore distinctive feature channels online
by Gaussian kernels, and combine the negative feedback
incentive of interference channels to generate Gaussian score
maps. CPFN improves target tracking ability by integrating
Gaussian score map and classification branch.

III. PROPOSED METHOD
The defects of SiamRPN are as follows: (1) Similar objects
and target have high response values. (2) The change of target
state will cause a decreased response value of the result.
Therefore, in the tracking process, it is easy to happen target
drift phenomenon. The distribution of the ideal labelled state
is similar to the Gaussian distribution. Therefore, in order
to get an ideal response result, feature channels that similar
to Gaussian kernel should be selected from the feature map.
In this paper, we combine these selected feature channels
to generate a Gaussian score map, which acts as a supple-
mentary of SiamRPN results to improve the robustness of
the model. Then the selected feature channels are divided

into positive feedback feature channels and interference fea-
ture channels. The positive feedback channel is defined as
a feature channel that can effectively distinguish the target
and the background, and the interference feature channel is
defined as a feature channel that can interfere with target
and background recognition. Different from TADT, the pro-
posed method not only uses the positive feedback feature
channel, in which the feature is similar to Gaussian distri-
bution, to generate Gaussian score map, but also uses the
interference feature channel. By analyzing the effect of the
interference feature channel on target tracking, we propose a
negative feedback scheme to suppress the response value of
similar objects and improve the accuracy of target tracking.
Figure 3 shows the architecture of CPFN.

In Figure 3, firstly, the deep feature of the target and search
area is obtained by feature extraction, then the fused features
are obtained by feature matching with convolution.

f (z, x)i = φ(z)i ? φ(x)i (1)

where φ(·) is feature extractor, ? is convolution operation, z is
template, x is search area, i ∈ 0, 1, . . .N − 1 is the channel
number, N is the total number of channels. The fused feature
map contains the spatial and semantic information of target
and background after template matching.

A. POSITIVE FEEDBACK FEATURE CHANNEL
In the process of tracking, the ideal state of tracking results
is that the target area is with high response and the non target
area is with low response, which is similar to Gaussian kernel.
Through the lower response value, we can clearly judge that
the object at its location is not the target object. Considering
this precondition, we set a similar hinge loss function H (·) to
eliminate the interference of low response value. The H (·) is
defined as:

H (x) = max(0, x − ε)+ ε ∗ (dx − εe), ε ∈ (0, 1) (2)

We define the target state as follows:

y = H (e
−α

(s−s0)
2
+(l−l0)

2

2∗β2 ) (3)

where (s0, l0) is target center position, (s, l) is map location.
Inspired by TADT, it is important to find the distinguishing
feature channels directly. Therefore, it is necessary to find
positive feedback feature channels that similar to the Gaus-
sian kernel, as shown in Figure 5 (e). We define the method
of using positive feedback channels to help target location as
channel positive feedback. By normalizing f (z, x)i, the rela-
tive activation response of the target and background features
in the search area to the template features can be compared.
If the relative value of the region position is higher, the region
feature and the template feature are more similar on the
current channel, and the featurematching degree is better than
other regions. Otherwise, the area feature does not match the
target feature well. In order to select feature channels similar
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FIGURE 3. CPFN network architecture. It consists of an Alex backbone with shared parameters, a channel selection module, and a RPN module. Details
of RPN module could be found in Figure 2, details of channel selection module could be found in Figure 4.

to the target state, the normalized f (z, x)i and y are calculated:

si = ‖H (
f (z, x)i − min(f (z, x)i)

max(f (z, x)i − min(f (z, x)i))
)− y‖L1 (4)

The si is smaller, f (z, x)i is closer to the target state y, and the
i-th feature channel can better distinguish the target and the
background, thus a higher weight should be assigned for
f (z, x)i. The weight calculation formula is defined as follows:

wi = e−
v∗j
N +b, j = sort(si), j ⊆ [0, 1, 2, . . .N − 1] (5)

where v is the scaling factor, b is the offset, sort(·) is sort func-
tion. The positive feedback feature channel can be selected
through wi and used for the generation of the score map.
Figure 5 (b) shows the score map generated by positive
feedback feature channel.

B. NEGATIVE FEEDBACK OF INTERFERENCE
FEATURE CHANNEL
The difference between the tracking task and the classifica-
tion task is that the former pays more attention to the differ-
ence between the examples, and the latter pays more attention
to the distinction of categories. According to the TADT and
GradNet [24], only a few feature channels have distinguishing
effects on target instances, and the features of these channels
can represent the difference between instances. In TADT, lots

of channel information are not used fully, which leads to
low utilization of deep features. In addition, certain feature
channels that are significantly different from the Gaussian
kernel will interfere with the recognition of targets and back-
grounds, these feature channels are interference feature chan-
nel, as shown in Figure 5 (f).

Although distinguishing features are very important in the
recognition of target and background, there are a few such
feature channels. In a large number of interference channel
features, the matching degree between the background and
the template may be the same or higher than the one between
the target and the template. A larger si indicates that there
are many high corresponding values in f (z, x)i. Multiple non-
target areas have high response values, indicating that the
channel feature highlights the non-target features. During the
tracking process, if there is a high activation response value
in these interference feature channels, the possibility that the
activation area is not a target is greater than the area with a low
response value. Based on this judgment, we give a negative
incentive to the feature channels with higher si, which is
defined as the negative feedback of the interference channel.
By subtracting the score map generated by the interference
channel, the background can be suppressed. Since not all
interference feature channels have obvious negative incen-
tive, and the interference features channels are quite different
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FIGURE 4. Selection of the positive feedback channel and the interference channel based on the Gaussian kernel, and different weights are
combined to generate a Gaussian score map.

FIGURE 5. (a) is the search area, (b) is the score map generated by
positive feedback feature channel, (c) is the score map generated by
interference feature channel, (d) is the Gaussian score map generated by
the combination of (b) and (c), (e) is the feature map selected from
positive feature channel, (f) is the feature map selected from interference
feature channel. For convenience of observation, only high response
values are shown in the figure, and the higher the brightness, the greater
the response value, and the higher the brightness, the greater the
response value.

from the target state, these interference channels are given
equal weights:

wnegi =

{
1 wi < θ

0 else
(6)

Figure 4 shows the division and combination framework of
feature channels. Figure 5 (c) shows the score map gener-
ated by interference feature channel, and Figure 5 (d) shows
the Gaussian score map after subtracting Figure 5 (b) from
Figure 5 (c).

IV. TRACKING PROCEDURE
The offline pre-trained SiamRPN model is used as overall
framework, the proposed channel selection scheme is embed-
ded for online tracking.

A. INITIALIZATION
Given the first frame, the cropping template z1 and the search
area x1 are sent to the feature extractor φ(·), and the feature
f (z1, x1) is obtained by equation (1). Using the center of the
target position, y1 is obtained by equation (3).

B. TRACKING
w and wneg are obtained by equations (4) (5). Given the
initial target z1 and the search area xt in the current frame,
we get f (z1, xt ),w,wneg and combine them to get theGaussian
score map:

ppost =
N−1∑
i=0

wi ? f (z1, xt )i, pnegt =
N−1∑
i=0

wnegi ? f (z1, xt )i

(7)

pt = G((1− λ) ∗ G(ppost )− λ ∗ G(pnegt )) (8)

where G(·) is the 0-1 normalization function.
pt is then combined with the classification branch result of

RPN clst to get the target position of the t-th frame:

ˆloct = argmax
loc

(clst ∗ pt ) (9)

C. ONLINE UPDATE
Different from the way of updating the template, this paper
uses the strategy of updating w and wneg to avoid inac-
curacy of template updates caused by the introduction of
contaminated samples. When the target position of the t-th
frame is determined, the target state yt is generated by
equations (2), (3). f (z1, xt ) is obtained with the convolution
operation of the template z1 and the search area xt , and the wt

is obtained by equations (4), (5). The cosine loss is used to
calculate the similarity between w and wt . For reducing the
sudden transition from low-quality channels to high-quality
channels, this paper uses a weight judgment to filter out
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TABLE 1. Results on the VOT2016 and VOT2018 dataset.

Algorithm 1 Tracking Process
Initialize: input parameters z1, x1
f (z1, x1) according to Eqn. (1)
y0 according to Eqn. (3)
s according to Eqn. (4)
w according to Eqn. (5)
wneg according to Eqn. (6)

Tracking: input parameters xt
f (z1, xt ) according to Eqn. (1)
pt according to Eqn. (7)(8)
clst according to RPN
ˆloct according to Eqn. (9)

if t mod T == 0 then
wt according to Eqn. (4)(5)
η according to Eqn. (11)
if η > σ then
w according to Eqn. (12)
wneg according to Eqn. (6)

end if
end if
return

channels that have changed too much. The process can be
formulated as follows:

ci =

{
1 |wi − wti | < γ

0 else
(10)

η =
(c · w) ∗ wt

|c · w||c · wt |
(11)

Only when η > σ , the update operation is performed:

w = w ∗ (1− τ )+ τ ∗ (wt · c), {η > σ } (12)

According to equation (12) and equation (6), new wnegi is
obtained. Algorithm 1 can be obtained by integrating the
above elements together.

V. EXPERIMENTS
The proposed CPFN is implemented on pytorch platform
and all the experiments are conducted on a PC with Intel(R)

Core(TM) i7-9700 CPU@3.00GHz and a Nvidia GTX
2080TI GPU. The input size of the template and search
area is 127 pixels and 287 pixels, respectively. During the
tracking process, parameters are set as follows: ε = 0.7,
v = 7, λ = 0.2, γ = 0.5, τ = 0.3. In VOT2016, VOT2018,
UAV123 and GOT-10k, we set b = 0.3, referring to
the TADT, and set θ to si corresponding to the 60th wi.
In VOT2019, we set b = 0.25 and θ to si corresponding
to the 50th wi. In OTB100, we set b = 0.4 and θ to si
corresponding to the 40th wi. In LaSOT, we set b = 0.3
and θ to si corresponding to the 50th wi. We refer to the
parameter settings of TADT and SiamRPN, and fine-tune
them manually.

Our CPFN is composed of Alex backbone, RPN module
and Gaussian selection module, which is a high-speed tracker
of small backbone. Extensive experiments are conducted to
evaluate the CPFN tracker against plenty of high-speed track-
ers of small backbone on VOT2016, VOT2018, VOT2019,
OTB100, UAV123, LaSOT and GOT-10k benchmarks. The
evaluation indicators on different testsets show the tracker’s
ability to cope with target drift issue, such as Expected
Average Overlap (EAO), the center location error (precision
plot), overlap between the predicted and field bounding boxes
(success plot). For fair comparison, the compared trackers
selected in the experiment are small backbone high-speed
models, such as: C-RPN [10], SiamRPN, SPM [36], and
SiamDW [42] etc.

A. RESULTS ON VOT
VOT challenge is composed of 60 different video sequences,
each video has different challenging factors. The VOT dataset
mainly includes three evaluation indicators: Expected Aver-
age Overlap (EAO), Accuracy (A), and Robustness (R).
We use these three indicators to test model tracking per-
formance. The proposed CPFN is evaluated on VOT2016,
VOT2018, and VOT2019. Table 1 show the compari-
son results of different tracking models in VOT2016 and
VOT2018. As shown in Table 1, the proposed CPFN ranks
first in VOT2018, and ranks second in VOT2016. Compared
with the most advanced high-speed tracker SPM, the EAO of
CPFN can increase by 2.3% on VOT2018. Although the EAO
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FIGURE 6. Representative visual results of different tracking algorithms on the VOT2016 dataset. GT is ground truth, CPFN
is our proposed tracker.

of CPFN on VOT2016 is very close to SPM, the CPFN has
better robustness and higher speed under the same accuracy.
Compared with SiamRPN, EAO of CPFN has increased by
3.5%, 0.9% in VOT2016 and VOT2018. Compared with
the C-RPN, TADT, GradNet, and SiamDW models, CPFN
model has far better results on the VOT2016 and VOT2018.
Figure 6 shows a partial visualization of CPFN and other
trackers on VOT2016. It can be seen from Figure 6 that CPFN
can better deal with the problem of target drift.

TABLE 2. Results on the VOT2019 dataset.

Table 2 shows the comparison results of different track-
ing models in VOT2019. The proposed CPFN ranks first in
VOT2019, and EAO of CPFN is 0.5% hinger than SPM,
and CPFN has higher speed. Compared with SiamRPN,
CPFN’s EAO has 2.0% improvement. CPFN’s EAO is
significantly higher than some trackers provided by the
VOT2019 challenge report [17] such as SA_SIAM_R,
SiamMsST, gasiamrpn, SSRCCOT, TADT. The difference
between VOT2018 and VOT2016 is that some simple videos
are replaced with more difficult video sequences. Although
the EAO of SPM is higher on VOT2016, CPFN shows better
robustness. And in VOT2018, EAO of CPFN is better than
SPM. In VOT2019, some more challenging video sequences
are added into VOT2018. Therefore, CPFN and SPM have a
significant performance decrease inVOT2019 comparedwith
VOT2018, while EAO of CPFN is still better than SPM in
VOT2019.

B. RESULTS ON OTB100
OTB100 dataset is one of the most commonly used
benchmark, which includes 100 different video sequences
and 11 different tracking challenges. The evaluation of
OTB100 follows two metrics, i.e, precision plot and success
plot. The precision plot reports the percentage of the cen-
ter location error that is less than certain thresholds. The
success plot reports the percentage of frames is that the
overlap between the predicted and field bounding boxes is
higher than the given ratio. In this experiment, CPFN model
is compared with several representative trackers, including
TADT [25], GradNet [24], SiamRPN [18], CIResNet22-
FC [42], CF2 [29], DeepSRDCF [8], CNN-SVM [14],
HDT [31], SRDCFdecon [5]. As shown in Figure 7, the pro-
posed CPFN ranks 1st both in precision plot and success polt.
In terms of precision plot and success plot, CPFN is 1.5%
and 1.3% higher than SiamRPN, 2.5% and 1.9% higher than
TADT and GradNet. In the success plot and precision plot,
the CPFN curve is always on the top, indicating that it can
better deal with target drift.

C. RESULTS ON LaSOT
LaSOT is a very large public training and testing dataset,
including 1400 video sequences and 70 categories, the test-
set selects 280 video sequences from LaSOT with different
challenges for tracking. The average number of video frames
is 2500 frames larger than other testset, bringing greater
challenges to tracking. The LaSOT toolbox provides the
tracking results of a series of trackers on the LaSOT bench-
mark, including mainstream trackers such as SiamFC [2],
VITAL [33], MDNet [30], ECO [6], StructSiam [41] etc.
In addition, we also compared our model with SiamRPN
and SiamDW. Figure 8 shows the success plot and nor-
malization precision plot of all the trackers tested on the
LaSOT testset, indicating that the proposed CPFN achieves
better performance and ranks first. In terms of normalization
precision plot and success plot, CPFN is 2.2% and 1.6%
higher than SiamRPN, 8.8% and 6.8% higher than MDNet,
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FIGURE 7. Results on the OTB100 dataset, left is precision plot and rigth is success plot.

FIGURE 8. Results on the LaSOT Test dataset, left is normalization precision plot and rigth is success plot.

9.5% and 7.5% higher than VITAL. In the success plot and
normalization precision plot, the CPFN curve is always on
the top, indicating that it can better deal with target drift.

D. RESULTS ON UAV123
UAV123 dataset is captured from low-altitude unmanned
aerial vehicles, which contains a total of 123 video sequences
and 110K frames. The objects in the dataset mainly suffer
from fast motion, large illumination, large scale variation,
occlusions and variation, which is challenging for tracking.

In this experiment, CPFN model compared with several
representive trackers, including SiamRPN [18], ECO [6],
ECO-HC [6], SiamFC [2], CFNet [34], SAMF [26],
MEEM [40], DSST [7]. Table 3 shows the performance
comparison of each model, where AUC is area under curve
and Prec is precision score. On AUC and Prec, the proposed
CPFN has an improvement of 0.9% and 1.9% compared to
SiamRPN, an improvemet of 6.2% and 4.7% compared to the
ECO, and an improvement of 8.1% and 6.3% compared to the
ECO-HC. On AUC, the proposed CPFN has an improvement
of 5.9% compared to MDNet.
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TABLE 3. Results on the UAV123 dataset.

TABLE 4. Results on the GOT-10k testset.

E. RESULTS ON GOT-10k
GOT-10K is a large high-diversity benchmark for generic
object tracking in the wild. GOT-10k testset contains
180 video of real-world moving objects. Results of GOT-10k
testset need to be uploaded to the official website for analysis.
The provided evaluation indicators include average overlap
(AO) and success rate (SR). The AO represents the average
overlaps between ground-truth boxes and estimated bounding
boxes. The SR0.5 is the rate of successfully tracked frames that
overlap more than 0.5, while SR0.75 is rate of successfully
tracked frames that overlap more than 0.75. We evaluate
CPFN on GOT-10k testset and compare it with tracker with
SiamRPN, DaSiamRPN [43], SiamFC, CF2, C-COT, ECO
and other baselines or state-of-the art approaches. All the
results are provided by the official website of GOT-10K.
As shown in Table 4, our tracker ranks 1st in terms of all
the indicators. Comparedwith SiamRPN, CPFN improves the
scores by 0.4%, 1.1% and 0.7% for for relatively forAO, SR0.5
and SR0.75. Compared with DaSiamRPN, CPFN improves
scores by 2.3%, 1.9% and 4.4% for relatively for AO, SR0.5
and SR0.75.

F. ABLATION STUDY
In this section, we analyze the effects of positive feed-
back feature channel (PFFC), negative feedback of inter-
ference feature channel (IFC), and update strategy (US)
on VOT2016 and VOT2018 benchmarks. Table 5 presents
the expected average overlap (EAO), accuracy (A), and
robustness (R) of VOT2016 and VOT 2018 for each varia-
tion. Compared with the baseline tracker on VOT2016 and

TABLE 5. Ablation studies on the VOT2016 and VOT2018 dataset.

TABLE 6. Ablation study of update scheme on the VOT2016 and
VOT2018 dataset.

FIGURE 9. The first and third columns are the search areas of CPFN and
simple template update schemes in the same video frame. The second
column is the classification result of CPFN, and the fourth column is the
classification result of simple template update strategy. The channel
which locates the maximum value of classification score is the heat map
visualized.

VOT2018, the additional PFFC method obtains gains
(+0.5% and +2.0%), the additional PFFC and IFC method
obtains significant gains (+2.7% and 3.8%). When inte-
grating three method, the improvement becomes larger
(+4.8% and +5.3% for VOT2016 and VOT2018), which
demonstrates the effectiveness of our each method.

In order to verify the adverse effects of simple template
update, we replace the update scheme in CPFN, that is, when
the classification score is higher than a certain threshold,
the following updates are made to the template: template =
templateold ∗ α+ (1− α) ∗ templatenew, (cls > θ). As shown
in Table 6, after using a simple template update strategy,
the EAO have significantly decreased. In addition, there is
a significant decrease in the A metric, indicating that the
overlapping effect of the regression box and the ground truth
is bad, which shows that the template information is contami-
nated and the target location cannot be locatedwell. As shown
in Figure 9, it can be seen that a simple template update
scheme will cause inaccurate positioning.

VI. CONCLUSION
In order to solve the problem of target drift caused by the
interference of surrounding objects and the change of target
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state in the SiamRPN, this paper proposes a combined feature
channel scheme and a novel update strategy. By comparing
the feature map of each feature channel with a Gaussian
kernel, the positive feedback feature channel and the interfer-
ence feature channel can be selected quickly and effectively.
Moreover, a negative feedback excitation for the interference
channels and deep features is used more effectively. Gaussian
score map is generated by integrating two types of chan-
nels. Combining the Gaussian score map with the classifi-
cation branch of RPN, the network achieves the purpose of
enhancing the target response and suppressing the response of
similar objects, and further distinguishing the target and the
background. Extensive experiments on datasets VOT2016,
VOT2018, VOT2019, OTB100, UAV123, LaSOT and GOT-
10k show that the CPFN model can further distinguish the
background and the target, and outperforms the state-of-the-
art methods based on small backbone network in terms of
accuracy and tracking speed.
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