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ABSTRACT Radio-frequency identification (RFID) localization has drawn much attention with the emer-
gence of the Internet of Things (IoT). Deep learning with applications to RFID localization owns a lot of
advantages. In this paper, we present a deep convolutional neural network (CNN)-based approach for passive
RFID tag localization exploiting joint fingerprint features of the received signal strength indication (RSSI)
and phase difference of arrival (PDOA). First, the RSSI and PDOA data are extracted from the received
signals of RFID readers. Then, a CNNwith three convolution layers and pooling layers is design, in which the
normalized RSSI and PDOA data are formed into images as its input to train the weights in the offline stage.
In the online stage, the RSSI and PDOA data of test tags are collect and then the positions of unknown tags is
predected based on the designed CNN. In the simulations, the accuracy of the proposed approach is compared
with several fingerprinting-based schemes such as LANDMARC, weighted K-nearest neighbor (WKNN)
and deep neural network (DNN), and the impact of different fingerprint data sets and noise variances on
the positioning accuracy is analyzed. Experiments show that the proposed approach can locate multiple tags
with high accuracy and stability in complex indoor environment, and outperforms other existing schemes.

INDEX TERMS Radio-frequency identification, indoor localization, convolutional neural network, finger-
print feature, phase difference of arrival.

I. INTRODUCTION
In recent years, indoor localization via radio-frequency iden-
tification (RFID) technology [1]–[6] has drawn much atten-
tion with the emergence of the Internet of Things (IoT).
RFID is a kind of non-contact automatic data acquisition
technology using space electromagnetic wave as transmis-
sion medium. It has many advantages such as small size,
mature technology, high speed, low power consumption,
large capacity, anti-interference, long life and high precision
[7], [8]. RFID localization has great potential for a vari-
ety of IoT applications such as logistics management [9],
intelligent purchase guidance [10], medical services [11] and
public safety [12], etc. Among them, the implementation of
high accuracy positioning of IoT devices with large-scale
deployment is crucial [13]. Unlike outdoor localization,
which is handled with global positioning system (GPS) and
exploits the line-of-sight (LOS) transmission paths, indoor

The associate editor coordinating the review of this manuscript and

approving it for publication was Kai Yang .

localization faces huge challenges of complex propagat-
ing scenarios [14]–[19] such as shadowing effect, multi-
path propagation, delay distortion, non-line-of-sight (NLOS),
and fading [20]–[22], which deteriorate the positioning
performance.

Traditionally, range-based methods such as time of arrival
(TOA), time difference of arrival (TDOA) [23], angle of
arrival (AOA) [24] and received signal strength indica-
tion (RSSI) are mainly used in RFID localization. How-
ever, their accuracies cannot meet the requirement in actual
environment. Recently, the fingerprinting-based approach
has become a promising technology for indoor localization,
in which the fingerprint database with thorough measure-
ments of the scene is established, then the new measurements
are collected and compared with the data in database to
achieve positioning. By using the RSSI as measurements,
some fingerprinting-based RFID localization approaches
have been put forward [20], [25]–[28]. Typically, in [26],
LANDMARC system was proposed for RFID localization
based on RSSI, which was realized by placing readers and
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multiple reference tags. In [20], the weighted K-nearest
neighbor (WKNN) approach was presented to improve
the location accuracy of KNN [29]. Besides RSSI, sev-
eral phase-based RFID localization methods have also been
investigated [30]–[38].

Despite the fact that these methods can make better use
of the survey data than the traditional range-based tech-
niques, they have much limitation on fully exploiting the
data and localizing the massively deployed RFID tags on
IoT devices. For example, there inevitably exists noise in the
datasets, which cannot be well processed with these tradi-
tional fingerprinting-based algorithms due to the inability to
conduct deep learning on the data. Thus the positioning accu-
racy cannot be further improved. In this paper, we address to
deep learning with applications to RFID indoor localization.
To simplify the positioning model, we neglect the problem
of signal multiplexing and resource scheduling brought by
massive RFID tags.

More recently, deep learning [39] has become an emerg-
ing technology in large data analysis and learning. Typi-
cally, it contains deep neural networks (DNN) [40], deep
belief network (DBN) [41] and convolutional neural network
(CNN) [42], etc. In [42]–[44], deep learning for WiFi-based
indoor localization has been investigated to obtain high accu-
racy. In [45], deep learning approach for fingerprinting-based
RFID indoor localization has been proposed in our pre-
vious work. Different from conventional fingerprint loca-
tion methods, deep learning-based schemes for RFID indoor
localization have a lot of advantages which are itemized as
follows. It consists of two stages: offline training and online
testing.

1) In the offline training stage, the reference RFID tags
are arranged in the localization scene, and the fingerprint
database is established by collecting the survey data from
the reference tags. The fingerprint data features and train-
ing parameters are deeply learned by building a neural net-
work model, thus CNN can learn data in depth and adapt
well to the complex indoor electromagnetic interference
environment.

2) In the online testing stage, the test data are used as
the input of neural network for position estimation, and the
probability is the output at each reference point using neural
network model, thus the estimated location is calculated as a
weighted average of the candidate locations.

In this paper, the deep CNN is applied to RFID multi-tag
localization with joint fingerprint features of the RSSI and the
phase difference of arrival (PDOA). TheCNN for RFID local-
ization has great advantages such as the capability of process-
ing a large amount of data, extracting and training fingerprint
features, sharing the parameter structure, and reducing the
complexity of neural network. Therefore, the accuracy and
real-time of positioning can be guaranteed. In our simulation
work, the CNN is designed with three convolutional layers,
three pooling layers and one fully connected layer. The con-
volutional layer and pooling layer can extract image feature
information, reduce feature dimension and share parameters.

FIGURE 1. Outline of the RFID tag localization system.

To prevent gradient dispersion, ReLU is used as the activa-
tion function in our CNN model. Then, the full connection
layer is exploited as a classifier to calculate the probability
distribution by Softmax function. The outline of the RFID
tag localization system is shown in Fig. 1.
In our work, we extract the joint fingerprint features includ-

ing the RSSI and PDOA from the RFID reader and reference
tags in the offline stage. Considering the propagation scene
of RFID signals with path-loss and phase-distance models,
we collect the joint RSSI/PDOA measurements of the refer-
ence tags and normalize them. The fingerprint data are made
into images with size 32×32 as the input of the CNN to
train its weights by deeply learning the features of images.
For comparison, three kinds of training datasets are generated
including RSSI, PDOA and joint RSSI/PDOA, respectively,
and a back propagation algorithm (BP) [43] is used to train
their weights. In the online stage, the same three kinds of test
datasets are collected and the trained CNN model is used to
estimate the position of the test tags. Finally, the effects of the
three different fingerprint datasets as well as the varying noise
variances on positioning accuracy are analyzed. Experimental
results show that the CNN-based approach outperforms sev-
eral existing localization schemes, which has higher accuracy
and stability.

The main contributions of this paper are as follows:
1) We extract the joint fingerprint features including

RSSI and PDOA measurements for RFID positioning,
and experimentally validate the effectiveness of RFID
localization using joint RSSI/PDOA datasets.

2) We design a deep CNN with three convolution layers
and three pooling layers to train the RFID fingerprint
data in the offline stage.

3) We use the probability distribution of the test tag at
each reference point, rather than its coordinate, as the
output of the CNN, and select the K positions with the
highest probability to improve the RFID positioning
accuracy.

The remaining of this paper is organized as follows.
Section II introduces the data collection of RSSI and PDOA.
Section III investigates the CNN-based RFID tag localization
approach via joint fingerprint features. Section IV gives the
analysis of experimental results and Section V concludes this
paper.
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FIGURE 2. Forward link and backward link propagation mode of RFID.

II. DATA COLLECTION OF RSSI AND PDOA
A. RSSI AND PDOA MEASUEREMENT MODEL
The illustration of RFID forward and backward link prop-
agation is shown in Fig. 2. RFID reader establishes com-
munication with tag through the half duplex communication
mode of reader first speech [46]–[48]. Therefore, RFID com-
munication includes two links, forward link and backward
link. In RFID communication system, the reader antenna
transmits interrogation signals towards surrounding passive
tags. After receiving the transmitted signal, the tag activates
itself with the signal energy, and then backscatters the signal
to the reader antenna [3]. The RSSI and PDOA values can be
extracted from these signals by measurements.

In practice, complex environment will affect the
transmission of wireless signal. We exploit the logarithmic
path-loss model to simulate the propagation of RFID signals.
According to [25], RSSI can be mathematically determined
by

RSSI [dBm] = Pt [dBm]+ Gt [dBi]+ Gr [dBi]

−PL (f , d) [dB]+ Xσ (1)

where

PL (f , d) = 10n log10

(
4π f
c

)
+ 10n log10 (2d) (2)

In (1), Pt denotes the power of the transmission signal from
the RFID reader. Gt and Gr are the gains of the RFID reader
transmitter and receiver antennas, PL (f , d) in (2) denotes the
path loss when the carrier frequency is f and the distance
between the RFID reader and tag is d , whose unit is dB. c is
the speed of light. n is the path loss constant, which denotes
the rate of path loss increasing with distance, and it depends
on the surrounding environment and the material type of
the building. Xσ∼N

(
0, σ 2

1

)
represents Gaussian distributed

noise with zero mean and variance σ 2
1 .

The PDOA, i.e., the phase difference of arrival φ, is gener-
ated during the forward and backward propagation. Not only
the spatial distance between the RFID reader and the tag but
also the hardware circuits, multipath and transmission line
effects may introduce phase rotation. In practice, the mea-
sured phase cannot be directly used in RFID systems since
it is wrapped into multiple of 2π . The phase unwrapping
method has been studied in [30], here we assume that the
phase information has been well unwrapped. Thus, we can

express the basic phase-distance model as
φ = φp + φe

φp =
4πd
λ

φe =
4πdZσ
360

(3)

where λ = c/f denotes the wavelength of the RF signal. φ
denotes the observation value of phase difference reported
by the RFID reader, φp denotes the phase rotation due to the
propagation delay, and φe is the phase error caused by hard-
ware circuits, multipath, and transmission line effects. In this
paper, we assume that the phase disturbance Zσ (regarded as
noise) obeys Gaussian distribution N

(
0, σ 2

2

)
, with mean µ

and variance σ 2
2 . In Fig. 2 the total spatial propagation dis-

tance of the RF signal is 2d due to the forward and backward
propagations during the backscatter communication.

B. ORIGINAL RSSI AND PDOA DATA ACQUISITION AND
PROCESSING
In this section, we simulate the indoor propagation environ-
ment of RFID signals [49]–[51] to complete RSSI and PDOA
data acquisition and processing, in which the logarithmic path
loss model and basic phase-distance model in (2) and (3) are
used to obtain the original RSSI and PDOA data, respectively,
with RFID reader and tag synchronization not required.

According to the RSSI and PDOA data obtained from
different readers, the fingerprint features of RSSI and PDOA
for the ith reference tag location can be obtained. The datasets
are produced as grid-based structures, in which the RSSI
and PDOA datasets of the ith tag can be expressed as si =(
si1, s

i
2, s

i
3, · · ·, s

i
M

)
and φi =

(
φi1, φ

i
2, φ

i
3, · · ·, φ

i
M

)
, respec-

tively, where M denotes the number of the RFID readers.
Since the RFID signal is reflected and diffracted several
times, the RSSI and PDOA data can stand for the features of
a tag. Thus, the fingerprinting-based RFID localization can
be implemented.

In practical applications, the coordinates of the refer-
ence tags and the original RSSI and PDOA data at differ-
ent readers are recorded simultaneously when training sam-
ples are collected. After the original RSSI and PDOA data
is obtained at N different locations, the RSSI sample set
can be expressed as S =

{(
s1, l1

)
,
(
s2, l2

)
, · · ·,

(
sN , lN

)}
and the PDOA sample set can be written as 8 ={(
φ1, l1

)
,
(
φ2, l2

)
, · · ·,

(
φN , lN

)}
, where si and φi represent

the original RSSI and PDOA datasets of the ith tag, respec-
tively, and l i denotes the position coordinate information of
the ith tag.

To facilitate the training of the model and prevent the
imbalance in the training procedure, an approximate normal-
ization processing is also required, which is given by

si =
si −min (s)

max (s)−min (s)
(4)

φi =
φi −min (φ)

max (φ)−min (φ)
(5)
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FIGURE 3. RFID localization architecture based on CNN.

It can be seen that the proposed RFID localization
approach is to extract fingerprint features of joint RSSI and
PDOA datasets via training, so that the characteristics of tags
in different positions are more distinctable.

III. CNN-BASED RFID TAG LOCALIZATION VIA JOINT
FINGERPRINT FEATURES
A. LOCATION SYSTEM ARCHITECTURE
The RFID localization architecture based on CNN is illus-
trated in Fig. 3. In the design, the original RSSI and PDOA
data of the N reference tags are collected by eight RFID
readers, and the original RSSI and PDOA data are normalized
to form the training set S. Deep learning is performed on the
training set information of the N reference tags by using the
convolutional neural network. Then the BP algorithm is used
to optimize network parameters of CNN by comparing the
error between the output and target vectors. In the online test
stage, the RSSI and PDOA data of test tags are collected to
generate test sets, and the probability distributionmatrices are
obtained by CNN to achieve localization.

For the CNN-based approach, supervised learning is used
to extract the features of fingerprint database and online
fingerprint data, respectively. Since the CNN has excellent
fitting ability for each group of data, the tag location coor-
dination is determined according to the characteristics of
the designed CNN in this paper. Compared with the pre-
vious schemes, the CNN-based approach has the following
advantages:

1) It has superior two-dimensional data processing and
learning ability, which can achieve higher positioning
accuracy.

2) The parameters of each layer are shared, so the train-
ing time is shorter than that of other neural network
approaches such as DNN and DBN.

3) In the collection of fingerprint data sets, reference
tags can be reused, which saves the cost of the
location system and is helpful for the recycling of
resources.

FIGURE 4. The training procedure and parameters of the designed CNN
model.

FIGURE 5. Operation of convolution layer.

B. OFFLINE TRAINING
The CNN is an artificial neural network with weight sharing
network structure. It is more similar to biological neural
network, which is helpful for reducing the number of weights
and the complexity of network model. This advantage is
more obvious when the network input is a multi-dimensional
image. Thus, the image can be directly used as the input of the
network, and avoid the process of complicated feature extrac-
tion and data reconstruction in the traditional recognition
algorithms. As a multi-layer perception specially designed
for recognizing two-dimensional shape, the network struc-
ture of CNN is highly invariant to translation and scale.
Its structure is composed of convolutional layer, pooling
layer and fully-connection layer. Fig. 4 shows the training
procedure and parameters using the designed CNN model
in our approach, and Fig. 5 illustrates the operation of the
convolutional layer.

As shown in Fig. 5, the convolutional layer can extract data
features from the input feature map and learn the contour of
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the map. We define the ith feature map of layer l as hli , which
is given by

hli = σ (
∑

n∈Hl−1

wlinh
l−1
n + bli) (6)

where wlin denotes the convolution kernel, which convolutes
with the nth feature map in layer l − 1 to generate the ith
feature map in layer l, the weights are identical for different
n feature maps due to local weight sharing. bli is the bias of
the ith feature map in layer l. Hl−1 is the set of output feature
maps of layer l − 1, as the input of layer l. σ (x) = max(0, x)
is the activation function. ReLU is used as the activation
function since it is more efficient in gradient descent and
back propagation. In addition, ReLU function can avoid the
problem of gradient explosion and gradient disappearance.

Then we employ the output feature maps of convolution
layer as the input of pooling layer. The pooling layer can
reduce the dimension of features, compress the number of
data and parameters, reduce over-fitting, and improve the
fault tolerance of the model, also, it is invariant to distortions
on the inputs. There are two kinds of pooling functions:
max pooling function and mean pooling function. The max
pooling function is to take the maximum value of the local
region of the feature map, and the mean pooling function is
to take the mean value of the local region of the feature map.
The max pooling function is used in our approach, which is
given by

hl+1im = max
i∈H l
{hlim} (7)

where H l is the set of pooling feature map of layer l, and hlim
is themth pooling region in the ith feature map of layer l. hl+1im
is the mth value in the ith feature map of layer l.

We take all the feature images as the input x of
the fully-connected layer, then z = wx+ b is the out-
put of fully-connected layer, where w and b are the
weights and biases of the fully-connected layer, respec-
tively. Assuming that the number of reference tags is N , and
z = [z1, z2, . . . , zN ] is a 1× N row vector, we can obtain the
output probability p = [p1, p2, . . . , pN ]T , where

pi =
ezi

N∑
i=1

ezi
(8)

for i = 1, . . . ,N . Then p contains the probability distribution
of the test tags at the positions of N reference tags. Moreover,
the loss function is used tomeasure the difference between the
true location label and the CNN output p. By minimizing the
value of loss function with BP algorithm, we can update the
weights and biases with stochastic gradient descent method.
In the offline training stage, we use the cross-entropy loss
function to train the parameters of the neural network, which
is written as

Los = −
N∑
i=1

yi log pi (9)

where yi is the true label of the ith location of reference tags,
in which we use one-hot code for yi. The ith value of yi is 1,
and the other N − 1 values are 0.

The data training procedure for the CNN is shown in Fig. 4.
We construct RSSI and PDOA data images with size 32×32.
It is convenient for CNN to process images in its convolution
and pooling layers. For each input image in the first convolu-
tional and pooling layer, we employ 32 convolutional kernels
with size 5×5 to obtain the same number of feature maps
with size 28×28, which can extract different characteristics.
In order to solve gradient dissipation and accelerate conver-
gence, ReLU function is added between convolution layer
and pooling layer. To reduce training data and guarantee the
invariance of feature maps, the same number of feature maps
with size 14×14 is obtained by pooling with size 2×2. Then,
by implementing two more convolutional and pooling layers
as in Fig. 4, we obtain the output featuremap of the third pool-
ing layer and use it as the input of the full-connection layer.
Finally, we obtain a probability distribution vector with size
1×N from the output of full-connection layer using (8), and
then combine the label of training data, which can be used to
update the training weights such as the convolutional kernels
and bias based on the loss function of the BP algorithm.

C. LOCATION ESTIMATION
In the online testing stage, we collect the RSSI/PDOA
data of the test tags to generate the test images. The
test images are used as the input of CNN to obtain the
probability distribution p. We totally collect G images for
each test tags, and obtain a probability distribution matrix
P = [p1, p2, . . . , pG]T for each pi. To estimate the tag loca-
tions with high-accuracy, we propose a greedy method to
select K maximum probabilities and combine the discount
factor δ = [δ1, δ2, . . . , δK ] to compute a weighted average of
these pij, then combine the location of pij corresponding the
reference tag as the estimated location of the test tag, which
is given by

l̂ =
1
G

G∑
i=1

K∑
j=1

δjl
j
i

pij∑K
m=1 p

i
m

(10)

where l ji is the coordinate of the reference tag with respect
to pij, and δj is the jth discount factor. In the simulation,
we found that the reference point with higher probability is
more representative, so we set δ = [1, 0.2, 0.05, 0.05].

IV. ANALYSIS OF EXPERIMENTAL RESULT
A. EXPERIMENTAL ENVIRONMENT AND PARAMETER
SETTINGS
In the experiment, the simulation is completed by using
PyCharm2018.2 platform and Python3.6 on a computer with
CPU 8750H and GPU GTX1050Ti. We use the path-loss
model and phase-distancesmodel to simulate the RFID signal
propagation between the tag and the reader in the indoor
environment, and establish the offline fingerprint database.
A square plane with 12m×12m is considered and 8 read-
ers are selected for the positioning environment. As shown
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FIGURE 6. Layout of location scene for RFID readers and reference tags.

TABLE 1. Parameters of RFID system.

in Fig. 6, we select 49 reference tags distributed along uni-
form distance and label them {0, 1, 2, . . . , 48}, and assume
that the position coordinates of the reader and reference
tags are known. The parameters of the RFID system in the
experiment are listed in TABLE 1.

In this paper, we use the mean sum error E as the perfor-
mance metric of localization algorithms. Assume that the real
location of the test tag is (xi, yi) and the estimated location is
(x, y). The error E for T test tags is calculated as

E =
1
T

T∑
i=1

√
(xi − x)2 + (yi − y)2 (11)

In particular, to compare the positioning accuracy of RSSI
and PDOA, we design three datasets: RSSI dataset, PDOA
dataset, and joint RSSI/PDOA dataset. For the RSSI dataset,
we obtain the RSSI values of 8 readers at the ith tag according
to (1) by collecting 128 times and normalizing them using
(4). Then we use the 128×8 RSSI data to construct one image
with size 32×32. For the PDOA dataset, its collectionmethod
is the same with RSSI dataset. For the joint RSSI/PDOA
dataset, we acquire the RSSI and PDOA values of 8 readers at
the ith tag according to (1)(2) and (3) by collecting 64 times
and normalizing them using (5). Thenwe use the 64×16RSSI
and PDOA data to construct one image with size 32×32.
Fig. 7 shows the constructed fingerprint images associated
with 49 reference tags based on joint RSSI and PDOA data,

FIGURE 7. The constructed fingerprint images associated with
49 reference tags.

from which it can be observed that each image has its own
characteristics. In the experiment, we collect 25 images at
each reference tag for the training dataset, and two images
for the test dataset.

B. LOCALIZATION PERFORMANCE
Fig. 8 presents the training errors over the iterations of CNN
for the three different training datasets. We set the number
of training iterations to be 500 to guarantee the successful
training, and the training time is about 550s. For the RSSI
training dataset, the curves of training error and accuracy
begin to converge after 100 iterations, and finally reach about
3× 10−4 training error and 0.998 training accuracy after
500 iterations. For the PDOA training dataset, the curves of
training error and accuracy begin to converge after 80 iter-
ations, and finally reach about 1× 10−4 training error and
0.999 training accuracy after 500 iterations. For the joint
RSSI/PDOA training dataset, the curves of training error and
accuracy begin to converge after 40 iterations, and finally
reach about 4× 10−5 training error and 0.999 training accu-
racy after 500 iterations. From the three different training data
we can see that, the method with joint RSSI/PDOA training
data has the fastest converge velocities of training error and
accuracy, and its curves are more smoothly than the other
two training data. The reason is that abundant and distinct
fingerprint characteristics are exploited.

To validate the superiority of the proposed CNN-based
approach, we compare it with several other fingerprinting
location schemes such as LANDMARC [26], WKNN [20]
and DNN [40]. LANDMARC belongs to the machine learn-
ing methods, in which the location estimation is carried out
by selecting the reference tags nearest to the location tags.
WKNN calculates the weights corresponding to the K loca-
tions and performs a weighted average method as the esti-
mation result. DNN needs a mass of data to offline train as a
deep learning-basedmethod, inwhichmulti-hidden layers are
constructed and network parameters are optimized by using
BP algorithm. We randomly generate 50 test tags, and set
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FIGURE 8. Training errors and training accuracies over the iterations of CNN for three different training data: RSSI, PDOA, RSSI/PDOA.

TABLE 2. Mean error and execution time (RSSI).

TABLE 3. Mean error and execution time (PDOA).

TABLE 4. Mean error and execution time (Joint RSSI and PDOA).

σ 2
1 = 5 and σ 2

2 = 10. The performance of RFID localization
approaches using CNN, DNN, LANDMARC and WKNN
are compared under three different training and test datasets
including RSSI, PDOA, joint RSSI/PDOA, respectively. For
a fair comparison, the four approaches use the identical RSSI
and PDOA datasets.

TABLE 2-4 illustrates the comparison of mean error and
executive time using the CNN, DNN, LANDMARC and
WKNN based approaches for different datasets. For the RSSI
dataset, we can see from TABLE 2 that the CNN-based
approach can achieve a mean location error of 1.130m and
a standard deviation of 0.537m for the 50 test tags. For
the PDOA dataset, we find from TABLE 3 that its error is
lower than using the RSSI dataset due to the stronger linear
relationship between PDOAfingerprint and distance, thus the
CNN-based approach can obtain a mean error of 0.681m and
a standard deviation of 0.399m for the 50 test points. For the
joint RSSI/PDOA dataset, we observe from TABLE 4 that
the error of the CNN-based approach has further reduced due
to the abundance of fingerprint data, whose mean error and

standard deviation have decreased to 0.667m and 0.382m,
respectively. In addition, it can be seen that under differ-
ent fingerprints, the positioning accuracy of CNN is about
0.15m higher on average than that of DNN, and about 0.5m
higher on average than that of LANDMARC and WKNN.
Therefore, the CNN-based approach outperforms the other
schemes in indoor localization accuracy, and it performs
robustness for different locations with the smallest standard
deviation. In addition, to examine the computational com-
plexity, we compare the execution time of the CNN, DNN,
LANDMARC andWKNN based approaches. It is shown that
the average execution time of the CNN approach is about
27ms, which is larger than the contrast schemes. Neverthe-
less, it can satisfy the real-time requirement for most indoor
localization applications.

Fig. 9 shows the cumulative distribution function (CDF)
versus positioning error for different fingerprint positioning
schemes, including CNN, DNN, LANDMARC and WKNN.
We consider three different test datasets: RSSI, PDOA and
joint RSSI/PDOA.

In Fig. 9(a), the RSSI dataset is used with σ 2
1 = 5. It can

be seen that the CNN-based approach has significantly better
performance than the others, in which 75% of the test tags are
guaranteed to have an error under 1m. For DNN, only about
42% of the test tag errors are guaranteed to be within 1m,
and for LANDMARC and WKNN, only about 22% of the
test tags have an error within 1m. In addition, CNN and
DNN have approximate 95% of the test tag errors within 2m,
while LANDMARC and WKNN have the same test points
with mean error under 3m. Since the neural network-based
algorithms such as CNN and DNN can deeply learn data
features, their localization effect is more stable and reliable
than that of conventional approaches such as LANDMARC
and WKNN.

In Fig. 9(b), the PDOA dataset is used with σ 2
2 = 10.

We can see that in the complex indoor propagation environ-
ment, the CNN-based approach can achieve a 1m distance
error for over 80% of the test points, and almost all the tag
errors are guaranteed to be within 2 m, which is the most
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FIGURE 9. Comparison of cumulative distribution function of location error for different approaches under three test datasets. (a) RSSI; (b) PDOA;
(c) joint RSSI/PDOA.

FIGURE 10. Cumulative distribution function of location error for the
CNN-based approach under three different test datasets.

accurate among the four schemes. For LANDMARC and
WKNN, only 50% of the test points have a 1m distance
error. Since the CNN approach can explore two-dimensional
data information in comparison with DNN, it can achieve
higher accuracy even with a simple network structure. Also,
the phase information is more robust than amplitude since the
phase of the signal periodically changes over the propagation
distance, especially in cluttered propagation environment.
Therefore, the method using the PDOA dataset has better
location performance than using the RSSI dataset.

In Fig. 9(c), the joint RSSI/PDOA dataset is used with
σ 2
1 = 5 and σ 2

2 = 10. We can observe that with more abun-
dant RSSI and PDOA data information, the proposed CNN
approach can achieve about 90% of the test points with a
distance error under 1m. However, DNN has the same por-
tion of test points with error under 1.5m, and LANDMARC
and WKNN are with errors under about 1.8m. At the same
time, all the four algorithms can ensure the positioning error
within 2m, which indicates that rich fingerprint information
has improved the positioning accuracy.

Fig. 10 shows the CDF of location error of the CNN-based
approach under the three different test datasets. It indicates
that under the RSSI, PDOA and joint RSSI/PDOA datasets,
the CNN-based approach has approximate 90% of the test
points with mean location errors under 1.7m, 1.3m and 1m,
respectively. Therefore, the joint RSSI/PDOA dataset can

FIGURE 11. Location estimation results of four different approaches.

bring the highest accuracy among the three datasets since
richer fingerprint information can be provided. Compared
with the RSSI dataset, the positioning effect using the PDOA
dataset can be greatly improved. The reason is that the phase
of the signal periodically changes over the propagation dis-
tance, which is linearly related to distance. Thus, the relation-
ship between collected data and tag location is more obvious.
In comparison with the RSSI dataset in which the signal
amplitude is non-linearly related to distance, the use of the
PDOA dataset can achieve better positioning performance.

Fig. 11 intuitively illustrates the location estimation results
of the four different approaches. In the area of 12m×12m,
we randomly generate 10 test points and collect their RSSI
and PDOA data. The number of the 10 test tags is labeled
{0, 1, . . . , 9}. As seen from Fig. 11, the proposed CNN-based
algorithm outperforms all the other schemes (i.e., DNN,
LANDMARC, and WKNN) for most points. For the LAND-
MARC andWKNNmethods, the estimated positions of most
test points are far from the true values, and their positioning
effects are poor. Especially with regard to the eighth tag,
we can observe that due to the presence of noise, even if the
test tag falls into the reference tag position, they still have
large location errors, while CNN has an excellent positioning
effect. Moreover, for the neural network based algorithms
(i.e., CNN, DNN), the estimated locations of the test points
are close to their true values, while the CNN approach has
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FIGURE 12. Positioning error comparison of four different approaches
(10 test points).

smaller positioning error than the DNN approach, and its
location effect is outstanding.

Fig. 12 shows the comparison result of the positioning error
of the four different algorithms. We use the same 10 test tags
as in Fig. 11. It is shown from Fig. 12 that for almost all
the test tags, the positioning errors of the CNN and DNN
approaches are smaller than those of the LANDMARC and
WKNN methods. Specifically, the positioning errors of the
10 test tags using CNN are all below 1m, though there are
three test tags have higher positioning errors than DNN.
However, the positioning errors of only 4 points are below
1m for the LANDMARC andWKNN approaches. Also, their
stability of localization is obviously inferior to that of CNN.

C. IMPACT OF ALGORITHM PARAMETER AND
ENVIRONMENT VARIATION
Different parameters K and G in the positioning algorithm
will affect the positioning accuracy, thus we explore the
impact of K andG. In the experiment, assume that K changes
from 1 to 6 and G = 1, 2, 3. In addition, noise will affect
the relationship between the distance and fingerprint data
(i.e., RSSI, PDOA), so we investigate the impact of noise on
RSSI and PDOA characteristics via changing the noise vari-
ances in the path-loss model and the phase-distance model,
respectively. The noise variances σ 2

1 changes from 5 to 13 and
σ 2
2 from 10 to 120. We respectively collect the RSSI and

PDOA data of 50 test tags under different noise variances,
and compare the performance of location estimation of the
LANDMARC,WKNN, DNN and CNN algorithms. The root
mean square error (RMSE) of 50 test tags is calculated for
each algorithm.

Fig. 13 shows the positioning effect under different param-
eters K and G. We can see that when K gradually increases
from 1 to 4, the positioning effect becomes better and better.
In the three cases G = 1, 2, 3, the positioning errors when
K = 4 are 0.074m, 0.056m, 0.054m, respectively, which are
lower than that when K = 1. When K is greater than 4,
the positioning accuracy is hardly improved and tends to be
stable. Therefore, we usually set K = 4, which can improve
the positioning accuracy while save the running time.

FIGURE 13. Positioning effect under different K and G.

FIGURE 14. RMSE v.s σ2
1 for different approaches.

Taking K = 4 as an example, the positioning error when G
changes from 2 to 1 is reduced by 0.072m, and that when
G changes from 3 to 2 is reduced by 0.022m. It can be seen
that the increase of G can slightly improve the positioning
accuracy.

Fig. 14 shows the RMSE versus σ 2
1 for different

approaches. The experiment is performed using the RSSI
dataset. It can be seen that with the increase of σ 2

1 , the location
errors of LANDMARC and WKNN increase more rapidly
than CNN and DNN. Moreover, when σ 2

1 increases from
5 to 11, the increase of positioning errors for the CNN and
DNN approaches become slow. Also, when σ 2

1 increases from
5 to 13, the error of CNN only increases by 1.181m, while the
errors of DNN, WKNN and LANDMARC can increase by
1.233m, 1.568m and 1.634m, respectively. In the case of the
same noise variance σ 2

1 , the proposed CNN-based approach
performs better than other schemes, which indicates that it
has better robustness and is more suitable for complex indoor
environment.

Fig. 15 presents the RMSE versus σ 2
2 for different

approaches. The experiment is based on the PDOA dataset.
We can see that compared with the other three positioning
schemes, the proposed CNN-based approach can still achieve
excellent positioning results when the noise variance σ 2

2 is
large. With the increase of σ 2

2 , the location error of the
CNN approach increase slower than that of other schemes.
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FIGURE 15. RMSE v.s σ2
2 for different approaches.

Also, when σ 2
2 increases from 10 to 120, the error of CNN

only increases by 0.751m, while the errors of DNN, WKNN
and LANDMARC increase by 1.286m, 1.397m and 1.407m,
respectively. Moreover, Fig. 14 and Fig. 15 illustrate that
the positioning accuracy using the PDOA dataset has greatly
improved in comparison with using the RSSI dataset. The
position fingerprint of PDOA is more stable and superior than
RSSI when the environment becomes harsh, since PDOA has
better data characteristics due to its linear relationship with
distance.

V. CONCLUSION
In this paper, a deep CNN-based approach for passive RFID
tag localization is proposed by exploiting joint fingerprint
features of the RSSI and PDOA. The RSSI and PDOA data
are collected and normalized by arranging RFID readers and
tags. In the offline phase, the CNN with three convolution
layers and pooling layers is used to learn the characteristics of
the normalized data deeply, and the network parameters are
optimized using the BP algorithm. In the online test phase,
the trained CNNmodel are used to output the probability dis-
tribution of the test data, combined with a greedy method to
improve the accuracy. The positioning effect of the proposed
CNN-based approach is validated by three different types of
datasets. It is found that the PDOA dataset performs better
than the RSSI dataset, and the joint RSSI/PDOA dataset
performs the best in positioning effect. The experiments
show that the proposed deep learning-based approach is
superior to the traditional fingerprinting-based schemes and
more suitable for RFID tag localization in complex indoor
environment.
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