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ABSTRACT Ear-electroencephalography (ear-EEG) using electrodes placed above hairless areas around
ears is a convenient and comfortable method for signal recording in practical applications of steady-state
visual evoked potential (SSVEP) based brain-computer interface (BCI). However, due to the constraint
of electrode distribution behind the ear, the amplitude of SSVEP in ear-EEG signals is relatively low,
which hinders the application of ear-EEG in SSVEP-based BCI. This study was aimed to improve the
performance of ear-EEG in SSVEP-based BCI through re-implementing a compact convolutional neural
network (EEGNet) with ensemble learning. We first evaluated the feasibility of applying widely used
EEGNet models with different kernel numbers to decode SSVEP in ear-EEG signals. Then we applied
an ensemble learning strategy to combine EEGNet models with different kernel numbers to improve the
classification of ear-EEG signals. The ear-EEG data was from an open dataset, which acquired three sessions
of SSVEP data induced by three flicker stimuli from eleven subjects. The average accuracy of EEGNet with
ensemble learning for ear-EEG signals in cross-session validations at 1 s window length was 81.12% (from
session 1 to session 2) and 81.74% (from session 1 to session 3), which significantly outperformed canonical
correlation analysis (CCA). In addition, the network visualization indicated that EEGNet extracted features
related to stimulation frequencies. The results showed promise for accurate classification of SSVEP in ear-
EEG signals using deep learning models with strategies, helping to promote the SSVEP based BCI from
laboratory to practical application.

INDEX TERMS Brain-computer interface (BCI), convolutional neural network (CNN), ear-
electroencephalography (ear-EEG), steady-state visual evoked potential (SSVEP).

I. INTRODUCTION
Brain-computer interfaces (BCIs) are designed as a bridge
to construct direct communication between the brain and
external devices without relying on normal peripheral nerves
and muscle tissue [1]. Electroencephalography (EEG) is one
of the most widely used non-invasive methods in BCI for
its low cost, portability and high temporal resolution. Sev-
eral types of physiological paradigms are usually chosen to
generate the output commands of the EEG-based BCI, such
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as motor imagery (MI) [2], P300 [3], and steady-state visual
evoked potential (SSVEP) [4]. Among them, SSVEP has
gained a lot of attention in BCI for its characteristics of less
training, high classification accuracy and high information
transfer rates (ITR) [5]. Previous studies have shown that
SSVEP induced by periodic visual stimulus contains brain
responses in occipital cortex at the stimulation frequency and
its harmonic frequencies [6]. Therefore, SSVEP-based BCI
mostly acquired EEG signals from electrodes placed above
the occipital brain region (scalp-EEG), which often required
a long time of preparation leading to the inconvenience in
some application scenarios, such as lying patients. These
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limitations may hinder the promotion of SSVEP-based BCI
to practical applications.

Recently, several studies attempted to develop devices to
detect SSVEP based on the ear-EEG which acquired sig-
nals around ears or in the external ear canal. These devices
were easy to wear, and suitable for daily use with short
time required for preparation. Wang et al. were the first
to conduct offline and online experiments to evaluate the
feasibility of decoding SSVEP from hairless areas. They
recorded SSVEP signals both from the occipital brain region
and the non-hair-bearing areas including the face, behind-
ears, and neck areas [7], [8]. The results showed that SNRs
of SSVEP from high to low were from the occipital, behind-
the-ear, neck, and face areas, which illustrated the poten-
tial of using ear-EEG for SSVEP based BCI. Norton et al.
introduced a soft, curved electrode systems for long-term
BCI systems, which were able to adhere to the surface of
the auricle and the mastoid to measure ear-EEG signals [9].
They used a speller task based on SSVEP or P300 signals to
demonstrate the feasibility of the proposed electrode systems.
Kappel et al. developed dry-contact soft-earpiece electrodes
to realize long-term brain signal monitor in BCI. [10]. Ble-
ichner et al. proposed a wireless device cEEGrids to record
signals around ears [11]. They compared the classification
of ear-EEG and scalp-EEG signals acquired simultaneously
in spatial auditory attention task. The comparable results
indicated the feasibility of measuring event-related potentials
by ear-EEG. To improve the decoding accuracy, Kwak et al.
proposed an error correction regression method [12] which
utilized the scalp-EEG signals to enhance SSVEP in ear-EEG
signals. Their proposed method significantly outperformed
canonical correlation analysis (CCA) and other regression
methods on decoding SSVEP in ear-EEG signals.

As shown in previous studies, the amplitude of SSVEP in
ear-EEG signals is far less than that in scalp-EEG signals.
Moreover, owing to the non-stationarity and high individ-
ual variation of ear-EEG signals, traditional methods using
machine learning or statistical methods with fixed parameters
did not work well on ear-EEG signals which limited the
promotion of ear-EEG in BCI. Therefore, it is necessary to
improve the classification accuracy of ear-EEG signals.

In recent years, convolutional neural network (CNN) have
achieved satisfactory performance on computer vision and
speech recognition [13], [14]. Different from traditional
methods, CNN combined automatic feature extraction and
classification to form an end-to-end decoding method. Sev-
eral studies have applied CNN to enhance the performance
on classification of scalp-EEG signals. Cecotti was the first
to combined CNN and fast fourier transform (FFT) to decode
SSVEP signals without special pre-processing [15]. The aver-
age classification accuracy at 1 s window length was 95.61%.
To decode motion related information from EEG signals,
Schirrmeister et al. designed deep and shallow CNN and
implemented the visualization of brain mapping to verify
the potential of CNN [16]. To promote practical applications
of BCI, there were several studies used CNN to accurately

classify SSVEP acquired from dry-EEG headset or single-
channel electrode [17], [18]. For simulating real-life appli-
cation scenarios, Kwak et al. used CNN to classify SSVEP
acquired under static and ambulatory environment to evaluate
the accommodation of CNN for EEG movement artefacts
[19]. Podmore et al. proposed a deep convolutional neural
networks (DCNNs) architecture to classify an open source
SSVEP dataset which included 40 stimuli for speller task
[20]. The DCNNs achieved 87% offline accuracy at 6 s
window length. Waytowich et al. proposed EEGNet with
compact structure to accurately classify EEG signals from
different BCI paradigms [21], [22]. The average accuracy of
a 12-class SSVEP dataset at 1 s time segment was approx-
imately 80%, which outperformed CCA. Additionally, net-
work visualization illustrated the feasibility of implementing
asynchronous BCI with EEGNet. In total, previous studies
have demonstrated that CNN designed by appropriate net-
work architecture performed better than traditional methods
on classifying SSVEP in scalp-EEG signals.

In view of good performance of CNN on the classification
of scalp-EEG signals, it is worth trying to decode low SNR
SSVEP in ear-EEG signals with CNN. Considering that EEG-
Net with compact structure required fewer training weights
whichwas suitable for small labeled datasets, we attempted to
re-implement the proposed EEGNet [21] to classify SSVEP-
based BCI from ear-EEG. In [21], the EEGNet was designed
with fixed kernel numbers for all subjects. Due to the indi-
vidual variations between subjects, the fixed kernel number
might not be optimal for each subject. Therefore, we first
evaluated the performance of EEGNet with different kernel
numbers for each subject. Besides, considering that the weak
SSVEP in ear-EEG signals made it difficult to separate useful
information from background noise, we applied ensemble
learning strategy [23] which combined EEGNet with differ-
ent kernel numbers to improve the classification accuracy of
ear-EEG signals. The data we used were from an open dataset
[12]. To evaluate the feasibility of EEGNet to classify ear-
EEG signals, we applied intra-subject validation at 1 s win-
dow length and compared the performance of EEGNet with
ensemble learning and CCA. Additionally, we implemented
network visualization to interpret EEGNet in the process of
ear-EEG signals.

II. MATERIALS AND METHODS
A. DATA FOR CLASSIFICATION
An open dataset from [12] was used to evaluate the perfor-
mance of EEGNet on classifying SSVEP based BCI from ear-
EEG. In their experiments, eleven subjects were arranged to
sit in a comfortable chair in front of the screen at a distance
of approximately 60 cm, each of whom conducted two offline
sessions and one online session experiments at different days.
There were three stimuli flickered at 10, 8.75, and 7.5 Hz
on LCD screen. For the two offline sessions, scalp-EEG
signals and ear-EEG signals were recorded simultaneously
from two separate devices. Subjects were asked to attend
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FIGURE 1. The topography distribution of the ear-EEG electrodes.

to each stimulus 50 times at a random sequence for a total
of 150 trials. Each trial contained 2 s of cue, 6 s of flicker, and
2 s of rest. For the online session, only ear-EEG signals were
recorded for classification and feedback. Subjects were asked
to attend to each stimulus 20 times at a random sequence for a
total of 60 trials. Each trial contained 2 s of cue, 3 s of flicker,
and 2 s of rest. During the experiments, scalp-EEG signals
were recorded from BrainAmp with eight channels (PO7,
PO3, POz, PO4, PO8, O1, Oz, and O2) according to the Inter-
national 10-20 system. Ear-EEG signals were recorded from
a wireless device attached cEEGrid electrodes around each
ear. The electrodes included twenty channels, ten channels
around each ear as shown in Fig. 1. Two channels were used
as ground and reference, and the remaining eighteen channels
were used for data acquisition. The sampling frequency of
both devices was 500Hz. A band-pass filter at 0.3-50 Hz and a
60Hz notch filter were applied in the data acquisition process.

B. PREPROCESSING
The data of ear-EEG signals were first downsampled to
250Hz to reduce the input dimension. And then we applied
a 6-50 Hz bandpass filter to remain components related to
the stimulation frequencies and its harmonic frequencies and
to remove physiological and environmental noise. The band-
pass filtered data without other artifact correction preprocess-
ing were directly used to evaluate the performance of deep
learning model on classifying SSVEP in ear-EEG signals.

C. DATA AUGMENTATION
The data of flicker stage were segmented using a 1 s moving
window with a slide step of 100 ms for data augmentation.
The segmented data were then normalized between −1 and
+1 before using as the inputs of EEGNet models.

D. DEEP LEARNING MODEL
Due to the high amplitude of SSVEP from occipital cortex,
the CNN models consisted of two convolutional blocks were
enough to achieve good performance on classification of
scalp-EEG signals in previous studies [15], [24]. Given that
the relatively low amplitude of SSVEP in ear-EEG signals,
we re-implemented EEGNet [22] with three convolutional
blocks for classification and the kernel sizes were modified
according to the size of ear-EEG signals.

As shown in Fig. 2, EEGNet in the dotted box contained
three sequential convolutional blocks. The size of network

FIGURE 2. The architecture of the EEGNet with ensemble learning
strategy. EEGNet in the dotted box contained three convolutional layers,
the kernel size of which is set as (X, Y), representing the kernel size in
dimension of channel (X), and sample points (Y), respectively. The black
bold box represents a convolutional kernel. The specific kernel size of
each convolutional layer is shown in the box.

input was C× T, where C represented the number of channels
of the input signals and T indicated the number of sam-
pling points in the 1 s moving window. As for 1 s window
length with 250 Hz sample frequency, T was set as 250.The
black bold box represented a convolutional kernel. The first
block used traditional convolutional layer acted as temporal
filters. The second block applied depthwise convolutional
layer acted as spatial filters to integrate the information
of electrode locations, in which kernel size was set as (C,
1). The depthwise convolutional layer, which independently
extracted features from the outputs corresponding to each of
the previous convolutional kernels, required fewer training
weights, so it was able to further extract information without
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increasing the complexity of the network [13], [25]. The first
two convolutional blocks separately extracted temporal and
spatial features to avoid information mixing. The average
pooling layer was used to introduce invariance and reduce
redundancy [26]. Each pooling layer in EEGNetwas followed
by a dropout to avoid overfitting. After that, a separable
convolutional layer in the third block was designed to fur-
ther extract features from the temporal and spatial filtered
data. In the structure of EEGNet, batch normalization was
applied after each convolutional layer, which is conducive
to network convergence [27]. At last, the extracted features
passed through flatten, dense, and softmax layers to output
the final classification results.

E. ENSEMBLE LEARNING
Ensemble learning is based on building and combining
base models to improve the classification performance [23].
Through utilizing the diversity of base models, ensemble
learning is able to turn weak classifiers into strong classi-
fiers. Previous studies [21], [22] demonstrated the feasibility
of EEGNet to classify SSVEP based BCI from scalp-EEG.
In [21], they used a fixed kernel number in EEGNet for all
subjects. In the [20], they compared two EEGNet models
with two small kernel numbers and found no significant
difference in the performance of the twoEEGNetmodels. The
results were based on limited kernel numbers, and the kernel
number setting of EEGNet was still dependent on experience.
Therefore, we first evaluated a series of kernel numbers in the
training of EEGNet to form base models, and then combined
the trained EEGNet models through ensemble learning [23]
to improve the classification accuracy of ear-EEG signals.
The kernel number of base models in this study were set
to 12, 24, 48, 96, and 144. A small number of kernels may
not extract enough information but the network requires less
training weights. Large number of kernels can obtain more
information but may cause overfitting. We selected averaging
as the combining strategy to determine the final results of
ensemble learning.

F. INTRA-SUBJECT VALIDATION
Considering that each subject collected a total of 3 sessions
of SSVEP data on different days, we performed cross-session
validation for each subject, which trained the network based
on data of first session and used data of the second and the
third session to predict. The validation was able to evaluate
the robustness of the network, taking into account that the
acquired ear-EEG signals of the same subject on different
days might fluctuate due to the environmental noise, differ-
ences in device wearing and the concentration of the subject.

The network training process used 5-fold-cross-validation.
The data of the first session were divided into 5 parts in time
sequence. Each part was used as the validation set in turn
while the rest four parts were used to train the network. The
weights of network were trained specifically for each subject
considering the variance between subjects. The trained net-
work was used to predict the data of session 2 and session 3.

The final accuracy was obtained by averaging the results of
all trained networks in 5-fold-cross-validation.

III. EXPERIMENTS
In this paper, the inputs of EEGNet models ware divided
into training, validation, and test set. Among them, the test
set was only used to finally evaluate the performance of
network without participating in the training process, and the
validation set was applied to determine whether to perform
early stopping in the training process.

A. TRAINING PARAMETERS
We implemented the network design with keras framework
[28]. The same hyperparameters were used for the training
of all EEGNet models in this study. Specifically, the learn-
ing rate was set at 0.001, the batch size was 64, and the
dropout rate was 0.5. The optimization algorithm was Adam,
the activation function was exponential linear unit, and the
cross-entropy function was used as the loss function [29].
The network training used early stopping strategy. The max-
imum training epoch was set to 100. When the validation
loss of 10 consecutive epochs did not fall more than 0.001,
the training process would be stopped, and the trainedweights
with the lowest validation loss in training process would be
saved to predict the test set.

B. TRADITIONAL METHOD
This study adopted CCA [30] as the traditional method for
comparation, which has been widely applied in the classi-
fication of SSVEP based BCI. Based on the characteristics
of SSVEP, CCA method calculates the correlation between
test signals and predefined sinusoidal reference signals for
classification.

C. VISUALIZATION
We compared the mean amplitude spectrums and SNRs of
ear-EEG signals and scalp-EEG signals at each stimulation
frequency. Considering the time-locked and phase-locked
characteristics of SSVEP, we first averaged the 50 trials of
each stimulation frequency at each channel for each subject
in the first session to improve the SNR of SSVEP. And then
we conducted FFT to calculate the amplitude spectrums of
the averaged trials at each channel for each subject. The mean
amplitude spectrums y(f ) of ear-EEG and scalp-EEG signals
were obtained by averaging across the amplitude spectrums
of 18 and 8 channels for 11 subjects. The SNR of SSVEP
was obtained by dividing the amplitude at the stimulation
frequency by mean amplitude of 8 neighboring frequencies
using the mean amplitude spectrum as follows:

SNR = 20log10
4× y(f )∑4

k=1 [y (f − 0.25× k)+ y(f + 0.25× k)]

To verify whether the features extracted by the EEGNet
contained spectrum information related to stimulation fre-
quencies, we performed FFT and time-frequency analysis on
spatially and temporally filtered signals corresponding to all
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FIGURE 3. The classification results of EEGNet models with different
kernel numbers and ensemble learning for each subject at 1 s window
length in cross-session validations from session 1 to session 2 (a) and
session 3 (b).

kernels of the network. In addition, T-distributed Stochastic
Neighbor Embedding (t-SNE) [31] was used to reduce feature
dimensions of the inputs and outputs of each convolutional
layer to observe the separability of the data after the process
of EEGNet.

IV. RESULT
A. INTRA-SUBJECT VALIDATION
For intra-subject validation, since the data of each subject
were divided into training and validation sets for network
training and test set for classification, the network perfor-
mance was not affected by the variance between subjects.
We first trained EEGNet models with different kernel num-
bers, and then applied the ensemble learning to combine the
trained models.

Fig. 3 showed the accuracy of EEGNet models with dif-
ferent kernel numbers and the ensemble learning for each
subject at 1 s window length in the cross-session validation.
Fig. 3(a) showed the results of validation from session 1 to
session 2 and Fig. 3(b) showed the results of validation from
session 1 to session 3. As shown in Fig. 3, the optimal
kernel number of EEGNet was different for each subject.
The average classification accuracy of EEGNet models with
different kernel numbers and ensemble learning were shown
in Fig. 4. The results indicated that the classification accu-
racy was not always improved with the increase of kernel
number of EEGNet. For both sessioin 2 and session 3, when

FIGURE 4. The average classification results of EEGNet with different
kernel numbers and ensemble learning in cross-session validations from
session 1 to session 2 and session 3. The error bar indicated the standard
error. We used the Wilcoxon signed-rank test. ∗∗∗ indicated the p < 0.01. ∗

indicated the p < 0.05.

FIGURE 5. The classification results of CCA and EEGNet with ensemble
learning for each subject at 1 s window length in cross-session validation
of session 2 (a) and session 3 (b). The error bar indicated the standard
error. We used the Wilcoxon signed-rank test. ∗∗∗ indicated the p < 0.01.

the kernel number of EEGNet reached 24 and continued to
increase, the classification accuracy decreased instead. The
average results indicated that the performance of EEGNet
was sufficient for a small kernel number which is consistence
with [21]. The averaged accuracy of EEGNet with ensemble
learning in validation from session 1 to session 2 and session
3 at 1 s window length was 81.12% and 81.74%, respectively.
The results demonstrated that EEGNet with ensemble learn-
ing performed better than EEGNet with single kernel number
in Wilcoxon signed-rank test (p < 0.05).

We further compared the performance between EEG-
Net with ensemble learning and CCA method in Fig. 5.
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FIGURE 6. The classification accuracy of scalp-EEG signals using CCA and
EEGNet with ensemble learning for each subject at 1 s window length in
cross-session validation from session 1 to session 2. The error bar
indicated the standard error. We used the Wilcoxon signed-rank test. ∗∗∗

indicated the p < 0.01.

Specifically, Fig. 5(a) and Fig. 5(b) separately showed the
classification results of each subject and the average accuracy
in session 2 and session 3. We used the Wilcoxon signed-
rank test for statistical analysis. EEGNetwith ensemble learn-
ing significantly outperformed CCA method (p < 0.01).
The average accuracy at 1 s window length increased from
50.61% to 81.12% in session 2 and from 48.03% to 81.74%
in session 3. It was worth mentioning that the EEGNet with
ensemble learning achieved satisfactory classification results
at 1 s window length, which validated the potential of the
EEGNet to decode SSVEP in ear-EEG signals even at a short
time window.

We also evaluated the performance of EEGNetwith ensem-
ble learning using scalp-EEG signals of each subject at 1 s
window length in cross-session validation. The classification
results of scalp-EEG signals in session 2 were compared with
CCA method. As shown in Fig. 6, EEGNet with ensemble
learning also significantly performed better than CCA in the
classification of scalp-EEG signals.

B. VISUALIZATION
1) AMPLITUDE SPECTRUM ANALYSIS
As for the amplitude spectrum, the best comparison should be
between occipital and temporal EEG signals, but the temporal
EEG signals were not provided from the open dataset. Thus,
we attempted to compare the amplitude spectrums of ear-
EEG signals and scalp-EEG signals. Fig. 7 showed the mean
amplitude spectrums and SNRs of ear-EEG signals and scalp-
EEG signals for each stimulation frequency. Spectrum and
SNR of ear-EEG signals had peaks at stimulation frequencies
and its harmonics, but the amplitudes were smaller than that
of scalp-EEG signals.

To better interpret the EEGNet model, we attempted to
visualize the trained EEGNet using the data with best classifi-
cation results in intra-subject validation (Subject 6). To eval-
uate the feasibility of EEGNet to decode SSVEP at short
time window, we used the data from the first second of trials
in session 1 as input of the trained network. The kernels

FIGURE 7. The mean amplitude spectrums and SNRs of ear-EEG signals
and scalp-EEG signals for each stimulation frequency.

outputs of the second convolutional layer of the trained net-
work were extracted for FFT and time-frequency analysis.
The final results were obtained by averaging the trial results
of the same stimulation frequency. The results showed that
the kernel outputs contained information of the stimulation
frequencies. We selected the output of a kernel for each
stimulation frequency as shown in Fig. 8. The responses to
stimuli flickered at 10 Hz and 8.75 Hz had higher amplitude
than the response to stimulus flickered at 7.5 Hz. The results
demonstrated that EEGNet extracted the features related to
the stimulation frequencies in ear-EEG signals.

2) NETWORK VISUALIZATION
In order to evaluate the separability of ear-EEG signals
responded to different stimuli in the process of EEGNet,
we adopted t-SNE algorithm which reduced the features of
each trial to two dimensions. Then, scatter plot was used to
show the t-SNE results of all trails. Each point represented a
single trial, and color of the point corresponded to the label
of the trial, representing the stimulus type. The network used
for visualization is the trained EEGNet with kernel number
set to 24 in intra-subject validation with best classification
accuracy (Subject 6). We used the 1 s window length with a
slide step of 1 s of the training set in session 1 as the input of
network visualization. The sliding window segmented a trial
of 6 s into six trials.

Fig. 9(a) showed the t-SNE results of input signals. All
types of trials were almost mixed together, which was diffi-
cult to be separated by a simple linear discriminator. Fig. 9(b)
showed the results after the first convolutional layer. Com-
pared to the input signals, the points of the same type started
to gather, but there were still a lot of overlaps. Fig. 9(c) was
the results after the second convolutional layer. The same
type continued to aggregate, and the overlapping portion was
gradually reduced. Fig. 9(d) was the results after the third
convolutional layer. Different types of trials were able to
be distinguished from each other. Fig. 9(e) represented the
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FIGURE 8. The averaged FFT and time-frequency analysis of trials corresponding to each stimulation frequency from a kernel output of the second
convolutional layer of the trained EEGNet with kernel number set to 24. The input data were from the first second of trials in session 1 from Subject
6 who received best classification accuracy result.

FIGURE 9. The t-SNE results of inputs and outputs of the three
convolutional blocks of the trained EEGNet with kernel number set to
24 in intra-subject validation (Subject 6). We applied 1 s window length
with 1 s slide step for trials with 6 s duration in session 1 to form the
input signals. The subfigures represent the results of raw input (a),
the output of first convolutional block (b), the output of second
convolutional block (c), the output of third convolutional block (d). And
(e) represented the stimulus type 2 with trials labeled in six different
colors according to the sliding windows in time sequence.

stimulus type 2 which labeled the trials from each sliding
window in time sequence as six different colors. Trials from
the same sliding window tended to congregate which was
in consistency with [22], illustrating that EEGNet had the
ability to learn the phase information. As shown in Fig. 9,
the data after the process of EEGNet were clearly separated
into different stimulus types, indicating the effectiveness of
EEGNet for the classification of SSVEP in ear-EEG signals.

V. DISCUSSION
This study was the first attempt to implement deep learn-
ing models to improve the classification of SSVEP in ear-
EEG signals. Although ear-EEG signals are not measured
from the area with the strongest SSVEP response, ear-EEG
placed electrodes above the hairless area is selected due to its

convenience for long-term and real-time application. Consid-
ering that the SSVEP measured from hairless area was rela-
tively weak, we re-implemented the EEGNet for the ability of
end-to-end feature extraction and classification with compact
structure. We first evaluated the performance of EEGNet
with different kernel numbers, and then applied the ensem-
ble learning strategy which combined EEGNet models with
different kernel numbers to further improve the classification
of ear-EEG signals.

The dataset used in this study came from [12]. The authors
in [12] proposed an error correction regression framework
which took advantage of occipital EEG signals to artificially
enhance the response of SSVEP in ear-EEG signals, and the
processed signals were finally classified by CCA method.
The regression framework increased the classification accu-
racy of ear-EEG signals from 80.85% to 90.3% at 6 s time
window in validation from session 1 to session 2, whereas
the accuracy of ear-EEG signals at 1 s window length was
still below 60%. This study was aimed to improve the clas-
sification accuracy of ear-EEG signals at 1 s window length
to promote the practical application of SSVEP based BCI.
Given that previous studies implemented CNN models in
BCI and achieved high classification accuracy of scalp-EEG
signals, we attempted to re-implement the compact EEG-
Net to classify SSVEP in ear-EEG signals in cross-session
validation.

EEGNet is a compact CNN model which is suitable for
the auto feature extraction and classification of small labelled
dataset [21], [22]. In this study, we re-implemented EEGNet
with small modification according to the size of ear-EEG
dataset. Given that there were few studies focused on the
influence of kernel numbers on the deep learning models and
most studies set a fixed kernel number empirically for all
subjects, we first evaluated the performance of EEGNet with
different kernel numbers. As shown in Fig. 3, the optimal
kernel number of EEGNet was different for each subject due
to individual variation. Therefore, a fixed kernel number for
all subjects might ignore the variations between subjects.
Besides, the performance of a network with a single kernel
number for the classification of ear-EEG signals was not good
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TABLE 1. The classification accuracy of ear-EEG for all subjects in
validation from session 1 to session 2 at 1 s window length using EEGNet
with kernel number set to 24 and different kernel sizes.

enough as shown in Fig. 4. Considering that ensemble learn-
ing had the ability to improve the classification through the
combination of weak classifiers, we used the trained EEGNet
models with different kernel numbers as base models for
ensemble learning to utilize the diversity of different mod-
els. Fig. 4 showed that the average classification accuracy
of EEGNet with ensemble learning at 1 s window length
was above 80%, which was significantly higher than that
of EEGNet with single kernel number. We also compared
the performance of EEGNet with ensemble learning and
CCA method. Fig. 5 illustrated that EEGNet with ensemble
learning significantly outperformed traditional CCA method
which had been wildly used in the classification of SSVEP
in scalp-EEG signals.CCA used the correlation between the
test signals and the predefined reference signals for classifi-
cation, but due to ear-EEG signals had a low amplitude of
SSVEP as shown in Fig. 7, it may be difficult to accurately
decode SSEVP in ear-EEG signals just by calculating the
correlation. As for network visualization, the results shown
in Fig. 8 demonstrated that EEGNet extracted task-related
features. The separability of the data from different stimulus
types was progressively enhanced in the process of EEGNet
as shown in Fig. 9.

We also evaluated the influence of kernel size on the
performance of EEGNet. Table 1 showed the classification
results of ear-EEG signals for all subjects in validation from
session 1 to session 2 at 1 s window length using EEGNet
with kernel number set to 24 and different kernel sizes of the
first convolutional layer which acted as temporal filters.

The accuracy increased with the kernel size of EEG-
Net. Given the compact structure of EEGNet and the weak
response in data of 1 s window length, the larger the kernel
size, the more information can be learned and extracted from
the first convolutional layer. Considering the low amplitude

of SSVEP in ear-EEG signals, the temporal and spatial filters
were important for the feature extraction. Therefore, we chose
250 as the kernel size of all EEGNet models in this study.

Although the SSVEP in ear-EEG signals is relatively weak
as shown in Fig. 7, the results of cross-session validation
and network visualization validated the robustness and effec-
tiveness of EEGNet with ensemble learning to accurately
decode SSVEP in ear-EEG signals at a short window length.
Compared with traditional SSVEP based BCI which acquired
signals from electrodes placed above occipital brain region,
the measurement of ear-EEG signals from hairless areas can
simplify the preparation of BCI to improve the user experi-
ence and to promote the practical application of SSVEP based
BCI. Future research will focus on the detection of SSVEP
from other hairless areas, and explore the optimal distribution
of electrodes placed above hairless area. Besides, other deep
learning models and learning strategies will be applied in
online experiments to control external devices for practical
promotion.

VI. CONCLUSION
This study was the first attempt to implement the deep learn-
ing model to decode SSVEP in ear-EEG signals. We evalu-
ated the influence of kernel numbers on performance of EEG-
Net, and implemented ensemble learning to improve classi-
fication accuracy. We compared the EEGNet with ensemble
learning and CCA in cross-session validation. In addition,
we attempted to interpret the network by visualization. The
results showed that the average accuracy of EEGNet with
ensemble learning at 1 s time window was above 80%, which
demonstrated the ability of deep learning model to accurately
classify SSVEP from hairless areas. The good performance
of EEGNet with ensemble learning indicated the potential
of promoting SSVEP based BCI to practical application by
using ear-EEG.

ACKNOWLEDGMENT
The authors would like to thank Seong-Whan Lee and Vernon
J Lawhern for their open data and codes.

REFERENCES
[1] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland,

P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson,
and T. M. Vaughan, ‘‘Brain-computer interface technology: A review of
the first international meeting,’’ IEEE Trans. Rehabil. Eng., vol. 8, no. 2,
pp. 164–173, Jun. 2000.

[2] J. R. Wolpaw, D. J. McFarland, G. W. Neat, and C. A. Forneris, ‘‘An EEG-
based brain-computer interface for cursor control,’’ Electroencephalogr.
Clin. Neurophysiol., vol. 78, no. 3, pp. 252–259, Mar. 1991.

[3] L. A. Farwell and E. Donchin, ‘‘Talking off the top of your head: Toward
a mental prosthesis utilizing event-related brain potentials,’’ Electroen-
cephalogr. Clin. Neurophysiol., vol. 70, no. 6, pp. 510–523, Dec. 1988.

[4] M. Cheng, X. Gao, S. Gao, and D. Xu, ‘‘Design and implementation of a
brain-computer interface with high transfer rates,’’ IEEE Trans. Biomed.
Eng., vol. 49, no. 10, pp. 1181–1186, Oct. 2002.

[5] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and
T. M. Vaughan, ‘‘Brain–computer interfaces for communication and con-
trol,’’ Clin. Neurophysiol., vol. 113, no. 6, pp. 767–791, Jun. 2002.

[6] C. S. Herrmann, ‘‘Human EEG responses to 1–100 Hz flicker: Resonance
phenomena in visual cortex and their potential correlation to cognitive
phenomena,’’ Exp. Brain Res., vol. 137, nos. 3–4, pp. 346–353, 2001.

15302 VOLUME 9, 2021



Y. Zhu et al.: EEGNet With Ensemble Learning to Improve the Cross-Session Classification of SSVEP Based BCI From Ear-EEG

[7] Y.-T. Wang, Y. Wang, C.-K. Cheng, and T.-P. Jung, ‘‘Measuring steady-
state visual evoked potentials from non-hair-bearing areas,’’ in Proc. Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2012, pp. 1806–1809.

[8] Y. TeWang,M. Nakanishi, Y.Wang, C. S.Wei, C. K. Cheng, and T. P. Jung,
‘‘An online brain-computer interface based on SSVEPs measured from
non-hair-bearing areas,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25,
no. 1, pp. 14–21, Jan. 2017.

[9] J. J. S. Norton, D. S. Lee, J. W. Lee, and W. Lee, ‘‘Soft, curved electrode
systems capable of integration on the auricle as a persistent brain–computer
interface,’’ Proc. Nat. Academy Sci. USA, vol. 112, no. 13, pp. 3920–3925,
2015.

[10] S. L. Kappel, M. L. Rank, H. O. Toft, M. Andersen, and P. Kidmose, ‘‘Dry-
contact electrode ear-EEG,’’ IEEE Trans. Biomed. Eng., vol. 66, no. 1,
pp. 150–158, Jan. 2019.

[11] M. G. Bleichner, B. Mirkovic, and S. Debener, ‘‘Identifying auditory atten-
tion with ear-EEG: cEEGrid versus high-density cap-EEG comparison,’’
J. Neural Eng., vol. 13, no. 6, 2016, Art. no. 066004.

[12] N.-S. Kwak and S.-W. Lee, ‘‘Error correction regression framework for
enhancing the decoding accuracies of ear-EEG brain–computer inter-
faces,’’ IEEE Trans. Cybern., vol. 50, no. 8, pp. 3654–3667, Aug. 2020.

[13] A. G. Howard et al., ‘‘MobileNets: Efficient convolutional neural networks
for mobile vision applications,’’ 2017, arXiv:1704.04861. [Online]. Avail-
able: https://arxiv.org/abs/1704.04861

[14] A. Craik, Y. He, and J. L. Contreras-Vidal, ‘‘Deep learning for electroen-
cephalogram (EEG) classification tasks: A review,’’ J. Neural Eng., vol. 16,
no. 3, Jun. 2019, Art. no. 031001.

[15] H. Cecotti, ‘‘A time–frequency convolutional neural network for the offline
classification of steady-state visual evoked potential responses,’’ Pattern
Recognit. Lett., vol. 32, no. 8, pp. 1145–1153, 2011.

[16] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball,
‘‘Deep learning with convolutional neural networks for EEG decoding
and visualization,’’ Hum. Brain Mapping, vol. 38, no. 11, pp. 5391–5420,
Nov. 2017.

[17] T.-H. Nguyen and W.-Y. Chung, ‘‘A single-channel SSVEP-based BCI
speller using deep learning,’’ IEEE Access, vol. 7, pp. 1752–1763, 2019.

[18] N. K. Nik Aznan, S. Bonner, J. Connolly, N. AlMoubayed, and T. Breckon,
‘‘On the classification of SSVEP-based dry-EEG signals via convolutional
neural networks,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC),
Oct. 2018, pp. 3726–3731.

[19] N. S. Kwak, K. R. Müller, and S. W. Lee, ‘‘A convolutional neural network
for steady state visual evoked potential classification under ambulatory
environment,’’ PLoS One, vol. 12, no. 2, 2017, Art. no. e0172578.

[20] J. J. Podmore, T. P. Breckon, N. K. N. Aznan, and J. D. Connolly, ‘‘On the
relative contribution of deep convolutional neural networks for SSVEP-
based bio-signal decoding in BCI speller applications,’’ IEEE Trans. Neu-
ral Syst. Rehabil. Eng., vol. 27, no. 4, pp. 611–618, Apr. 2019.

[21] V. J. Lawhern, A. J. Solon, N. R.Waytowich, S.M.Gordon, C. P. Hung, and
B. J. Lance, ‘‘EEGNet: A compact convolutional neural network for EEG-
based brain–computer interfaces,’’ J. Neural Eng., vol. 15, no. 5, 2018,
Art. no. 056013.

[22] N. R.Waytowich, V. J. Lawhern, J. O. Garcia, and J. Cummings, ‘‘Compact
convolutional neural networks for classification of asynchronous steady-
state visual evoked potentials,’’ J. Neural Eng., vol. 15, no. 6, Mar. 2018,
Art. no. 066031.

[23] N. C. Oza, Online Ensemble Learning. Berkeley, CA, USA: Univ. of
California, Berkeley, 2001.

[24] X. Zhang, G. Xu, X. Mou, A. Ravi, M. Li, Y. Wang, and N. Jiang, ‘‘A
convolutional neural network for the detection of asynchronous steady state
motion visual evoked potential,’’ IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 27, no. 6, pp. 1303–1311, Jun. 2019.

[25] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1800–1807.

[26] O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya,
‘‘Deep learning for healthcare applications based on physiological sig-
nals: A review,’’ Comput. Methods Programs Biomed., vol. 161, pp. 1–13,
Jul. 2018.

[27] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf.
Mach. Learn. (ICML), vol. 1, 2015, pp. 448–456.

[28] F. Chollet. (2015). Keras. [Online]. Available: http//keras.io

[29] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and
J. Faubert, ‘‘Deep learning-based electroencephalography analysis: A sys-
tematic review,’’ J. Neural Eng., vol. 16, no. 5, Aug. 2019, Art. no. 051001.

[30] G. Bin, X. Gao, Z. Yan, B. Hong, and S. Gao, ‘‘An online multi-channel
SSVEP-based brain–computer interface using a canonical correlation anal-
ysis method,’’ J. Neural Eng., vol. 6, no. 4, Aug. 2009, Art. no. 046002.

[31] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

YUANLU ZHU received the B.S. degree in
biomedical engineering from South-Central Uni-
versity for Nationalities, Wuhan, China, in 2015.
She is currently pursuing the Ph.D. degree in
biomedical engineering with the Huazhong Uni-
versity of Science and Technology. Her research
interests include applications of hybrid brain-
computer interface (BCI) and biomedical signal
processing.

YING LI received the B.S. and M.S. degrees in
biomedical engineering from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2006 and 2009, respectively. Her research inter-
ests include hybrid brain-computer interface (BCI)
and biomedical signal processing.

JINLING LU received the Ph.D. degree in biomed-
ical engineering from the Huazhong University of
Science and Technology, in 2007. From 2008 to
2010, she worked as a Postdoctoral Researcher
with the Institute of Bioimaging, Singapore Sci-
ence and Technology Bureau. Since 2007, she
has been working with the Wuhan National Lab-
oratory for Optoelectronics, Huazhong University
of Science and Technology. Her research inter-
ests include optical molecular imaging and neural
engineering.

PENGCHENG LI received the Ph.D. degree in
biomedical engineering from the Huazhong Uni-
versity of Science and Technology, in 2003. Since
2003, he has been working with the School of Life
Science and Technology, School of Optoelectron-
ics, and the Wuhan National Laboratory for Opto-
electronics, Huazhong University of Science and
Technology. He is currently the Secretary General
of Biomedical Photonics Branch of the Chinese
Society of Biomedical Engineering. His research

interests include biomedical photonics and neural engineering.

VOLUME 9, 2021 15303


