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ABSTRACT The accurate and reproducible localization of cephalometric landmarks is an important
procedure for treatment planning and clinical practice in orthodontics andmaxillofacial surgery. In this paper,
we propose a new multistage cephalometric landmark localization method that exploits local appearances
and global characteristics simultaneously. To be precise, a convolutional neural network(CNN) is trained by
minimizing the sum of all landmark errors. Since landmarks are considered simultaneously, global hard/soft
tissue characteristics, as well as landmark relations, can be reflected in this stage. Then, we exploit local
appearances by using high-resolution cropped images. In this second stage, we train CNNs for individual
landmarks, respectively. Finally, we improve the localization performance of cephalometric landmarks
of the mandible with linear estimators. Experiments on ISBI2015 dataset have shown that the proposed
method outperforms conventional methods. Also, the proposed method allows us to evaluate confidence
(e.g., standard deviational ellipses) due to its probabilistic formulation.

INDEX TERMS Cephalometric landmark detection, cephalometry, dental radiography.

I. INTRODUCTION
Quantitative cephalometry is an essential step in orthodon-
tics and orthognathic surgery. The accurate localization of
cephalometric landmarks in lateral cephalograms allows us to
classify anatomic facial types and growth patterns, which is
crucial to the treatment planning and clinical practice. How-
ever, manual placements of landmarks are time-consuming
and often suffer from intra-examiner and inter-examiner dif-
ferences [1], [2]. Therefore, the demand for reliable and
reproducible automatic detection of cephalometric landmarks
has been increasing [3].

To this end, Wang et al. [4] presented a cephalometric
landmark detection benchmark (ISBI2015 dataset). In this
dataset [4], there are two kinds of landmarks: (a) anatomic
landmarks and (b) derived landmarks. The former landmarks
correspond to anatomic structures and the latter are defined
from neighboring anatomic structures. To localize both types
of landmarks, neighboring regions and characteristics of
related landmarks should be considered [5]. Cephalometric
landmarks can also be classified into bilateral and unilateral
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landmarks depending on whether they appear on both sides
or not [5]. Due to the bilateral nature and asymmetric growth
of mandible, it is common that the bilateral landmarks of
the mandible do not coincide in the lateral cephalograms [6].
Clinically, positions of bilateral landmarks are defined as the
mid-point of landmarks on both sides, however, their estima-
tion is difficult due to high inter-examiner and intra-examiner
variations [7]. Automated methods also suffer from inaccu-
rate localization [4]. Actually, the difficulty in the localization
of gonion (landmark 10, one of the bilateral landmarks of the
mandible) has been reported in [3], [8]. This is usually caused
by asymmetry of the mandible, and we need to consider
related anatomic structures for the accurate localization.

Like other cases of image-based tasks, deep learning
methods are providing ever-increasing performance on the
above mentioned benchmark. The CNN-based methods usu-
ally formulate the detection of cephalometric landmarks as
a regression problem that estimates pre-defined heatmaps
[9]–[13]. To be precise, CNNs are trained to predict
heatmaps rather than landmarks (i.e., heatmap regression),
since non-differentiable argmax operators are employed
to get landmarks from heatmaps [14]. In this approach,
the ground truth heatmap is determined in ad-hoc manners
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FIGURE 1. Overview of the proposed multistage probabilistic method. The global and local stages estimate probability density functions PG and PL of
landmark positions using global hard/soft tissue characteristics and local details of anatomical structures respectively. The landmarks positions from the
global stage (xG) and the local stage (xL) are given by the expectations (Expect.) of PG and PL. The refinement stage improves the positions of bilateral
landmarks of the mandible (xP

b ) with linear estimators (gb(·, ·)) using xG and xL.

and the probabilistic interpretation of predicted heatmap and
objective functions is not clear [8].

To alleviate these problems, we develop a new multi-
stage probabilistic approach. The proposed method trains the
positions of cephalometric landmarks by using the distance
measure between ground truth landmarks and estimated ones,
which is achieved by formulating neural network outputs as
the probability density functions of landmark locations as
in [14]. As illustrated in Fig. 1, we first estimate landmark
positions by training a CNN that yields the locations of all
landmarks from down-sampled input images [14], [15]. Since
we can consider whole images in this stage, the network
can learn global characteristics and landmark relations. Then,
we predict individual landmark positions using local but
high-resolution images (i.e., images are cropped based on the
estimation results of the first stage). Since we focus on local
appearances in this stage, we can train CNNs for individual
landmarks independently.

In the final stage, we address the challenges on bilateral
landmarks of the mandible. We can estimate the growth pat-
tern of cranium and mandible from cephalometric landmarks
(as in the clinical measurement methods for classifications of
anatomical facial types) [6], [16], [17]. Therefore, we believe
that other landmarks can be used to improve the localiza-
tion performance of bilateral landmarks of the mandible,
i.e., gonion (landmark 10) and articulare (landmark 19), and
develop a linear filter to exploit the information.

In the experiment, we show that our method achieves
state-of-the-art performance on the ISBI2015 benchmark [4].
Specifically, the proposedmethod achievesmean radial errors
of 1.12mm on Test1 and 1.41mm on Test2. Also, it shows

the best successful detection rate 77.16% and 84.74% for
2.0mm and 2.5mm thresholds in the Test2, respectively.
Also, we apply our detection results to clinical measurement
methods for the anatomic facial type classification, which
classifies anatomic facial types into several kinds, and obtain
the comparable results to existing methods. Since our method
is a probabilistic approach, we can have confidence regions
for each prediction (e.g., standard deviational ellipses) [18].

II. RELATED WORK
Numerous methods have been proposed to localize cephalo-
metric landmarks and it is beyond the scope of this paper to
review all these techniques. Rather, we focus on methods that
were published after the release of ISBI2015 dataset [4].

A. RANDOM FOREST-BASED APPROACH
The method of Lindner and Cootes [19] was based on the
random forest regression voting and constrained local mod-
els [20]–[23]. They first trained statistical shape models
by re-sampling target images in a standardized reference
frame. After the standardization of images, Haar features
were extracted with random displacements from annotated
landmark positions and random forest regressors were trained
to predict the most likely positions of landmarks. In the
test, trained regressors generate initial positions of landmarks
and multiple predictions are followed to vote for the final
landmark positions.

Ibragimov et al. [24] trained random forest regressors to
get posterior probabilities of landmark positions. The can-
didates for each landmark are given by the local maxima of
estimated posterior probabilities. They used a game-theoretic
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framework by considering landmarks as players, candidate
points as player strategies, and likelihoods as player payoffs.
The positions of landmarks are determined so as to maximize
the total payoff of all players. The whole estimation process
can be iterated for further improvement [25].

B. DEEP LEARNING-BASED APPROACH
The majority of deep learning based approaches formulated
the detection of the cephalometric landmarks as the heatmap
regression, where heatmaps are usually shaped with Gaussian
or Laplace distribution functions. From regressed heatmaps,
the estimation of landmark positions is obtained by applying
argmax operations.

Zhong et al. [26] used a two-stage approach. In the
first stage, they calculated coarse candidate positions in
down-sampled input images by using U-Net. In the second
stage, a set of U-Nets compute refined heatmaps of landmarks
using high-resolution patches around coarse estimations.
Lee et al. [8] attempted to use confidence maps in this two
stage approach. The first stage gives the rough estimates
of landmark positions using down-sampled input images.
Then, a set of Bayesian CNNs [27] estimate uncertainties
of points in the high-resolution patches. They proposed
Score Weighting Method that computes confidence scores
of each point and estimated landmark positions with a
confidence-weighted average. Multiple stages were used
in the work of Gilmour and Ray [28]. They constructed
multi-scale features by stacking the outputs of a trained CNN
for multiple scales. Then, multilayer perceptrons (MLPs)
are employed to predict landmark positions from multi-scale
features respectively. They iterated the same procedure for
10 times by using predictions from MLPs as new initial
positions.

The work of Qian et al. [11], called CephaNN, is based
on the multi-attention mechanism. The first part of CephaNN
computes two sets of features with a multi-headed structure.
Then, the attention weights are computed from features, and
the weighted features are concatenated to estimate heatmaps
for landmarks. CephaNN used bottleneck blocks [29] and
final landmark positions obtained by applying argmax oper-
ators to heatmaps. Oh et al. [13] attempted to improve
the attention mechanism by considering anatomic structures.
They argued that angles and distances between landmarks
reflect anatomical properties, and defined anatomical context
weight (ACW) as the sum of differences between predicted
landmarks and ground-truth. Then, an attentive U-Net [30]
is trained to minimize a weighted L2 loss between pre-
dicted heatmaps and ground-truth heatmaps by using ACW
as weight factors.

III. PROPOSED METHOD
As illustrated in Fig. 1, we first detect all landmarks with a
single network and refine individual landmarks using cropped
images in the second stage. This two-step approach allows
us to consider local details as well as their relations, and
works well for most landmarks as a result. However, there are
challenges in localizing bilateral landmarks of the mandible.

We address this problem by re-estimating these landmarks
using all current landmark estimates (obtained in the global
and local stages) [6], [31]. In this estimation, we use a
simple linear filter to avoid overfitting (due to the limited
number of training samples). Unlike conventional methods,
our estimation method is based on the probabilistic model-
ing of landmarks, which naturally enables the probabilistic
interpretation of the results.

A. GLOBAL STAGE
We estimate the landmark positions by training a CNN that
yields heatmaps (probability density functions) for all land-
marks. This stage is designed such that we can consider global
hard and soft tissue characteristics. To be precise, we train
this CNN to produce PG(·) from a down-scaled input image,
so that the estimated locations of landmarks are computed
with an expectation:

xGk =
∫

xPGk (x)dx ∈ <
2, (1)

where k is a landmark (channel) index, and we consider x
as a two-dimensional location vector [14], [15]. To learn the
global statistical relationship between landmarks, we train the
CNNby using a loss function considering all landmark errors:

LG =
N∑
k=1

‖xGk − xk‖22 , (2)

where xk is the ground-truth position of the k-th landmark
and N = 19 is the number of landmarks. The whole process
is differentiable and we can make the CNN produce all land-
mark locations at the same time.

B. LOCAL STAGE
From the previous step, we have estimations of landmark
positions. In the local stage, we refine them using the local
details of anatomical structures with a set of CNNs: Each
CNN yields one landmark using a high-resolution cropped
input image. To train a CNN that focuses on the local details
around each landmark, we generate training data by augment-
ing original training samples. Given the ground-truth annota-
tion of the k-th landmark, we build these training samples by
cropping square patches with random perturbations (Details
will be presented in the experimental section).

Similar to (1), the estimated position (xLk ) is given by an
expectation:

xLk =
∫

xPLk (x)dx ∈ <
2. (3)

and we use L2 loss in the training,

LLk = ‖x
L
k − xk‖22, (4)

Here, we focus on local details and each CNN is trained
independently. During the inference, a square patch whose
center is xGk and side length is s is cropped and fed into
a corresponding CNN, and the final landmark position is
estimated by (3). These results are used as final estimates
except for bilateral landmarks of the mandible.
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TABLE 1. Definitions and criteria of 8 clinical measurement methods for the anatomic facial type classification used in successful classification rate
(SCR). We use following abbreviations: MP = mandibular plane, PP = palatal plane, FH = Frankfort horizontal plane and FP = facial plane.

C. REFINEMENT STAGE
We further refine the positions of bilateral landmarks of
the mandible by applying linear filters to xG and xL . We
believe these points have information to estimate asymmetric
growth of the mandible and compensate its effect [16], [31].
One might think that using deep neural networks (DNNs)
is a desirable choice, because DNNs have more expres-
sive powers than simple linear filters. However, linear fil-
ters have intrinsic interpretability [33] and we have found
that they show the best validation errors, probably due to
the small number of training samples and the lack of valid
augmentation methods for this problem.

When we estimate the position of the b-th bilateral land-
mark of the mandible (xPb ), we train a linear estimator gb(·, ·):

xPb = gb(xG, xL) = [θx , θy]>xV (5)

where θx , θy ∈ <4N are trainable parameters and xV ∈ <4N

is a vectorized representation of xG and xL . To represent
bilateral landmarks of the mandible as the internal divisions
of landmark estimations xG and xL , we train gb(·, ·) by mini-
mizing

LPb = ‖x
P
b − xb‖22 (6)

under the constraints
N∑
k=1

θ ik = 1, θ ik ≥ 0 (7)

for i ∈ {x, y}. Intuitively, (7) can be considered a regulariza-
tion term.

IV. EXPERIMENTS
We evaluate the performance of our method on the
ISBI2015 dataset [4]. ISBI2015 dataset has 400 lateral
cephalograms: Training (150 images), Test1 (150 images),
and Test2 (100 images). We have used Test1 as the validation
set, Test2 as the test set as in [13]. In the dataset, each
image has a size of 2400 × 1935 with a spatial resolution

of 0.1mm in both directions. There are two sets of anno-
tations of N = 19 cephalometric landmarks: Annotations
are made by two experienced orthodontists. In evaluations,
the average points of annotations are used as ground-truth
positions [10], [11], [13].

A. EVALUATION METRICS
As presented in [4], we evaluate performance in terms of
mean radial error (MRE), successful detection rate (SDR),
and successful classification rate (SCR).

MRE and SDR for a set of sizeM are defined as

MRE =
1
NM

M∑
i=1

N∑
k=1

R(i, k), (8)

SDR =
1
NM

M∑
i=1

N∑
k=1

1{R(i, k) < τ }, (9)

respectively. Here R(i, k) is a radial error for the k-th land-
mark in the i-th image, 1{·} is an indicator function, and τ is
a reference threshold, whose typical values are 20 (2.0mm),
25 (2.5mm), 30 (3.5mm) and 40 (4.0mm). SCR is defined
as the average of diagonal entries of a confusion matrix,
where the confusion matrix is obtained by performing type
classification using (1) one of clinical measurement meth-
ods in Table 1, and (2) landmark positions provided by the
algorithm (e.g., our algorithm). Since 8 clinical measurement
methods for the anatomic facial type classification (i.e., ANB,
SNB, SNA, ODI, ADPI, FHI, FMA, and MW) are used
for the evaluation as summarized in Table 1, each landmark
localization method has 8 SCR values [4].

B. IMPLEMENTATION DETAILS
We have implemented the proposed method with PyTorch1

[37]. The architectures of neural networks are based on
DeepLabv3 [36].

1https://github.com/hjkwonispl/mpa
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TABLE 2. Comparison of mean radial error (MRE) and successful detection rate (SDR).

TABLE 3. Comparison of successful classification rate (SCR). Numbers are given in percents (%).

1) GLOBAL STAGE
The last convolution layer of a DeepLabv3 network is
modified to have 19 channels. Input images are resized to
720× 580 with bilinear interpolation. Images are augmented
by random rotations in [−25◦, 25◦], scaling in [0.9, 1.2] and
random variations of brightness, hue, contrast and saturation
in [0, 0.25]. We have used Adam optimizer with a learning
rate of 10−4 for 1, 500 epochs.

2) LOCAL STAGE
Since we train one network per each landmark, we modify
the last convolution layer of DeepLabv3 to have one channel
output. In the training, patches having a side length of 512
are cropped from perturbed ground-truth positions. Augmen-
tation schemes used in the global stage are also applied. All
networks are trained with Adam optimizer of a learning rate
of 10−4 for 50 epochs.

3) REFINEMENT STAGE
We trained the linear filter with Adam optimizer of a learning
rate 10−6 for 10 epochs.

C. COMPARISON WITH EXISTING METHODS
We compare the proposed method with conventional meth-
ods. Table 2 shows MRE and SDR values. As shown, our
method achieves the best MRE in Test1 and Test2. In terms
of SDR, the proposed method takes the first place when τ
is 2.0mm and 2.5mm, the second place when τ is 3.0mm
and the third place when τ is 4.0mm in the Test2. For Test1,
the method in [11] shows the best SDR for all thresholds,
however, our method follows their results when τ = 2.0mm,
which is a clinically acceptable error value in cephalometric
analysis [8]. Also note that Test1 is used as a validation set in
the experimental settings.

TABLE 4. Comparison of mean radial error (MRE) and successful decision
rate (SDR) for bilateral landmarks of the mandible on Test2 (test set).

SCR results are summarized in Table 3. The proposed
method shows the best and the second-best accuracies for 5
and 2 methods in Test1, respectively. For Test2, our method
achieves the best accuracy for 3, and the second-best result
for 2 methods. Since each measurement method has its own
anatomical meaning and clinical importance, there is no a
single comparison metric. However, results on SCR show
that the proposed method can be adopted in more measure-
ment methods for the anatomic facial types classification
than others. To evaluate the localization performance of bilat-
eral landmarks of the mandible, we also compare MRE and
SDR of gonion (landmark 10) and articulare (landmark 19)
with other methods. Table 4 shows that our method shows
improved performance to localize gonion. For the articulare,
our method shows the second-best result in MRE and SDR
when τ = 2.0mm.

Another advantage of our probabilistic approach is that
we can provide the confidence regions of predictions. This
property is important in treatment planning since clinicians
need to review and correct estimated landmark positions

21310 VOLUME 9, 2021



H. J. Kwon et al.: Multistage Probabilistic Approach for the Localization of Cephalometric Landmarks

FIGURE 2. Visualizations of estimated landmarks (red dot), their confidence regions (green ellipse), and ground-truth annotations
(blue dot) of samples from (a) Test1 and (b) Test2.

TABLE 5. Comparison of mean radial error (MRE) and successful decision rate (SDR) of the global stage with different networks.

FIGURE 3. Ablations of the boundary (m) of uniform distribution on [−m,m] with Test2 when the patch size (s) is 512:
(a) Comparison of successful decision rate (SDR) for different values of m when swing τ from 1.5 mm to 4.5 mm,
(b) Variations of SDR from averages for m is in [32, 192] when τ is 2.0 mm, 2.5 mm, 3.0 mm and 4.0 mm.

with confidence regions [8]. In Fig 2, we compute statis-
tical values from PG(·) and PL(·) for each landmark and
visualize confidence regions (standard deviational ellipses
of 3σ ) [18]. As shown, all ground-truth positions are located

around standard deviational ellipses except soft tissue pogo-
nion (landmark 16) of Test2. However, it is reported that the
soft tissue pogonion is annotated in a different way from
training set and Test1 [13].
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FIGURE 4. Ablations of patch size (s) on Test2 when the boundary (m) of uniform distribution on [−m,m] is 128:
(a) Comparison of successful decision rate (SDR) for different values of s when swing τ from 1.5 mm to 4.5 mm,
(b) Variations of SDR from averages for s is in [256,1536] when τ is 2.0 mm, 2.5 mm, 3.0 mm and 4.0 mm.

TABLE 6. Comparison of training loss (TL) and mean radial error (MRE) of
Test1 (validation set) and Test2 (test set) for the refinement stage for
linear filters (Linear), MLPs with two layers (MLP2) and three layers
(MLP3).

D. ABLATION STUDY
We also evaluate the contribution of each block. First,
we compare the performance of the global stage using other
backbone networks (FCN [35], UNet [34], and DeepLabv3
[36]). Table 5 shows that the DeepLabv3 achieves the best
performance in terms of MRE and SDR at τ = 2.0mm.
For the local networks, we evaluate the effects of data

augmentation in terms of SDR. Let us denote the patch size
s and crop box dislocations as (1x ,1y). When the ground
truth landmark is (px , py), we crop the patch whose center is
(px +1x , py +1y) and side length is s. First, we sample 1x
and1y from a uniform distribution in [−m,m], and compare
results for a range of m. Fig. 3 shows that local networks
achieve the best performance when m = 128 for s = 512.
We also evaluate SDR for s ∈ [256, 1536] when m = 128.
Fig. 4 shows that the best SDR is achieved when s = 512.
Note that a larger value of s does not always improve the
performance. We believe that this result justifies the global-
to-local approach in terms of performance besides memory
usages (compared with using very large inputs). CNNs can
work well when they are provided only necessary informa-
tion, i.e., proper local neighborhood areas, especially when
training samples are limited.

To validate the use of linear filters for the refinement stage,
we compare the training loss and MRE on Test1 and Test2
usingMLP of two and three layers. EachMLP has 256 hidden
units for all layers, and we trained them with the same inputs

FIGURE 5. Successful decision rate (SDR) comparison of bilateral
landmarks of the mandible. We plot SDR of global, local and refinement
stages on the Test2 for several τ values.

and loss functions used for linear filters. Table 6 shows that
linear filters give the best MRE on Test1 and Test2. Both
MLPs seem to be overfitted when compared to the results
of linear filter. This result shows that the use of linear filters
is a reasonable choice for our case (150 training data with
4N = 76 input dimension). Finally, we compare SDR of
bilateral landmarks of the mandible for three stages. Fig. 5
shows the proposed refinement method gives improved SDR
for all τ .

V. CONCLUSION
In this paper, we have presented a cephalometric landmark
localization method based on the multistage probabilistic
approach. The multistage method allows us to estimate
the positions of cephalometric landmarks using (1) global
hard/soft tissue characteristics and (2) local details of anatom-
ical structures. Also, this probabilistic framework provides
confidence regions for estimated landmarks. To handle the
asymmetries of anatomic structures in the mandible, we have
also developed linear estimators that use all landmark esti-
mations. Experiments on ISBI2015 dataset shows that our
method achieved state-of-the-art performances in terms of
mean radial error, successful detection rate, and anatomic
facial type classification accuracy.
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