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ABSTRACT Image matching is the research basis of many computer vision problems, such as intel-
ligent driving, object recognition and structure from motion. However, the traditional feature-based
image-matching results are usually very sparse and unevenly distributed for wide baseline or weakly textured
images. Implementing an efficient and robust image-matching technology is a challenging task. To solve
these problems, we propose an efficient extractor and binary descriptor based on superpixels and a modified
binary robust independent elementary features (BRIEF) descriptor called FSRB. FSRB can improve the
computational efficiency, number of matches, feature distribution and robustness of feature-based image
matching. In theory, FSRB is rotation-, scale-, affine-, distorted-, and intensity-invariant. A comprehensive
performance evaluation of FSRB is performed. The experimental results show that ourmethod can effectively
obtain many matches for different types of images. Compared with state-of-the-art algorithms, our method
performed very well in terms of the number of correct matches (which increased by 2-5 times), time
consumption, matching accuracy, matching success rate and feature repetition rate. In addition, our method
is applied to sparse 3D reconstruction of multiview images, and satisfactory results are obtained.

INDEX TERMS Feature extraction, matching, superpixel, binary descriptor, 3D reconstruction.

I. INTRODUCTION
Feature-based image matching is a fundamental problem
in computer vision and is widely used in image retrieval,
3D reconstruction, simultaneous localization and map-
ping (SLAM) and other fields. In this paper, we focus
on image matching for general indoor and outdoor scenes.
For current image-matching algorithms, such as Har-
ris and Stephens [1], maximally stable extremal regions
(MSER) [2], the scale-invariant feature transform (SIFT) [3],
and KAZE [4], the matching results are usually very sparse
and unevenly distributed, especially for wide baseline or
weakly textured images. However, sufficient and evenly dis-
tributed image-matching points can obtain more accurate
results for camera pose estimation, 3D reconstruction, and
pattern recognition [5].

To obtain sufficient and evenly distributed matching
results, we designed a superpixel-based feature extraction and
description method called FSRB. First, feature extraction is
performed using the cross edges of superpixels. Then, binary
descriptors are calculated using the intensity comparison of

The associate editor coordinating the review of this manuscript and

approving it for publication was Szidónia Lefkovits .

the local image. Finally, the local descriptor is deformed
to make it invariant to rotation and distortion by detecting
the two directions of the local image. The intersection point
represents the local maximum value of the image function
in multiple directions, thus giving a stable positioning. The
main advantage of thismethod over previous feature detectors
based on gradients and regions is that there is no need to set
any global thresholds.

A comprehensive performance evaluation of FSRB is per-
formed. Many actual image datasets were used to design
experiments, and 20,812 image pairs were constructed
for 31 types of publicly available datasets. The perfor-
mance of FSRB was compared with that of 26 main-
stream feature extraction and matching algorithms. The
experimental results show that our method can gener-
ate many uniformly distributed matching points, especially
for wide baseline or weakly textured images. In addition,
our method is applied to 3D reconstruction of multiview
images. The application of FSRB in multiview reconstruc-
tion shows that the number of reconstruction points has
increased over that of previous detectors by an order of
magnitude, thus improving scene coverage and reducing
errors.
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Overall, the contributions of this paper are as follows:
1. An image interest point detection method based on the

intersection of superpixel edges is designed. This method can
extract many robust interest points for image matching.

2. A local feature description method combining primary
and secondary directions is designed. The descriptor has a
certain rotation distortion invariance.

3. Many datasets are used for experiments, and our method
is compared with current mainstream algorithms. The advan-
tages and disadvantages of our algorithm and current main-
stream algorithms are discussed comprehensively.

The structure of the remainder of this paper is as fol-
lows: Section II provides a comprehensive review of current
feature-based image feature detection and description meth-
ods. Section III introduces the ideas and overall process of
our method in detail. Section IV uses many actual datasets for
experimental verification, compares our method with current
mainstream algorithms, and discusses the performance of our
method in detail. Section V uses multiview image datasets
to apply our method in 3D reconstruction and discusses the
results. Finally, Section VI summarizes this paper and future
work.

II. RELATED WORK
Traditional feature-based image-matching methods include
interest point detection, local image feature description, and
descriptor matching. For different stages, many scholars
have conducted much research over the years. In this paper,
we focus on the problems of interest point detection and local
image feature description, which are reviewed below.

A. INTEREST POINT DETECTION
Interest points are defined image points that have a defi-
nite and an obvious appearance. In general, the selection of
interest points should meet the following requirements [6]:
distinctness, invariance, stability, seldomness, and inter-
pretability. These requirements make interest points very
useful in applications such as feature-based image match-
ing and spatiotemporal analysis of image sequences. The
earliest interest point detection method was proposed by
Moravec [7]. Current research on interest point detection is
divided mainly according to four feature types [8]: gradient-
based features, template-based features, contour-based fea-
tures, and learning-based features, as shown in Table 1.

1) GRADIENT-BASED FEATURES
Most feature detection methods in the early literature were
based on gradient calculations, such as the Harris corner
detector [1] and Forstner corner detector [9]. However,
gradient-based interest point detection methods have the dis-
advantage of being sensitive to image noise. Therefore, for
interest point detection, many researchers have begun to use
Gaussian pyramids, such as Difference of Gaussians (DoG),
Laplacian of Gaussians (LoG), and Hessian-Laplacian [10].

In 2004, Lowe proposed SIFT [3], which uses DoG
pyramids and Hessian matrices to locate interest points.

TABLE 1. Interest point detection methods.

However, due to the complex design of SIFT, the computa-
tional cost is very high, and a series of improved algorithms
have been developed. SIFT-like methods can be divided into
two categories. One category concerns the study of how
to quickly and accurately calculate Hessian matrices. For
example, speeded up robust features (SURF) [11] uses the
box function to approximate the Hessian matrix, and dense
articulated real-time tracking (DART) [12] uses the piecewise
trigonometric function to approximate the Hessian matrix.
The other method is to improve the performance of the Gaus-
sian template, thereby readily causing double poles or double
edges. For example, the rank order Laplacian of Gaussian
(ROLG) [13] uses the hierarchical LoG filter to divide the
Gaussian template into two parts, thereby readily causing
the bipolar sidelobe to reach zero response. Rank-SIFT [14]
uses the ranking support vector machine (RankSVM) super-
vised learning method to screen stable SIFT points. In recent
years, some scholars have carried out research by using
nonlinear partial differential equations (PDEs) for interest
point detection. The wave-based detector (WADE) [15] uses
wave propagation to detect interest points. KAZE [4] uses
nonlinear diffusion filtering to detect interest points, but the
computational cost is very high. In response, Reference [16]
proposed an accelerated version of KAZE (AKAZE).

2) TEMPLATE-BASED FEATURES
The template-based methods detect interest points by com-
paring the intensity of the central pixel with the intensity of
surrounding pixels. The smallest univalue segment assimi-
lating nucleus (SUSAN) [17] compares the intensity of the
central pixel with all pixels in its circular neighborhood to
detect interest points. Features from the accelerated segment
test (FAST) compare the intensity of the central pixel only
with the intensity of the pixels on its neighboring ring, thereby
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greatly accelerating the speed of interest point detection [18].
Reference [19] implemented rotation-invariant FAST, and
Reference [20] implemented multiscale versions.

3) CONTOUR-BASED FEATURES
Contour-based features are generally defined as the local
extreme points of curvature on a contour line or the
intersections of multiple contour lines. Reference [21]
detected interest points by detecting local extreme points
of the curvature of an image contour in the scale space.
Reference [22] used structured tensor and image contour
information to achieve reliable interest point detection. Ref-
erence [23] adopted Gaussian kernel-based anisotropic direc-
tional derivative (ANDD) filters for contour detection to
reduce the influence of noise. Recently, References [24], [25]
introduced a feature detection algorithm based on image
segmentation, and the algorithm uses image segmentation
edge intersections as interest points for wide baseline image
matching. However, the image segmentation results produced
by this algorithm lack compactness and are vulnerable to
image contrast and shadow. Moreover, the algorithm does not
calculate the direction of features or focus much on image
distortion existing in wide baseline images.

A contour-based interest point detection algorithm relies
on the detection quality of image contours [26]. Thus, the
scale-space processing commonly used in the above algo-
rithms improves robustness and reduces accuracy. However,
image contours and special intersections are very determinis-
tic and more robust to viewpoint transformations [26], [27].

4) LEARNING-BASED FEATURES
In recent years, with the resurgence of machine learn-
ing, some learning-based methods have been proposed
for structure from motion (SfM), visual recognition and
other directions. Reference [28] developed FAST-enhanced
repeatability (FAST-ER) to improve the repeatability and
extraction speed of interest points. Reference [29] pro-
posed a learned invariant feature transform (LIFT) detector
and descriptor. Reference [30] used contextual information
of adjacent bits to implement robust interest point detec-
tion. Reference [31] implemented a binary online learned
feature detector and descriptor. However, none of these
learning-based algorithms consider wide baseline or weak
texture image matching.

B. LOCAL IMAGE FEATURE DESCRIPTION
Descriptors are usually formed by aggregating local image
features around interest points. Local image feature descrip-
tions can be classifiedmainly into two types [32]: handcrafted
descriptions and learning-based descriptions, as shown
in Table 2.

1) HAND-CRAFTED DESCRIPTION
Handcrafted feature descriptors are currently the most widely
used local image descriptors. The SIFT descriptor is cur-
rently the most popular local image feature descriptor.

TABLE 2. Local image feature description methods.

This descriptor has been used to derive a series of improved
algorithms, such as affine-SIFT (ASIFT [33]); RGB-SIFT,
HSV-SIFT [34]; and OpponentSIFT [35]. Reference [36]
extended the SIFT descriptor and proposed the gradient loca-
tion and orientation histogram (GLOH) descriptor, which
improved robustness and discrimination. Reference [37]
proposed DAISY descriptors for wide baseline stereo and
dense feature extraction. Reference [38] proposed the
rotation-invariant fast feature (RIFF) and used it for real-time
tracking and recognition. Reference [39] proposed a compact
real-time descriptor (CARD) consisting of a short binary code
that can be calculated very quickly. Reference [40] proposed
a method of image block description based on sparse quan-
tization. Reference [41] proposed a local image descriptor
based on a Zernike moment phase; this descriptor has strong
adaptability to illumination and geometric transformation.

The local binarymode is another way to describe the spatial
distribution of local images around interest points. The local
binary mode encodes the relative intensity values between
the central pixel and surrounding pixels. Reference [42]
proposed a basic local binary pattern (LBP) method for
rotation-invariant texture classification and derived a series
of improved algorithms. To improve the discrimination per-
formance of LBP descriptors, Reference [43] proposed a
complete LBP algorithm. Reference [44] proposed a local
ternary pattern (LTP) that extended the LBP to a three-valued
encoding mode. Reference [45] proposed a local four-domain
model for content-based image retrieval. Reference [46] pro-
posed a rotation-invariant local frequency descriptor (LFD)
for texture classification.

The independent binary intensity contrast descriptor uses
multiple independent pixel-to-pixel binary intensity contrasts
to form a binary string. References [47], [48] proposed
the binary robust independent elementary features (BRIEF)
descriptor. Reference [19] aimed to solve the problem that
BRIEF lacks rotational invariance by proposing an oriented
fast and rotated BRIEF (ORB) descriptor and used the greedy
search learning method to select a better location sample.
Reference [20] proposed the binary robust invariant scal-
able keypoints (BRISK) descriptor. Reference [49] proposed
the fast retina keypoint (FREAK) descriptor based on the
principle of human retinal image perception; the closer the
sampling position is to the center, the higher the density is.
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Reference [50] proposed a locally uniform comparison image
descriptor (LUCID).

2) LEARNING-BASED DESCRIPTION
Handcrafted descriptors are a difficult means of determining
the optimal parameter configuration, and designed descrip-
tors have difficulty achieving high certainty, invariance and
stability. In recent years, researchers have applied machine
learning methods to descriptor design. These methods have
become a popular topic in local descriptor research.

References [51], [52] proposed a unified local image
descriptor construction framework that decomposed the con-
struction of local descriptors into several modules. How-
ever, the joint optimization objective function used in this
method is prone to fall into local extremes. In response,
Reference [53] proposed a local descriptor learning method
based on convex optimization. Reference [54] proposed a
local descriptor learningmethod for low-dimensional boosted
gradient maps (LBGM). Reference [55] proposed the linear
discriminant analysis hash (LDAHash), which uses machine
learning to project and quantize high-dimensional descrip-
tors, such as SIFT, into binary string descriptors. Refer-
ence [56] proposed a binary descriptor learning method,
the discriminative BRIEF (D-BRIEF) descriptor. Refer-
ence [57] introduced a boost-based binary descriptor and
obtained good experimental results.

III. METHOD
The image color space is transformed, and the superpixel
extraction algorithm is used on multiple image scales to
obtain many uniformly distributed superpixel extraction
results. The superpixel edge intersections are used as the
detected interest points. On the corresponding scale, the pri-
mary and secondary directions of the interest point are cal-
culated; the two directions are used to rotate and deform the
local image; and then, the local binary descriptor is sampled.
This strategymakes the features have illumination invariance,
scale invariance, rotation invariance and deformation invari-
ance and thus can better address most of the actual image
matching.

A. SUPERPIXEL EXTRACTION
Superpixel algorithms group visually similar pixels to cre-
ate visually meaningful entities while dramatically reduc-
ing the number of primitives used in subsequent processing
steps [58]. The superpixel edge obtained by superpixel seg-
mentation is a natural ‘‘image content mutation’’ boundary.
Therefore, the intersections of multiple superpixels can be
used as natural candidate interest points. Determining how
to efficiently obtain accurate superpixel extraction results is
a problem that this paper needs to solve first.

Superpixel generation has been an important research
problem. Many classic algorithms have been proposed,
including FH [59], mean shift [60], and watershed [61]. How-
ever, the superpixel results extracted by these classic algo-
rithms lack compactness, especially when the image contrast

is poor or there are shadows. Reference [62] proposed the
simple linear iterative clustering (SLIC) method based on
linear clustering. Because of its high efficiency and good
performance, this method has been widely used. Recently,
Reference [63] proposed the fast linear iterative clustering
with active search (FLIC) algorithm, which reduces the over-
all number of iterations and improves the boundary sensitivity
of the superpixel extraction results. In particular, the lowest
time cost was reported for existing methods. Therefore, this
paper uses the FLIC algorithm for superpixel extraction to
efficiently obtain numerous candidate interest points with
uniform distribution. The following briefly introduces the
FLIC algorithm.

The FLIC algorithm is an improved version of the SLIC
algorithm. SLIC converts a color image into a 5-dimensional
feature vector in the LAB color space (which can better
express the natural scene) and XY coordinates. SLIC con-
structs a distance metric for the 5-dimensional feature vec-
tor, and finally performs local k-means clustering on the
image pixels. FLIC still uses a 5-dimensional feature vec-
tor for image pixel description and optimizes and improves
the local clustering of image pixels. FLIC considers only
the surrounding pixels to determine the label of the current
pixel. To provide better estimates of the superpixels, each
pixel proactively selects which superpixels it should belong
to. The pixel allocation step and update step in FLIC are
performed together. Therefore, the FLIC method needs only
a few iterations to converge well, thus greatly speeding up the
superpixel extraction.

A number of superpixels K and an input image
I = {Ii}Ni=1 are given, where N is the number of image
pixels. First, the image is converted from theRGB space to the
LAB color space to obtain the LAB value (li, ai, bi) of each
pixel. Then, the image is combined with the pixel coordinate
value (xi, yi), from which the 5-dimensional feature vector
Ii = (li, ai, bi, xi, yi) can be obtained. The distance metric
between pixels Ii and Ij is defined as

D(Ii, Ij)

=

√
(li−lj)2+(ai−aj)2+(bi−bj)2+m[(xi−xj)2+(yi−yj)2]

(1)

where m is the weight coefficient. Then, the distribution
principle for pixel Ii is

Li = argmin
Lj

D(Ii, SLj ), Ij ∈ Ai (2)

where Ai is the four-domain pixel of Ii and SLj is the super-
pixel center of pixel Ij. Then, a back-and-forth traversal sim-
ilar to PatchMatch [64] is used to simultaneously perform
the pixel allocation and update steps to quickly obtain the
superpixel segmentation results.

B. MULTISCALE DETECTOR
Superpixel extraction can quickly obtain many significant
pixel sets. The edge of the superpixel can clearly indicate the
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transformation of the image content and is the extreme point
of the local image area. The intersections of multiple edges
can be accurately located, are easy to identify, and have better
robustness under viewpoint changes. These attributes provide
good interest point detection results for image matching,
especially for wide baseline or weakly textured images. In
this way, the superpixel extraction algorithm can be used to
obtain the segmented edge intersections, thereby extracting
many uniformly distributed candidate interest points.

1) DETECTION
The superpixel extraction algorithm is used to divide the
image into several superpixel regions. Each superpixel region
is assigned a different label value. The intersection of multi-
ple superpixel segmentation lines is defined as a candidate
interest point. The image pixel and its label category within
the neighborhood n × n are checked. If there are multiple
(3 or more) superpixel category labels in the local area of
the image, the point is defined as a candidate interest point.
Through this screening strategy, many candidate interest
points with a relatively uniform distribution can be obtained.
The superpixel region is essentially a collection of similar
content in the image. The intersection point of the edge of the
superpixel is the local extreme point of the image. The interest
points thus obtained also have good repeatability, discrimina-
tion, and invariance of viewpoints, as shown in Figure 1.

FIGURE 1. Feature detection.

The two images on the left in Figure 1 are the original
wide baseline images to be matched, and the red points rep-
resent corresponding points. The two images on the right in
Figure 1 are the corresponding superpixel segmentation
results. The superpixel region is visualized with random
colors. The two partially enlarged images show the local
segmentation results of the corresponding points. The corre-
sponding points are the intersections of the edges of multi-
ple superpixel regions and can be detected, thus illustrating
the robustness of the method presented in this paper and
the repeatability of detecting interest points. The content
of the scene can also be indistinctly seen through the two
superpixel extraction results on the right. The overall object
contour can be correctly expressed, thus showing that the
superpixel-based algorithm can detect interest points with
obvious physical significance; this ability is very important
for wide baseline or extreme deformation image matching.

2) FILTERING
Many robust interest points can be obtained from the inter-
section of superpixel edges. To further screen out the robust
extreme points to improve the effectiveness of subsequent
matching, the interest points need to be selected and judged.

This approach is inspired by FAST feature detection algo-
rithms, which use a fast and effective extreme point filtering
strategy. For the candidate interest point, the superpixel seg-
mentation score of the point is compared with the segmen-
tation scores of the surrounding four neighborhood points.
If the candidate interest point values are less than or greater
than the four neighborhood values, the point is considered
a robust extreme point, and the point is retained; otherwise,
the point is discarded. The superpixel segmentation scores
of pixels are defined as the color distance between the pixel
point and the superpixel center of the candidate interest point;
that is,

S(Ii) =
√
(li − l0)2 + (ai − a0)2 + (bi − b0)2 (3)

where S(Ii) represents the superpixel segmentation score of
pixel Ii and (l0, a0, b0) represents the color center (color
average) of the superpixel where the candidate interest point
is located. Each color component of the LAB color gamut has
a clear physical meaning. Neighboring extreme point filtering
in the LAB color gamut can effectively eliminate nonrobust
points, thereby providing a more compact set of interest
points for subsequent feature description and matching and
improving the processing efficiency of the overall process.

FIGURE 2. Subpixel estimation of local extrema.

3) SUBPIXEL ESTIMATION
After obtaining the interest points, a subpixel-level position-
ing calculation is performed to further obtain accurate local
extreme points. Assume that the value at the point of interest
is p, the value on the left is pl , the value on the right is pr ,
and the true extreme point to be found is x, where −0.5 <
x < 0.5, as shown in Figure 2. Then, the local extreme point
is defined as the centroid of the points as follows [65]:

x =

∑
xipi∑
pi
=

pr − pl
p+ pr + pl

(4)

By using this simple but effective method to accurately
locate the x- and y-directions of interest points, subpixel-
level positioning results can be obtained to further improve
detection accuracy and provide a basis for subsequent
high-precision applications.

4) MULTISCALE DETECTION
To make the detected interest points have scale invariance,
a multiscale image pyramid is constructed, and interest
points are detected on different layers of images, as shown
in Figure 3. When constructing the pyramid in this paper,
the scale of the pyramid of layer i is defined as sci = 1

/
(sf )i,
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FIGURE 3. Pyramid structure.

where i = 0 is the original image and sf is the scale factor.
If we take sf = 1.2 and build a pyramid with 8 layers, the the-
oretical detection image scale is approximately 3.6 times,
thus being able to effectively cover common image scale
changes and provide a basis for robust matching of interest
points.

C. BINARY DESCRIPTOR
In this section, we first introduce the BRIEF feature descrip-
tor and then introduce two methods of calculating the local
image orientation to deform BRIEF to achieve rotation and
local deformation invariance of the descriptor.

1) BRIEF
BRIEF is a binary-coded descriptor. It uses a local image
gray value independent sampling binary test to establish
descriptors. This approach has a great speed advantage over
traditional local image gray histogram statistical methods to
establish descriptors. The calculation steps are as follows:
First, we perform Gaussian filtering to reduce noise interfer-
ence. Then, taking the interest point as the center, we take the
S × S neighborhood window to obtain the local image block
p. We randomly select a pair of points (x, y) in p and compare
the intensities of the pixel values of the points to obtain the
binary value τ as follows:

τ (p; x, y) =

{
1 p(x) < p(y)
0 p(x) ≥ p(y)

(5)

where p(x) and p(y) are the intensity values of the random
point pair x = (u1, v1) and y = (u2, v2), respectively.
We repeatedly select n pairs of random points to obtain a
binary vector of length n as follows:

fn(p) =
∑
1≤i≤n

2i−1τ (p; xi, yi) (6)

Reference [48] also tested multiple random point pair
selection methods. Among them, the Gaussian distribution
mode centered on the interest point exhibits the best per-
formance. However, the resulting binary descriptor does not
have rotational invariance or local deformation invariance.
Below, we introduce two local image orientation calcula-
tion methods to adapt the descriptor to a wider range of
image-matching situations.

2) FIRST DIRECTION DETERMINATION
For the first direction, the gray centroid method
recommended by the ORB descriptor was used for the

calculation [24]. The gray centroid method uses the local
image gray value to calculate the centroid and considers the
connection direction between the centroid and the center of
the interest point to be robust and can be used as a direction
vector, defined as follows:

mpq =
∑
x,y

xpyqI (x, y) (7)

The centroid of the local image is defined as

C1 =

(
m10

m00
,
m01

m00

)
(8)

The center of interest point O and its neighborhood image
block centroid C1 are used to construct a direction vector
EOC1. EOC1 is defined as the first direction and is characterized

as

θ1 = a tan 2(m01,m10) (9)

where a tan 2 is the quadrant version of arctan. This method
is shown in Figure 4.

FIGURE 4. First direction.

3) SECOND DIRECTION DETERMINATION
Based on the superpixel extraction results, we give the
method of defining the second direction of the interest point.
Assume that there are k superpixel regions in the neighbor-
hood of the interest point and calculate the gray centroid of
each superpixel region separately as follows:{

SC = {SC1, SC2, · · · SCn}

SCi = (xi, yi)
(10)

Take the average to obtain the superpixel average centroid
as follows:

C2 =


n∑
i=1

xi

n
,

n∑
i=1

yi

n

 (11)

The center of interest point O and its neighborhood image
superpixel average centroid C2 are used to construct a direc-
tion vector EOC2. EOC2 is defined as the second direction and
is characterized as

θ2 = a tan 2

(
n∑
i=1

xi,
n∑
i=1

yi

)
(12)

where a tan 2 is the quadrant version of arctan.
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4) ROTATION AND DEFORMATION
After obtaining the two directions, let θ ′ = θ2 − θ1 and
θ = θ ′ − θ ′%1θ , where 1θ is the angular interval value.
First, the first direction is rotated from θ1 to the 0◦ direction.
Then, the second direction is rotated to the direction of the
adjacent integer θ angle. After the rotation of the first direc-
tion, the descriptor can become rotation invariant. After the
rotation of the second direction, the local image is actually
deformed so that the resulting local descriptor is deformation
invariant, as shown in Figure 5.

FIGURE 5. Rotation and deformation.

In actual processing, the calculation of the overall rotation
and deformation in the primary and secondary directions
of the local image takes a relatively long time. To further
reduce the calculation time while keeping the local image
unchanged, only the binary contrast sampling coordinates are
transformed. Then, the transformed coordinates are used to
obtain the gray value of the original image for comparison.
This strategy is equivalent to transforming the image before
sampling and can greatly reduce the running time of descrip-
tor generation and improve the overall operation efficiency.

D. SUPERPIXEL-BASED LOCAL FEATURES
The overall process of the FSRB algorithm proposed in this
paper is shown in Figure 6. The extraction and description
strategy can be expressed as follows: (1) Generate an image
pyramid from the input image, perform superpixel extraction
on the multilayer pyramid image, and define the intersection
of the superpixel edges as a candidate interest point. (2) Per-
form extreme value filtering and subpixel precise positioning
of candidate interest points. (3) Calculate the primary and
secondary directions of candidate interest points, and trans-
form the sampling coordinates. (4) Finally, the pixel intensity
of the local image of the candidate interest point is used to
compare and generate binary descriptors. Our method has a
high degree of parallelization and can easily achieve parallel
optimization on a CPU or GPU to further improve processing
efficiency.

FIGURE 6. Overall processing flowchart.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASETS
Experiments were performed using 8 test sequences from
the Affine Covariant Features dataset [66], 20 test sequences
from the RGB-D dataset [67], [68], and 3 test sequences from
the ISPRS dataset [69]. In the 8 test sequences of the Affine
Covariant Features dataset, there are 6 types of changes in
imaging conditions: viewpoint changes, scale changes, image
blur, rotation changes, JPEG compression, and illumination
changes. Each test sequence contains 6 images with progres-
sive geometric or photometric transformations; all of these
images are of medium resolution. The RGB-D dataset is an
actual video dataset. Each test sequence has from several
hundred to thousands of images, including those showing
static objects, dynamic objects, rich textures, weak textures,
structured objects, unstructured objects, etc., which can fully
reflect the performance of feature extraction and match-
ing algorithms in practical applications. The ISPRS dataset
includes wide baseline image sets, including general indoor
and outdoor scenes. The image data have obvious changes
in viewpoint and relatively high image resolution, which can
effectively reflect the matching performance of the algorithm
for wide baseline images. A detailed description of the dataset
is shown in References [66]–[69].

B. SETUP
We combine current mainstream feature extraction and
description methods and design 27 methods for experimen-
tal comparative analysis; these methods include sift [3],
surf [11], orb [19], akaze [16], kaze [4], brisk [20], dlco [53],
latch [70], freak [49], daisy [37], binboost [54], lucid [50],
brief [47], [48], msd [71], star [72], fast [28], agast [73],
asift [33], mods [74], frif [75], harraff [76], hessaff [76],
mseraff [2], liop [77], [78], oiop [77], [78], miop [77], [78],
and fsrb (ours). The descriptor matching uses brute-force
matching based on the Hamming distance for binary
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descriptors and the Euclidean distance for floating-point
descriptors. After the initial matching, first, grid-based
motion statistics (GMS) [79] was used to remove the mis-
matches, and second, the fundamental matrix constraint ran-
dom sample consensus (RANSAC) [80] was used to remove
the mismatches. A comparison of the algorithm experimental
designs is shown in Table 3.

TABLE 3. Feature extraction and description methods.

In terms of matching performance evaluation, multiple
indicators are used for evaluation calculations; these indica-
tors include the number of matches, run time, matching accu-
racy, matching success rate, feature repetition rate, and scene
coverage. The number of matches is defined as the number
of matches ultimately obtained after GMS and RANSAC
purification. The run time is defined as the total time needed
to obtain the final matching point through feature extraction,
description and matching after loading the image into mem-
ory. The matching success rate is defined as the ratio of the
number of correct matches to the total number of matches.
The feature repetition rate is defined as the ratio of the number
of repeated interest points to the total number of interest
points extracted. Here, a repeated interest point is an interest
point extracted from image A and mapped onto image B
through the homography matrix. Within the error threshold,
if the interest point is also detected in image B, the interest
point is considered to be a repeated point. Scene coverage
refers to the degree of coverage and uniform distribution
of the final matches in the overall image and is determined
mainly by visual perception.

We use a variety of methods to identify correct match-
ing point pairs. For the Affine Covariant Features dataset,
the homography matrix between two images is known

and is used for the threshold decision. For the RGB-D
dataset, the camera matrix, rotation vector and transla-
tion vector are known, and the back-projection error is
used for the threshold decision. For the ISPRS dataset, the
accurate external parameters of the camera are unknown.
Here, the performance is evaluated by the total number of
matches.

In the experiments, the repeated point judgment threshold,
the homography matrix error judgment threshold, and the
triangulation back-projection error judgment threshold are all
set to ε = 3. RANSAC uses a fundamental matrix model with
a threshold of 3. GMS uses the default parameters. Feature
extraction and matching algorithms are implemented with
their default thresholds by using the OpenCV function or
source code published by the author. The numerical param-
eters in the ORB descriptor limit the maximum number of
features detected. For a fair comparison, we set this value
to 100,000 to remove the limitation. The feature descrip-
tor matching uses OpenCV to achieve CUDA-accelerated
brute-force matching. The number of image pyramid layers
in our method is set to 8, the scale factor is set to sf = 1.2,
and the angular interval is set to1θ = 15◦. The experimental
platform uses a dual Intel Xeon Gold 6140 CPU, an Nvidia
T4 GPU, and 160 GB of memory.

C. RESULTS
1) AFFINE COVARIANT FEATURES BENCHMARK DATASET
EXPERIMENTS
First, the Affine Covariant Features benchmark dataset is
used for the experimental evaluation. Image 1 in each
test sequence is sequentially formed with the remaining
images 2-6 to form image pairs for matching experiments.
As the number increases, the greater the difference is between
the corresponding image and image 1, and themore difficult it
is to match. This process can ably evaluate the characteristics
of viewpoint invariance, scale invariance, rotation invariance
and illumination invariance of the algorithm.

The specificmatching results of the proposed algorithm are
shown in Figure 7. The experimental results indicate that our
algorithm can better extract andmatchmanymatching points,
the matching point distribution is relatively uniform, and the
algorithm can achieve better scene coverage. The final result
is far better than the extraction matching results of the other
26 matching methods.

a: NUMBER OF MATCHES
The number of matches directly reflects the performance of
the matching algorithm. The greater the number of matches
that are ultimately obtained, the better the matching algo-
rithm. The horizontal axis represents the image pairs for each
test sequence, and the vertical axis represents the number of
matches that are ultimately obtained. From this, the trend of
the number of matches can be seen, as shown in Figure 8.
The horizontal axis numbers are 2 to 6, which indicate the
matching results between image 1 and images 2-6. From the
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FIGURE 7. Matching results.

FIGURE 8. Number of matches.

description of the dataset, as the number of image pairs
increases, it becomes more difficult to match image pairs and
extract rich feature matching points.

The experimental results in Figure 8 illustrate that the
overall matching curve shows a downward trend, which
accords with expectations. Overall, fsrb, orb, and asift show
goodmatching performance, and our method shows excellent

performance in all test sequences. Our method can extract
many matches in a variety of practical application scenarios,
such as viewpoint changes, scale changes, image blurs, rota-
tion changes, JPEG compression, and illumination changes,
and is far superior to the other feature descriptors. Compared
with the state-of-the-art methods (orb and asift), our method
can provide 3-7 times as many matching points.
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FIGURE 9. Error threshold and number of matches.

FIGURE 10. Statistics of matching accuracy.

b: MATCHING ACCURACY
Matching accuracy is an important indicator in the perfor-
mance evaluation ofmatching algorithms.Matching accuracy
reflects the independence, discrimination, and discriminative
power of the extracted feature points. The error threshold of
the projected image points is shown on the horizontal axis,
and the number of correct matches under the corresponding
threshold is shown on the vertical axis, as shown in Figure 9.
In the experiments, the projection error is incremented by
0.1 pixels, from 0-pixel error to 3-pixel error. The number
of matching points between images 1 and 2 under the cor-
responding error threshold in each test sequence is counted.
Figure 9 shows that under different error threshold con-
straints, the number of matches that our method can extract
is far better than the number of matches extracted by the
current mainstream algorithms. In Figure 9(g), the matching
error curve rises stepwise; this rise is determined by the char-
acteristics of the test image itself. The test sequence image
corresponding to Figure 9(g) is a JPEG compressed image.
Images 1 to 6 show an increasing mosaic effect, which results
in a steplike error-matching curve.

The statistical average matching error under the constraint
of a 1-pixel error threshold is shown in Figure 10. As shown
in Figure 10, the average matching error of our algorithm is
approximately 0.6 pixels, which is comparable to the overall
accuracy of current matching algorithms and is within the tol-
erable range of error. Of course, for applications that require
extremely high matching accuracy, our matching result can
be used as an initial value, and least-square matching [81] or
phase correlation matching [82] can be performed to achieve
high-precision matching results.

c: MATCHING SUCCESS RATE
The matching success rate is a quantitative evaluation of
the performance of the matching algorithm under a specific
matching accuracy. The matching results of images 1 and 2
in each test sequence are taken for statistics, with the num-
ber of matches being shown on the horizontal axis and the
matching success rate being shown on the vertical axis,
as shown in Figure 11. The closer to the upper-right corner
in Figure 11, the better the matching algorithm performance
is. Figure 11 shows that the success rate of our algorithm
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FIGURE 11. Number of matches and success rate.

FIGURE 12. Running time.

is comparable to that of current mainstream matching algo-
rithms. However, the number of matches is far greater than
that of current mainstream matching algorithms.

d: RUNNING TIME
The running time directly represents the computational com-
plexity of the matching algorithm. The matching results of
images 1 and 2 in each test sequence are taken for statistics.
The time consumption of each matching algorithm under the
corresponding test image sequence is calculated, as shown
in Figure 12. The overall time consumption of the algorithm
presented in this paper is on the order of seconds and is at a
medium level; this result is better than the time consumption
of wide baseline matching algorithms, such as asift, mods,
harraff, mseraff, liop, oiop, and miop.

The statistics of the number of matches indicate that the
total number of matches obtained by our algorithm is much
higher than that of the other matching algorithms, thus result-
ing in a large time consumption. The number of matches is
divided by the matching time to obtain the calculation speed
of the matching algorithm. The overall efficiencies of the

matching algorithms can be compared fairly. The horizon-
tal axis represents the test sequence category and matching
algorithm, and the vertical axis represents the running effi-
ciency. The statistical results are shown in Figure 13. The orb
algorithm has the highest running efficiency, followed by the
efficiencies of our algorithm, surf and the akaze algorithm.
The running efficiency of our algorithm is better than the
running efficiency of most of the mainstream algorithms and
can meet the needs of general scenarios.

e: FEATURE REPETITION RATE
The feature repetition rate characterizes the repeatability
of features and can directly explain the quality of feature
extraction algorithms. The matching results of images 1 and
2 in each test sequence are taken for statistics. The hori-
zontal axis represents the test sequence category and fea-
ture extraction algorithm, and the vertical axis represents
the feature repetition rate. The statistical results are shown
in Figure 14. The feature repetition rate obtained by our
algorithm is optimal in all test sequences; this rate is followed
by the feature repetition rates of the orb, brisk, fast, and agast
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FIGURE 13. Matching efficiency.

FIGURE 14. Feature repetition rate.

extraction algorithms. This result also shows that features
based on the intersection of superpixel edges can implement
feature repetition well.

The results obtained by the overall experiments on the
AffineCovariant Features dataset show that our algorithm can
extract many interest points that have excellent scene cover-
age and an excellent repetition rate. The matching results are
far superior to those of the current algorithms, and the match-
ing accuracy and matching efficiency of our algorithm are
comparable to those of current mainstream algorithms. Our
algorithm can also perform well with two wide baseline test
sequences of ‘‘graf’’ and ‘‘wall’’; has excellent performance
in viewpoint changes, scale changes, rotation changes, and
illumination changes; and can better address image matching
in various practical situations.

2) RGB-D BENCHMARK DATASET EXPERIMENTS
The 15 images of each test sequence from the RGB-D
benchmark dataset are compiled into a group, and the first
image in the group is matched with each of the remaining
14 images in turn. As the image number increases, the greater
the differences are between the corresponding image content
and the first image content, and the harder it is to achieve
matching. The RGB-D benchmark test data contain 20 test
sequences, and 20750 pairs of images were constructed for
experiments. Many experiments on actual image data with

different contents can better verify the robustness of the
matching algorithm.

The specific matching results of the proposed algorithm
are shown in Figure 7. The experimental results show that
our algorithm can obtain many matching points. The points
are relatively evenly distributed, and compared to the other
26 matching algorithms in actual experiments, our algorithm
can achieve better scene coverage in various scenarios. The
experimental results show that for weakly textured or notex-
ture images, ‘‘cabinet’’, ‘‘large cabinet’’, ‘‘nostructure notex-
ture far’’, ‘‘nostructure notexture near withloop’’, ‘‘structure
notexture far’’, and ‘‘structure notexture near’’, the algorithm
presented in this paper can effectively extract features through
superpixel segmentation in the domain of the LAB color
space and obtain good matching results for weakly textured
or notexture images.

The number of final correct matches for each test sequence
is counted for comparative analysis. The 14 pairs of images
constructed in each group are shown on the horizontal axis,
and the number of correct matches is shown on the ver-
tical axis. The statistical average is shown in Figure 15.
In Figure 15, the subfigures from (a) to (t) represent the
corresponding 20 test sequences from 1 to 20. As the number
of image pairs increases, the baseline between image pairs
gradually increases, the differences in image content gradu-
ally increase, and the number of matching points decreases.
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FIGURE 15. Comparison of the number of correct matches.

Figure 15 shows that the number of correct matching points
extracted by our algorithm is far superior to that of the other
algorithms; the second- and third-highest numbers of cor-
rect matches were obtained by the asift and orb algorithms,
respectively. For the RGB-D dataset, the number of correct
matches obtained by our algorithm is generally approxi-
mately 2-5 times higher than the number of correct matches
obtained by the state-of-the-art algorithms. Especially for
weakly textured regions, a sufficient number of matching
points can be extracted.

The average number of correct matches obtained by each
matching algorithm under each test sequence is averaged
for statistics, as shown in Figure 16. The corresponding
matching success rates are obtained, as shown in Figure 17.
In Figure 16, the horizontal axis represents the corresponding
20 test sequences from 1 to 20, and the vertical axis represents
the corresponding matching method. In the figure, the colors
from blue to red indicate that the number of correct matches
varies from few to most, respectively, and black indicates
that the number of correct matches is zero. Figure 16 also
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FIGURE 16. Number of correct matches.

FIGURE 17. Matching success rate.

shows that compared to other algorithms, our algorithm can
extract many matching points. Similarly, the horizontal axis
in Figure 17 represents the corresponding 20 test sequences,
and the vertical axis represents the corresponding 27 match-
ing algorithms. In the figure, the colors from blue to red indi-
cate matching success rates from low to high, respectively,
and black indicates that the matching success rate is zero. The
success rate of our algorithm is comparable to the success
rate of mainstream algorithms and is far superior in weakly
textured regions (test sequences 4, 5, 12, and 13). Among
these algorithms, mseraff, harraff, frif, and lucid perform
significantly worse than the other matching algorithms.

As in the case of the Affine Covariant Features dataset,
the matching efficiencies of different feature extraction and
matching methods under each test sequence in the RGB-D
dataset are calculated. Using the horizontal axis as the match-
ing test sequence and the vertical axis as the matching effi-
ciency, the matching efficiency curve is drawn, as shown
in Figure 18. Followed by our algorithm, the orb algorithm
has the best matching efficiency. In the weak texture test
sequences 4, 5, 12, and 13, the efficiency of our algorithm
is much better than that of the mainstream algorithms.

The overall experiments on the RGB-D dataset show that
in the matching of many actual constructed image pairs

FIGURE 18. Matching efficiency.

showing, for example, static objects, dynamic objects, rich
textures, weak textures, structured objects, and unstructured
objects, our algorithm can correctly match many matching
points. In the experiments, for the weakly textured regions
that the current mainstream algorithms cannot handle, our
algorithm can also match many correct points because the
superpixel algorithm presented in this paper operates in the
LAB color space and can capture very small detail changes.
Thus, our algorithm can detect many interest points in weakly
textured areas.

3) ISPRS WIDE BASELINE BENCHMARK
DATASET EXPERIMENTS
Experiments were performed using a wide baseline dataset
published by ISPRS, and the matching experimental results
are shown in Figure 7. Figure 7(3-1), 7(3-2), and 7(3-3)
present the matching results of our algorithm; these results
are obtained by connecting the matching points of two adja-
cent images. Figure 7 shows that for all test sequences,
the algorithm presented in this paper can obtain many correct
matching points, and the matching results have good scene
coverage. The second and third images in Figure 7(3-2) and
the second and third images in Figure 7(3-3) are relatively
extremely wide baseline image pairs. The corresponding
matching results show that our algorithm can still obtain
many matching points for these extremely wide baseline
situations.

The numbers of final matching points of different
matching algorithms under each test sequence are cal-
culated. The statistical results are shown in Figure 19.
In Figure 19, (a) presents the statistical results of the ‘‘indoor’’
test sequence, (b) presents the statistical results of the ‘‘old
building’’ test sequence, and (c) presents the statistical results
of the ‘‘florence’’ test sequence. In each subfigure, the hor-
izontal axis represents a matched image pair, where ‘‘i-j’’
means that the ‘‘i’’-th image matches the ‘‘j’’-th image,
and the vertical axis represents the different matching meth-
ods. The colors from blue to red indicate the number of
final matches from least to most, respectively, and black
indicates that the number of final matches is less than 20.
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FIGURE 19. Number of matches.

Figure 19 shows that our algorithm can maintain good perfor-
mance for different test sequences and many matching points
are obtained.

For the ‘‘old building’’ test sequence, the ‘‘1-3’’, ‘‘1-4’’,
and ‘‘2-3’’ image pairs are all clearly wide baseline image
pairs. Compared with the other algorithms, our algorithm
can obtain many matches. For the ‘‘florence’’ test sequence,
there are very clear illumination and viewpoint changes

between the image pairs. Compared with the other main-
stream algorithms, our algorithm can still obtain relatively
many matching points. The ‘‘1-4’’ image pairs constructed
in the ‘‘florence’’ test sequence are shots of the two sides
of the building at different angles, and there is actually no
content overlap. However, our algorithm, fast, kaze and other
algorithms still obtain matches because the local building
structure on the two sides of the building is basically the same.
These ‘‘mismatches’’ instead show the effectiveness of the
proposed feature extraction and description algorithm, which
can effectively match the same building structure. Some
scholars have conducted in-depth research on the problem of
‘‘mismatches’’ between images of the same building struc-
ture [83], which can be avoided by implementing carefully
designed postprocessing strategies. This problem is not the
focus of this paper and will not be discussed further.

The ISPRS experiments show that the algorithm proposed
in this paper can effectively address wide baseline matching
problems in general indoor and outdoor scenes. For general
wide baseline image pair matching, our algorithm is superior
to current mainstream algorithms and can obtain a sufficient
number of matching points.

V. APPLICATIONS
A sparse 3D reconstruction experiment was performed using
a multiview image dataset to verify the performance of the
proposed algorithm in practical applications. Experiments
were performed using two public multiview image datasets:
‘‘fountain’’ and ‘‘herzjesu’’ [84]. The fountain dataset con-
tains 11 multiview images, and the herzjesu dataset contains
8 multiview images. The images in each dataset used the
same camera to shoot around the same target. The image
content is rich in texture, and the viewpoint changes between
adjacent images are appropriate. All images in each dataset
are matched pair by pair, and the matching points are input
to Theia [85] for sparse 3D reconstruction. The global SfM
method is used for sparse 3D reconstruction, and the 3D
reconstruction parameters are set using the default parameters
recommended by Theia. In the image matching, step, sift,
asift, orb, and our algorithm are used for image matching.
The matching parameter settings are the same as before. The
final sparse 3D reconstruction results for the two datasets are
shown in Figures 20 and 21.

In Figures 20 and 21, (a), (b), (c), and (d) present the
matching and 3D reconstruction results of sift, asift, orb, and
our algorithm, respectively. The left of each subfigure shows
the matrix of the number of matches between the images,
and the horizontal and vertical axes represent the image
serial numbers. The corresponding values are the numbers
of matches between image pairs, and the colors from blue to
red indicate the numbers from least to most, respectively. The
right side of each subfigure shows the results of the sparse 3D
reconstruction.

As shown in Figures 20 and 21, our algorithm can obtain
many image-matching points. The algorithms that obtained
the three next highest number of points are asift, orb, and sift.
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FIGURE 20. Sparse 3D reconstruction results for the fountain dataset.

FIGURE 21. Sparse 3D reconstruction results for the herzjesu dataset.

The final 3D reconstruction results are significantly better
than the results obtained by the other algorithms. In actual
experiments, although the asift algorithm obtained a rela-
tively sufficient number of matching points, the final 3D
reconstruction results show clear structural errors and many
noise points. Although the matching point pairs obtained by
the orb algorithm are redundant to those of the sift algorithm,
the completeness of the final scene reconstruction is inferior
to that of the sift algorithm. The 3D reconstruction results
obtained by our algorithm are superior to those obtained by
mainstream algorithms in terms of scene integrity and recon-
struction density, and these findings indicate the effectiveness
of the algorithm in practical applications.

VI. CONCLUSION
Starting from the image-matching problem, this paper pro-
poses a superpixel segmentation edge intersection strategy
to detect interest points and an improved binary descrip-

tor for feature description. Using many actual datasets for
experiments, this study shows that the algorithm presented
in this paper is far superior to current mainstream matching
algorithms in terms of the number of final matches, and the
number of final correct points increases by 2-5 times. This
algorithm is equivalent to current mainstream algorithms in
terms of matching efficiency, matching accuracy and success
rate. This algorithm can adapt well to a variety of actual
matching situations and can also match many correct points
for wide baseline and weakly textured images. In future work,
we will further design a targeted matching strategy for many
interest points detected by the algorithm presented in this
paper and optimize the overall calculation process to achieve
real-time or near real-time processing.
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