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ABSTRACT Cancer is a major cause of death worldwide and becomes particularly threatening once it begins
to metastasize. During metastasis, the blood vessels serve as pathways for cancerous cell transportation and
hence are crucial for understanding cancer growth. Existing medical imaging modalities can provide 3-D
contrast images of the vascular tissues but with limited quality and detailedness. A much-needed tool for
cancer research is thus one that can reconstruct vascular networks from low-quality clinical images. To this
end, we developed a computational framework that takes 3-D medical images as input and reconstructs
complete, patient-specific vascular network models using a mathematical optimization procedure. Our
framework extracts major vessels from the images and uses the organ geometry to select vessel termination
points. Then, it generates the remainder network based on physiological optimality principles. Using the
framework, we obtained a set of network models with over 3000 terminal segments from a brain MRA
scan. We analyzed the Strahler order, vessel radius, and branch length distributions of the models, which
match with actual human data. We also performed fluid dynamics simulation inside the reconstructed
vessels and showed that the pressure and shear stress distributions agree with existing in vivomeasurements.
The qualitative and quantitative agreements in vessel morphometry and hemodynamics demonstrate the
effectiveness of the framework. Our method bridges the gap between image-based vessel models, accuracy
of which is limited by the resolution of clinical images, and hypothetical models.

INDEX TERMS Global constructive optimization, patient-specific vasculature, vascular network
reconstruction.

I. INTRODUCTION
In metastasis, cancer cells detach from a pre-existing pri-
mary tumor, intravasate into the bloodstream, flow through
blood vessels avoiding immune protection, extravasate out of
the vessels, and eventually form secondary tumors at other
sites [1]. Because blood vessels are vital links in the journey
of the tumor cells, delineating the vessel structures may aid
the development of novel methods for cancer diagnosis and
metastatic growth prediction. An imperative tool for cancer
research is thus a computational framework that generates
patient-specific vascular models efficiently. In this paper,
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we focus on vascular network reconstruction in human brains.
Many recent works have studied vessel generation in the liver,
heart, and eye [2]–[5]. However, similar research on cerebral
vascular networks is scarce due to the non-convex geometry
of the vascular territories and the multiple blood flow inlets
in the brain which complicate the network structure.

In the past few decades, several theoretical models have
been developed to study vessel generation in the human body.
These models provide a mathematical explanation for sub-
structure development in a vascular system. There are three
major methods to construct vessel models theoretically. The
angiogenesis-based method simulates the actual growth of
vasculatures by considering the biological and physiological
factors involved in the process. It has been used for generating
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3-D vascular networks of human livers and hearts [6], [7].
The compartment model does not characterize vessels as a
single organ. Instead, it lumps vessels into a compartment
and models them globally by computing the resistance of
the whole compartment and identifying the pressure-volume
relation [8], [9]. Self-similar models are constructed over
successive orders of bifurcations based on vessel generating
rules [10]–[12], which focus on the self-similar features of
vessels in human organs. The overall network structure is
established by fractals. Although the above methods justify
the general structural properties of blood vessels, they pro-
duce homogeneous network models that do not account for
individual differences. Thus, the vascular networks generated
entirely from theoretical principles cannot be used for cus-
tomized disease treatment.

On the other hand, image-based reconstruction meth-
ods directly build 3-D geometric models that capture the
high-level structure of a patient’s blood vessels from clini-
cal images (CT, MRA, etc). These methods rely on image
segmentation techniques, such as pattern recognition, model-
based, and tracking-based algorithms [13]. However, the seg-
mentation quality is limited by the resolution of the clinical
images. Partial merging of two vessels, spurious segmenta-
tion at crossover points, discontinuity in vessel trees, and
lack of microvasculature details are commonly found in seg-
mented vascular networks [14]–[16]. Therefore, image-based
reconstruction alone is also insufficient to provide complete
and detailed 3-D vasculatures that can be further used for
investigating metastasis.

In this work, we cope with the limitations of theo-
retical and image-based vascular models by combining
the two approaches. We present a hybrid reconstruction
framework that integrates medical image information with
angiogenesis-based optimization to generate complete, 3-D,
patient-specific vascular networks of the human brain. In par-
ticular, we use segmentation techniques to obtain a coarse
structure of the brain vascular network and then search
for a refined configuration with optimal network material
cost (MC) and power cost (PC). While MC optimization
minimizes the materials needed to form blood vessels [17],
i.e., endothelial cells, plasma, white, and red blood cells,
PC optimization minimizes the total power required for
blood circulation. To solve the optimization problem given
the patient prior, we acquire the main vessel branches and
terminal segments from the images and apply global con-
structive optimization (GCO). The original GCO algorithm
performs a multi-scale optimization to find an ideal tree
structure provided with a set of terminal nodes [4]. Yet it
only works for generating a single tree. However, recon-
structing patient-specific models requires using all available
priors, i.e., all segmented main vessels. Therefore, we extend
the GCO algorithm to account for the multi-tree network
generation. We demonstrate the effectiveness of the pro-
posed framework by applying it to actual brain images and
validating the generated networks using data from existing
literature.

II. METHODS
In this section, we first present the theoretical contribution of
this work: a novel angiogenesis-based optimization algorithm
for patient-specific multi-tree vascular network generation.
We will start with the assumptions needed to mathematically
model the vascular networks. Then, we will introduce the
original GCO algorithm and formulate our extended GCO
method.

The proposed algorithm accepts a main vessel structure
(represented as the coordinates and the associated radii of a
set of branching points) and a brain volume (represented by
a point cloud in the three-dimensional space) as input. The
former is used to generate the root nodes, while the latter
is used to sample the leaf nodes. Given the locations of the
nodes, the algorithm outputs a complete, detailed network
with newly added branching nodes such that the location
and associated radii of each node is optimized to reduce a
predefined cost. The optimization is accomplished through
two stages: local optimization at each junction of the network,
and global optimization of the entire network topology.

In practice, the inputs are obtained from clinical images,
and the output can be used to generate 3-D models that
can be used for modelling blood flow for diagnosis or
predictive purposes. We postpone the detailed discussion
of the additional steps of the reconstruction framework,
e.g., image processing and segmentation algorithm, to the end
of this section. The complete source code can be found at
github.com/nmaftoon/VesselGen.

A. ASSUMPTIONS
Our proposed method uses the following assumptions to
make reconstruction of the vascular network possible.
• For the overall structure of the vascular network,
we assume that the network is constructed as a collection
of trees in a predefined volume, in our case, the patient’s
brain. We will refer to this volume as the perfusion
territory in later discussions.

• Every vascular tree begins with a root segment and
ends with multiple terminal segments. The terminal
points (we also refer to them as leaf nodes) provide
inflow for unmodeled microvasculature. The trees are
assumed to be binary (having two branches at every
node) to simulate the branching pattern of real blood
vessels.

• The pressure drop due to branching is negligible.
• Each blood vessel segment is assumed to be a cylin-
der. See Fig. 1 for the bifurcation model used in our
framework.

• The blood flow is assumed to be incompressible, New-
tonian, and laminar. The laminar assumption is well
justified in small vessels due to the predominance of
viscous effects [18]. We also assume that Murray’s law
holds in the vascular network with a power-law coef-
ficient of 3 corresponding to branching in small arter-
ies [19]. Details of the mathematical formulations are in
Section II-D3.
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FIGURE 1. Vessel bifurcation model. A bifurcation model is uniquely
defined by the locations of three end points, the location of the
bifurcation point, and the radii of three incident edges. The angles
between adjacent edges can be calculated using the positions of the four
nodes.

• The overall vascular network satisfies the optimal phys-
iological principles in minimizing both material and
power costs [17].

FIGURE 2. 2-D example of generating a single tree with GCO. (a) First
connect all leaf nodes to the root node. The branching point locations are
adjusted to minimize the cost function. (b) In splitting, a single node is
split into two nodes to reduce the number of edges incident on that
single node. (c) Edges with Strahler order less than a threshold are
pruned. The detached nodes are connected to their nearest neighbors.
(d) After optimization, the network minimizes the total loss.

B. GLOBAL CONSTRUCTIVE OPTIMIZATION (GCO)
Georg et al. [4] proposed the GCO algorithm to reconstruct
the vascular network in the liver based on intravascular vol-
ume minimization and constraints derived from physiologi-
cal optimality principles. Their algorithm takes a predefined
root node and a set of leaf nodes randomly chosen from
the perfused volume to reconstruct a vascular tree with one
blood-flow inlet. The optimization is performed at both local
and global levels. Local operators like relaxation, merging,
and splitting adjust the number, radii and locations of the
branching points in the vascular tree based on a predefined
objective function (Fig. 2). Then, the tree is pruned so that
branches with Strahler orders smaller than a threshold are
removed and the leaf nodes are reconnected to the near-
est neighbor to preserve only the coarse skeletal structure.
Globally, the pruning threshold decreases after each round of
optimization, so fewer details are pruned, resulting in a final
optimized vascular tree. This algorithm can generate vascular

networks that exhibit realism in physiological properties such
as branching angles and asymmetry. However, it can only
be applied to organs with a single blood-flow inlet. Thus,
to adapt it to the human brain, we extended the GCO algo-
rithm to reconstruct a vasculature with multiple arteries from
a segmented patient prior. Since the method requires growing
several vascular trees inside the same territory, we also devel-
oped an algorithm that samples leaf nodes according to their
relative positions in the brain.

C. GCO ADAPTED TO PATIENT DATA
The vascular network created by the original GCO algorithm
is purely hypothetical. In that algorithm, the initial root node
is manually chosen and can be adjusted. The perfusion terri-
tory does not account for any patient-specific data. Although
the quantitative results on scaling and branching properties of
the models, such as vessel radii and length ratios, show cor-
respondence with real data, the gross vascular anatomy of the
models are dissimilar. Therefore, the original GCO method
is not suitable for reconstructing vascular networks that are
meant for further medical use. In this work, we develop the
GCO algorithm to work with medical images as follows.

1) ROOT NODE SELECTION
Given a patient’s clinical image, we first perform 3-D seg-
mentation to obtain the major vessel structures visible in
the image. Then, we select N points from the main vessel
segments as the root locations for different trees. The number
of points is determined by the physiological properties of the
target organ. In order to maintain the patient-specific vascular
structure, every branching point and endpoint of the image
segmentation result is included. The rest of the points are
distributed along the vessels. To preserve as many details as
possible, we add intermediate nodes between two adjacent
nodes on the same vessel if their distance is larger than a
threshold d , which is set to the average vessel length of the
target organ in practice. Note that if there are no branches at
an intermediate node, the adjacent nodes are still considered
to be on the same vessel only with curvature.

2) LEAF NODE SELECTION
The leaf nodes are sampled within the inner cortical surface
of the patient’s brain. The brain structures through which the
arteries do not penetrate, e.g., the cerebellum and the brain
stem, are removed from the volume of interest. Due to the
existence of multiple vascular trees, we divide the volume of
interest into several perfusion territories, each with a prede-
fined radius of influence rinf that represents the size of the
region that a vessel end can cover through capillary networks.
If rinf is large, the leaf nodes in the territory should not be too
close to each other to prevent competition or overlap between
vessel branches. If rinf is small, we should sample more leaf
nodes to cover the entire perfused volume. The radius of
influence is uniquely determined for each perfusion territory
and applies to all nodes within that territory. To calculate rinf ,
we first obtain the influence score of each region, which is
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the weighted average of the parameters, i.e., distances from
root nodes to the center of the territory and vessel radii at the
corresponding root node locations. rinf is directly calculated
by scaling the score using the radii range, i.e., 0.5 mm to
2.5 mm in our case [20], [21].

With rinf defined for every perfusion territory, we use an
iterative algorithm that samples as few as possible leaf nodes
to cover the entire cortical volume. Starting with a randomly
selected set of nodes, we compute the influence region of
each node by its location and the corresponding rinf . Then,
we move the nodes that lie outside the tissue volume or
overlap with existing nodes to regions that are not perfused by
any of the original nodes. If necessary, new nodes are added to
the uncovered areas. This process is repeated until the entire
volume of interest is perfused by the selected leaf nodes.

D. GCO FOREST: EXTENSION OF GCO TO MULTIPLE TREES
We now propose an innovative method that enables the
growth of several trees within the same perfusion territory
using GCO. As there are N root nodes selected, the resulting
vascular network can be considered as the association of N
single trees. Hence we call the method GCO Forest. The
details of the algorithm are described below.

FIGURE 3. GCO Forest initialization. In the initialization step,
the algorithm connects the randomly sampled leaf nodes with the
nearest nodes on the segmented vessel centerline model.

1) INITIALIZATION
First, we cope with the structures extracted from the brain
angiography and define the root parameters. Based on the
connectivity information obtained from the clinical images,
the root nodes can be linked together to form an initial vascu-
lar network (Fig. 3). Each edge in the network is modeled as
a cylinder with a radius rroot . For every vessel tip, this radius
is initialized in accordance with the patient data. It is then
propagated along individual vessels before two vessels meet.
For a branching point, the parent radius is derived from the
daughter radii using Murray’s law.

Next, we create edges that directly connect each leaf node
to the nearest root node. By doing so, a subtree containing
one root node and its incident leaf nodes is created and can
be considered as an independent tree to apply GCO. For
simplicity, the radius at each of the leaves in one subtree
is initialized to a constant value. Nevertheless, we can also
assign numbers derived from physiological data to the leaf
radius to improve model accuracy. With the radius known for

every edge in the network, the blood flow can be calculated
using the Hagen-Poiseuille’s law as in [22].

2) FOREST GROWTH
The forest growth is inspired by the iterative GCO procedure
used for generating a single tree. Similar to the original
method, we define a cost function for each vessel segment
based on the branching parameters, i.e., the vessel radius
and segment length. The local cost at a bifurcation is the
sum of neighboring edge costs, whereas the global cost is
the sum of all edge costs in the entire network. The global
costs depend both on the relative positions of the nodes in the
network, as well as the global topological structure of the tree.
The goal is to obtain a set of branching points (defined
by their coordinates and associated radii) that minimize the
global cost of the network.

Firstly, in each iteration, the branching parameters
are optimized locally by relaxation, splitting, and
merging.

• Relaxation - The location of every branching point and
the radii of the incident edges is optimized at each node
to minimize the local cost.

• Splitting - It takes place if the cost of creating another
node is lower than that of the original configuration.

• Merging - For an intermediate node, if the ratio of
the shortest incident edge to the second shortest edge
is smaller than a threshold δ, we remove the short-
est edge and merge the two nodes which it originally
connects.

After applying several rounds of local operators, we opti-
mize the network structure on a global scale. That is, edges
with Strahler orders smaller than some threshold lmax are
pruned and the resulting disconnected leaf nodes are recon-
nected to its nearest neighbor in the pruned tree. To preserve
increasingly finer substructures in the network, the initial
threshold lmax is decreased after a determinate number of
iterations. However, as more nodes are added to the network
due to splitting, the leaf nodes are no longer restrained to
connect with the nodes from the same subtree during the
reconnection process: each node can freely connect to the
closest node, regardless of the subtree that the closest node
belongs to. This is because, during optimization, subtrees
have their preferred direction of growth, and how territories
are divided should adapt to the overall branching pattern as
well.

The optimization process terminates when there is no
reduction in both the local and the global costs of the network.
This indicates that the vascular model has reached its optimal
configuration. In our method, the total number of iterations is
positively related to the number of leaf nodes sampled prior to
initialization. We also refer the reader to [4] for the parameter
selection strategy in merging and pruning.

The GCO Forest method allows two or more trees to grow
simultaneously. This is a major improvement with respect to
the original GCO algorithm, which allows the reconstruction
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of patient-specific vascular networks based on segmented
arterial data with multiple blood-flow inlets.

3) COST FUNCTION
In this section, we illustrate the design principles of the cost
function used to optimize branching point locations and the
associated radii.

With fixed leaf nodes, an optimal branching point is
defined by its location and neighboring edge radii that mini-
mize the cost function. Following the work of Elif et al. [17],
we incorporate the material cost (MC), which represents the
total amount of materials required to form blood-carrying
vessels, in our objective function. There are two types of
materials to consider. The first one is the endothelial cells that
form the vessel walls, the amount of which is proportional to
the surface area of the blood vessels:

S = 2πrl, (1)

where r and l denote the radius and the length of a vessel
segment, respectively. The second types of materials of our
interest are those carried in the blood, including plasma and
white and red blood cells, the amount of which is proportional
to the volume of the blood vessels:

V = πr2l. (2)

In the cost function, the constant π is dropped soMC is solely
defined by the radius and length of each vessel segment.

FIGURE 4. Power cost schematic diagram. The vessel branching is
considered as a parallel circuit.

Next, we consider the power cost (PC), which represents
the total energy dissipated in blood circulation. The power
loss in a vessel is defined as:

Ploss = Q2R, (3)

where Q is the flow rate and R is the resistance of the
vessel. The flow rateQ indicates the amount of blood flowing
through a single cross-section of the vessel per unit time:

Q =
1p
R
, (4)

where 1p is the pressure difference of the two vessel
ends. A vessel segment, with a fluid flow described by the
Hagen-Poiseuille equation, can be considered analogous to a
resistor which follows Ohm’s law, while the pressure differ-
ence 1p and flow rate Q are analogous to the voltage and
current, respectively. We can then regard the root of each
vessel tree as the ground of the circuit (Fig. 4).

Besides, the force needed to pump the blood in a vessel is:

1F = πr21p =
8µlQ
r2

, (5)

whereµ is the blood viscosity. The pressure difference is then

1p =
8µlQ
πr4

. (6)

Combining (6) and (4), we have:

R =
1p
Q
=

8µl
πr4

. (7)

Then we drop all constant terms and combine (3) and (7). The
power cost thus depends only on the radius and length of the
vessels. Note that the above equation represents the resistance
of a single vessel segment.

Our assumptions lead us tomodel the vessels at a branching
point as a parallel circuit to compute the total power cost
of the blood inflow and outflows. The inlet vessel is the
main circuit with the main resistance R0 and the branch-
ing vessels are the branching circuits with resistance Ri,
i = 1, . . . , n. By Ohm’s law, the equivalent resistance of all
vessel outlets is:

1
Rout
=

n∑
i=1

1
Ri
. (8)

We now derive the restrictions of the optimization problem.
First, consider Murray’s law [23]:

Qin = Qout , (9)

rc0 =
n∑
i=1

rci , (10)

where the coefficient c is set to 3 in correspondence to
branchings in small arteries. In reality, c can range from 2 for
large vessels to 3 for small ones [4]. Furthermore, according
to [24], the vessel radius of major cerebral vessels generally
ranges from 0.5 mm to 2.5 mm.

Combining (1) and (2) for MC and (3), (7) and (8) for PC,
we can obtain the total cost function, which we will minimize
over the length l and radius r of each vessel branch. Note
that in the algorithm implementation, rather than directly
specifying l and r for every vessel, we define the network
structure by the locations of the bifurcation points and the
three associated radii as in Fig. 1. Then, l’s can be calculated
as the distance between the bifurcation point and its neighbor
nodes. The resulting optimization problem is:

minimize C = MC + PC
= γ ·

∑n
i=0(2rili + r

2
i li)+

l0
r40
+

1∑n
i=1

r4i
li

,

subject to:
0.5 mm < ri < 2.5 mm, i > 0,

r30 =
∑n

i=1 r
3
i

(11)

where the weight parameter γ is chosen as a hyperparameter
to make the material cost and the power cost have a balanced
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FIGURE 5. Patient-prior preprocessing before vascular network reconstruction. (a) The original brain angiography obtained from the IXI
dataset. (b) We complete the cerebral artery segmentation with vesseg. (c) Vessel centerlines are extracted using binvox and thinvox
sequentially. This centerline structure consists of locations and connection information for nodes along the segmented vessels. It is
used as the input to our proposed GCO Forest algorithm.

effect on the cost function. In our experiments, we tried
different γ ’s and studied the effects of material cost and
power cost on the total cost function. From our results and the
previous work done by Keelan et al. [25], we set γ to 642.

4) ALGORITHM FOR LOCAL OPTIMIZATION (RELAXATION)
Now, we discuss the specific algorithm used to find local
optimal branching parameters given the cost function.
We considered a variety of established optimization algo-
rithms, including gradient descent, surrogate-based analysis,
and simulated annealing, and examined their performance
based on the networkmodel complexity. The gradient descent
method suffers from getting stuck in local optima and the
surrogate-based method requires re-training of the surrogates
at every step. In coping with multivariate optimization prob-
lems, the simulated annealing method is computationally
more feasible because it is not affected by the initialization
and avoids local optima by sampling a large portion of the
parameter domain. Hence, we chose simulated annealing in
implementing our framework.

The simulated annealing method is analogous to the
annealing process in metallurgy [26]. In this method, a tem-
perature parameter T with initial value T0 decreases over
iterations. In every iteration, the algorithm makes a set of
moves, i.e., transformations in the parametric space, which
may be accepted or rejected. The new state achieved after
the move corresponds to a new value for each parameter
in the domain and a new cost. Every good move, i.e., one
that decreases the cost, is accepted whereas the bad moves
are rejected with a certain probability. The probability of
acceptance for a bad move depends on the temperature and
is defined as:

ε = exp
(
−
cnew − cold

T

)
, (12)

where cnew is the value of cost function at the newly sampled
point of the parameter space and cold is the cost at the existing
point. The threshold probability pt is chosen by

pt = Rand ([0, 1]) (13)

The value of ε is then compared with pt . If ε > pt the move
is accepted, otherwise it is rejected.

In the beginning, when the temperature is high, the algo-
rithm has a high probability of accepting moves. As the tem-
perature falls, it prefers moves that significantly bring the cost
down. At the end of the cooling cycle, the algorithm gets close
to the global optimum. Its exploration of the entire parameter
domain sets it apart from other optimization techniques and
allows it to overcome local optima.

III. RESULTS
A. APPLICATION TO 3-D CEREBRAL ANGIOGRAPHY
Our proposed reconstruction framework involves many steps
in addition to our patient-specific GCO Forest optimization
algorithm detailed in Section II. The flowchart of the entire
process involved in the framework is presented in Fig. 11 in
the Appendix, where we summarize essential intermediate
steps of the framework, including clinical image segmenta-
tion, root and leaf node selection, as well as GCO Forest
optimization.

The proposed reconstruction framework theoretically can
be applied to any organ. In this section, to show the per-
formance of our proposed framework, we apply it to recon-
struct patient-specific cerebral vascular network models from
clinical image data collected in the brain of a patient.
Before applying our proposed GCO Forest optimization
method, we follow the flowchart of Fig. 11 (Appendix)
and first preprocess the medical image and extract the
patient’s main vessel structure as well as the inner cortical
volume.

1) DATA
Our dataset consists of brain MRA images of healthy
subjects taken at Guy’s Hospital, London (UK) using a
Philips 1.5T scanner and released under Creative Commons
License by the Imperial College London (IXI Dataset) [27].
The brain volume has size 512 × 512 × 100 in pix-
els and spacial resolution 0.3125 mm × 0.3125 mm ×
0.6 mm on the coronal, sagittal, and axial axes, respec-
tively (Fig. 5a). The reconstruction framework is majorly
implemented in python 3.5. During testing, five synthetic
networks are generated inside the cortical volume with vary-
ing random seeds to study the algorithm dependency on
initialization.
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FIGURE 6. Brain volume completion by parameterization. (a) Sometimes, the patient prior can be incomplete, which makes our algorithm
hard to apply. (b), (c) We use second-order polynomial to parameterize the brain shape. We can then apply our GCO Forest algorithm to
the complete model.

2) IMAGE PREPROCESSING WITH INTENSITY PROJECTION
Prior to segmentation, we employ several preprocessing
strategies mentioned in [28] to increase the contrast between
vessels and adjacent tissues. First, the intensity range of the
image is normalized to [0, 255] using

f (x) =
x − min(X )

max(X )− min(X )
× 255, (14)

where X denotes the set of intensities for all pixels in an
image. The intensity values are then clipped by a threshold
value c, leaving

g(x) =

{
c, x > c
x, x <= c

(15)

and normalized again by f (x). Our experiments showed that
c = 200 is optimal for the specific clinical image stack we
used. In addition, we project the resulting intensities by the
function q(x) = xp. We tested quadratic and cubic projec-
tions, i.e., p = 2 and p = 3, as in [28] and chose the cubic
projection in our reconstruction framework.

3) SEGMENTATION AND ROOT NODE SELECTION
Though the proposed reconstruction framework takes advan-
tage of clinical images, the exact segmentation procedure is
well-studied by a variety of works and is beyond the scope
of this paper. We employ previously established algorithms
to acquire the vascular information needed for network struc-
ture optimization. In particular, cerebral artery segmentation
(Fig. 5b) is achieved using the python package vesseg [29],
which takes advantage ofNiftyNet, a 3-D convolutional neural
network architecture designed specifically for clinical image
processing. To represent the resulting mesh with a 3-D array,
we use binvox [30], [31] on the segmented vessel model to
rasterize it into a binary 3-D voxel grid and then apply a
thinning algorithm thinvox [32], [33] to calculate the vessel
centerlines. We then perform Connected Component Analy-
sis [34] to keep only the main CoW vessels, discarding major
discontinuities (Fig. 5c).
For our test dataset, we chose 1100 points from the seg-

mented vessels as the root nodes and connected them together
using the method presented in Section II-C. The number was
selected practically to ensure the detailedness of the net-
work while maintaining the computational cost manageable.

Thus, we can convert the vasculature information in the clin-
ical image into a mathematical network model that satisfies
the assumptions described in Section II-A.

4) BRAIN PARAMETERIZATION AND LEAF NODE SELECTION
Because the target area of the scans is sometimes specific
parts of the patient’s brain, in some cases, the angiographies
at hand might not contain the entire brain volume (Fig. 6a).
For example, the image stack in our dataset only contains the
lower part of the brain, making it impossible to sample leaf
nodes from the entire cortex area. We deal with this problem
by parameterizing the upper part of the brain and complete the
brain volume. For complete data that are ready to use, we can
simply skip the parameterization process.

Prior to brain parameterization, we first extract the partial
surface of the cerebral cortex with the software BrainSuite.
Along the sagittal axis, we cut the volume into 500 coronal
slices and fit the following curves to the existing points on the
surface of the cerebral cortex in each coronal plane.
• Second-order polynomial:

y = ax2 + bx + c (16)

• Circle:

x2

a2
+
y2

b2
= 1 (17)

• Ellipse:

(x − a)2 + (y− b)2 = 1 (18)

Comparing the parameterization results, we found that the
polynomial and ellipse curves gave more realistic cortical
surfaces. For computational efficiency, we use polynomial
parameterization in our framework (Fig. 6b and 6c).

After a second-order polynomial is fitted within each
plane, we put the slices back together and fill up the cortical
volume. The leaf selection algorithm (Section II-C2) is then
applied to this volume. For our dataset, 3000 terminal nodes
are sufficient to produce a detailed vascular network.

5) OPTIMIZATION
Weused the algorithm described in Section II-D4 tominimize
the cost function defined in Section II-D3 locally at each
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FIGURE 7. Reconstructed vascular networks using the GCO Forest algorithm. (a) The network is generated with over 3000 leaf nodes. The thick edges
denote the segmented main vessels from the image data. (b) Rendered 3-D model inside the patient’s brain. (c) and (d) Two vessel models with
Strahler order greater than 2 (right view). The models are independently generated with different random seeds, but exhibit similar overall structures.

node. To accomplish this, the algorithm searches for the opti-
mal branching condition in the six-dimensional parametric
space: the three spatial coordinates (x, y, z) of the bifurcation
point and the radii of the three vessels meeting at that point
(Fig. 1). The three coordinates may alternatively be consid-
ered as the lengths of the three vessels, as fixing one fixes
the other. The simulated annealing algorithm starts from a
random point in the parametric space and explores this space
by making one move at a time. The move function has to
be so chosen that it allows the algorithm to effectively scan
the entire domain without moving too far from a potential
optimum in a single move. In our framework, we set the
step size to 0.5% of the target value’s range. Thus, the move
function is of the form

0.005× Rand([−1, 1])× (max(V )− min(V )), (19)

where V is the variable to be optimized, i.e., the vessel radius
or the bifurcation point coordinates. In one move, the algo-
rithm moves independently along five of the six dimensions
using the above move function. The sixth (r0 or parent vessel
radius) coordinate is calculated from the radii of the branches,
after the move, using Murray’s Law (Eq. 10).
Associated with every move is a change in the cost. For the

three dimensions of vessel radii, there is an additional range
constraint (The radii should not exceed the specified limits in
Eq. 11). This is incorporated using the penalty formulation;
every move that exceeds the limits incurs a penalty which
adds to the cost. Hence, such moves are not likely to get
accepted.

The acceptance probability of a new move depends on
the cost and the temperature. Since the numerical order of
the cost is problem-dependent, the temperature needs to be
adjusted to make the probabilities feasible. In our problem
setting, the starting temperature is set to 1 and cooling is done
until it dropped to 0.001. This choice of temperature keeps
the acceptance probabilities in check throughout the cooling
cycle and allowed the achievement of the global optimum.
The rate of cooling affects the algorithm’s ability to settle
at the right value. A small cooling coefficient may cause
the algorithm to get stuck in a local optimum, whereas a
large value combined with a big move function may prevent
settling at a solution. In our framework, the cooling rate is
set to 0.999. The customized simulated annealing algorithm

is implemented in C with a python wrapper to integrate it into
our global constructive optimization framework.

At the end of the cooling cycle, the node position and
the corresponding vessel radii reach their globally optimum
values for the given configuration. Repeating this procedure
for each node, combined with merging and splitting when
required (See sec. II-D2), leads to optimization of the overall
tree structure. However, this structure is still a derivative of
the initial topology and inherits its global features. Therefore,
the tree is pruned (up to the vessels of a specified order)
and the nodes reconnected to the nearest neighbors, which
modifies the network topology. The same optimization cycle
is then repeated for this topology and the pruning threshold
is decreased after every such iteration. This cycle ultimately
leads to the globally optimized network as discussed in
Section II-D2.

B. VALIDATION
To demonstrate the validity of our proposed vessel recon-
struction framework, we compared the morphometric and
physiological properties of our reconstructed network with
cerebral vessel data collected in humans. We followed the
flowchart in Fig. 11 and reconstructed a set of cerebral
vascular networks from the patient dataset described in
Section III-A1 using five random seeds. We sampled over
3000 leaf nodes and 1000 root nodes for optimization.
An example reconstructed network is shown in Fig. 7a,
and the rendered 3-D brain model is shown in Fig. 7b.
In Fig. 7a, the thick branches correspond to the vessels seg-
mented from the clinical image and the branches in gray are
constructed by our GCO Forest algorithm.

1) MORPHOMETRIC ANALYSIS OF RECONSTRUCTED
NETWORK
To validate the reconstructed network, we compared its mor-
phometric properties with data collected in the human brain
using confocal laser microscopy and 3-D computer-assisted
methods [35], [36].

We first analyzed the frequency distributions of vessel
diameters and lengths. In our models, a vessel segment is
defined as the cylinder between two connected nodes. The
diameter of a segment is optimized in GCO and converges to
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TABLE 1. Statistics of length L and diameter D distributions of the generated main vascular network model. After applying the inverse square root and
natural logarithm functions, the vessel diameter and branch length have similar mean and median, respectively. So the distributions are approximately
normalized. The distance metrics show that with different random seeds, the generated network have similar characteristics in terms of vessel diameter
and branch length distribution. Note that the unit for diameters is mm. Compared to the work of Lauwers et al., our statistics only summarize the main
vessels but not the capillaries, therefore the overall scale is slightly larger than the statistics of Lauwers et al..

FIGURE 8. Characteristics of length L and diameter D of the reconstructed vascular network. (a) Distribution of D is
right-skewed. (b) Distribution of D can be normalized by the inverse of square root function. (c) Distribution of L is
right-skewed. (b) Distribution of L can be normalized by the natural logarithm function.

a local optimum under the predefined cost function. The seg-
ment length is calculated as the Euclidean distance between
the two nodes. The distributions are shown in Fig. 8 and
are averages of the individual histograms generated from
the five random seeds. The statistics in Table 1 are also
averaged across five random seeds. Consistent with the actual
human brain data in [35], none of the distributions are normal.
Rather, they are asymmetric with large positive skewness and
kurtosis. However, as Fig. 8b and 8d show, the logarithm of
the vessel length and the inverse of the square root of the
diameter conform to normal distributions with means and
medians close together. The skewness is close to 0 and kurto-
sis is close to 3. These characteristics agree with prescribed
statistics in [35]. Note that the vessel diameters and lengths
in our model is larger in scale compared with their statistics.

This is because our generated network consists of the main
vasculatures and omits some capillaries segment, whereas
Lauwers et al. [35] measured the complete cerebral network
including the capillaries.

In addition, in the vascular network reconstructed by our
proposed method, the log frequency, average diameter, and
length of vessels follow a linear relationship with the Strahler
order (Fig. 9). The plots are consistent with Figure 9c in [37]
and indicate the fractal nature of the network.

Although the main network structure was obtained from
the patient data, all branches underwent heavy remodeling
in the course of optimization. Moreover, the vessel forma-
tion in our reconstruction process was inherently stochastic
due to the simulated annealing algorithm. In Fig. 7c and 7d,
we present two network structures viewed from the same
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FIGURE 9. Strahler order and its relationship with vascular network characteristics. (a) The log frequency of Strahler order follows a linear
function with a negative slope. The shaded area indicates the margin of error. (b) Vessel diameter is positively, linearly proportional to Strahler
order. (c) Branch length is positively, linearly proportional to Strahler order. These characteristics indicate the fractal nature of the cerebral
vascular network.

FIGURE 10. Flow simulation results. (a) The pressure within the network of higher-order cerebral arteries is found to vary
smoothly from 15.74 kPa (118 mmHg) at the entry to about 15 kPa (112.5 mmHg) at exit, while falling to 13.06 kPa
(98 mmHg) in the thinnest regions. (b) The wall shear stress in most regions of the network stays below 0.4 Pa with a
maximum of 0.87 Pa, which lies in the normal range measured in vivo [38].

perspective with vessels whose Strahler orders are greater
than 3. They were generated with different random seeds.
The general branching patterns were analogous to each other,
despite the small differences induced by varying moves
taken in simulated annealing. We quantified the differences
between the morphometry histograms of the two networks
using three metrics: correlation, chi-square distance, and
Bhattacharyya distance (Table 1). A strong correlation and
small chi-square and Bhattacharyya distance scores imply
that the histograms are similar to each other. In our experi-
ments, all histograms display strong correlations and close-
to-zero distance scores. This suggests that the stochastic
nature of the GCO Forest algorithm is restrained by our
carefully designed cost function and that our proposed
patient-specific framework could reconstruct cerebral vessel
networks that are morphometrically similar to the ones in the
human brain.

2) HEMODYNAMIC ANALYSIS OF THE RECONSTRUCTED
NETWORK
After analyzing the morphometry of the reconstructed vas-
cular network, we further validated it by testing its physio-
logical function. To this end, we studied the distribution of
the internal blood pressure and the shear stress on the vessel
walls using computational fluid dynamics. For the purpose of

this analysis, we only considered vessels with Strahler orders
greater than 3, because a flow simulation of the entire network
would be computationally expensive. The vessel walls were
considered to be rigid and the physical boundary conditions
were derived from available physiological data.

The inlet velocity was considered to be 50 cm/s and the
blood pressure at the exit from the network was considered to
be 112.5mmHg [39]–[41].We used the reported properties of
blood at the normal body temperature (density: 1060 kg/m3

and viscosity: 3 m·Pa/s). We obtained a steady-state solution
using the implicit ‘Coupled’ scheme in Fluent R16.0. This
scheme uses a pressure-based coupled solver, which simulta-
neously enforces continuity while solving for velocity using
the momentum equation.

The calculated flow domain (Fig. 10) is physiological
as the pressure varies smoothly along the network with-
out abrupt changes and the wall shear stress is within the
physiological range as measured by [38]. Thus, the recon-
structed vascular network produces physiological hemody-
namic behavior while morphometrically is similar to that
of the human brain and respects the root and leaf relation-
ships acquired from the patient prior. Moreover, for different
random seeds, the geometrical and optimality constraints
enforced by our algorithm lead to similar reconstructed
vessel networks all of which successfully adapt to the patient
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prior and correlate with the major segmented vessels of the
patient’s brain.

IV. DISCUSSION
In this section, we present some related works, the benefits
and the limitations of our algorithm in comparison with those
methods. We also illustrate future works that can be done to
improve the framework’s practicality.

The core algorithm of the optimization framework in this
paper is based on the practical observation that the departure
from optimality in the human vascular structures will cause
disease [42]. That is, our reconstruction method generates
vascular networks of the human brain under the optimality
assumption that the network structures will minimize both
the material loss and the blood circulation power loss. With
the same assumption, two types of angiogenesis-based opti-
mization models have been proposed previously: (1) the con-
strained constructive optimization (CCO) [2], and (2) global
constructive optimization (GCO) [4]. While CCO finds an
optimal tree by adding one branch at a time, GCO performs
a multi-scale optimization to find an optimal tree for all
leaf nodes simultaneously [43]. Our GCO Forest algorithm
extended GCO to use clinical images of non-convex organs in
individual patients and to optimize multiple vascular trees at
the same time. In Section III, we demonstrate that by combin-
ing clinical data with our GCOForest algorithm, the proposed
framework is able to generate realistic vascular networks that
exhibit morphometric and hemodynamic similarities to actual
brain vasculatures.

Several recent works have also combined image-based seg-
mentation and optimization-based reconstruction.
Jaquet et al. [5] use heart CT images and extend the con-
strained constructive optimization (CCO) method to generate
multiple, competing coronary trees from large epicardial
arteries to arterioles. Their method can simulate network
forests within non-convex territories and the resulted models
satisfy literature morphometry. However, their optimization
method and targeted organ are fundamentally different from
ours. The CCO method performs a single tree angiogen-
esis simulation by minimizing the total tree volume [2].
It optimizes the objective locally by adding one branch to an
existing vessel tree at a time. Apart from the volume-related
material cost, our GCO Forest algorithm also considers the
power cost, minimizing a more comprehensive target func-
tion. In addition, we perform optimization at both local and
global scales.

Compared with generating vascular networks in the liver,
heart, and eye [2]–[5], cerebral vasculature reconstruction
receives less research attention due to the following reasons.
First, the shape of the target organ should be regular and
mostly convex to reduce the difficulty of optimization. For
convex territories, techniques like CCO are able to solve the
problem because the surface of the organ can be parameter-
ized by relatively simple mathematical expressions. Second,
there is a single blood-flow inlet (one main artery) and mul-
tiple outlets in organs like the liver. Thus, the vasculature can

be generated by a single tree with one root node, reducing the
computational cost. The human brain, on the other hand, sat-
isfies neither of the above conditions. Due to the complexity
of the brain structures, especially the curved surface of the
cortical white matter, cerebral arteries lie within an irregular
volume that cannot be easily parameterized. More impor-
tantly, the dynamics of blood flow in the human brain are
determined by a complex network of vessels with the Circle
of Willis (CoW) forming the central part of this network [44].
Blood is supplied by two internal carotid arteries (ICAs) and
also by two vertebral arteries (VAs), which branch and link to
form the CoW. Thus, our proposed framework is an important
step towards reconstructing vasculature within an irregular
volume, accounting for multiple blood-flow inlets and the
interactions between the arterial trees.

Upon finishing this paper, we are aware that Ii et al. [45]
have worked on a similar setting to us independently. Their
proposed multilevel region-confined (MRC) algorithm gen-
erates image-based vasculatures by addressing hierarchi-
cal pathways and pair-wise coupling of the arterial and
venous systems in the human brain. Their reconstructed net-
works consist of both arteries and veins at different scales
for each brain region. However, the MRC algorithm is a
geometry-prioritized version of the CCO model. In generat-
ing new vascular segments around terminal points, it omits
the structural optimization part of CCO to reduce compu-
tational cost by choosing the nearest neighbor. Moreover,
it employs a combinatorial optimization approach and only
chooses from four predetermined bifurcation patterns. In con-
trast, our method effectively explores the entire domain in
selecting a bifurcation point with the simulated annealing
algorithm. Our modified GCO algorithm obtains a globally
optimized network after multiple cycles of edge pruning and
reconnection. MRC, however, is prone to variability because
of the fixation of randomly selected terminal points based
on features of the existing network (which might not always
be optimal). Furthermore, we have utilized a more thorough
validation methodology comprising of both morphometric
and physiological analysis.

Nonetheless, our proposed reconstruction framework can
be improved in the following aspects. First, the current work-
flow utilizes the segmented vessels from clinical images as
the basis of the GCOForest algorithm. However, we only pre-
serve themain CoW arteries, discarding the other information
such as small and discontinuous vessel parts. In fact, these
small segments provide useful and crucial information about
the exact arterial structure and should guide the reconstruc-
tion of patient-specific vascular networks. Our experiments
demonstrated that the resulting network depends largely on
the detailedness of the patient prior. Therefore, to improve the
accuracy of the reconstructed network and make full use of
the patient data, we can incorporate the locations and geomet-
ric properties of the detached segments into our algorithm.

Second, the stochastic nature of the optimization algo-
rithm can be relaxed to achieve more deterministic vascular
models. During the relaxation stage in GCO, we seek a
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FIGURE 11. Flowchart of the complete computational framework. This flowchart summarizes the methodology discussed in Section III-A.

network configuration that minimizes the cost function. For
each branching point, the x, y, z-coordinates of that point
and the radii of the incident edges are all variables to be
optimized. In the first few rounds of optimization, since there
are not enough splittings, many leaf nodes are connected to
one single intermediate node, resulting in an extremely com-
plicatedmultivariate optimization problemwith a non-convex

domain. Consequently, many optimization methods are inad-
equate to solve the problem. We thus turned to simulated
annealing, where random moves are taken with a probability
and the configuration with the minimum cost is recorded
in the process. However, we are aware that the intrinsically
stochastic nature of this optimization algorithm will lead to
different models even with the same patient data. None of the
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networks generated by our approach is an absolutely accu-
rate reconstruction of the patient-specific cerebral vascular
system. In future work, we can improve the robustness of our
algorithm by combining several resulting networks together.
In this way, we will search for an average model. Also,
in future research, other promising optimization methods
such as the nature-inspired method proposed in [46] or other
recent algorithms [47]–[49] can be adopted to improve the
optimal vascular network that our framework generates.

Moreover, though quantitative analysis reveals an impress-
ing similarity in terms of scaling and branching properties
between our reconstructed network and data gathered in the
human brain, we have been unable to verify the network’s
gross vascular anatomy, branching patterns, and asymmetry
directly. A potential approach for evaluation is to slightly
change the segmented vessels in the initialization of GCO
Forest, e.g., reducing the CoW vessel length, and quantify
the differences between the final configurations. This would
lead to an estimation of the robustness and predictive power
of the reconstruction framework.

V. CONCLUSION
We developed a patient-specific framework for the recon-
struction of vascular systems, which transforms raw image
input into an augmented 3-D vascular model based on an
extended global constructive optimization algorithm. The
resulting network adapts to the brain shape and the major
vessels segmented from clinical images of actual patients.
To study the effect of randomness involved in the optimiza-
tion process, we generated multiple cerebral vascular models
from a single image stack and compared their differences.
We further validated the reconstructed network structures
by showing that the morphometric properties agree quanti-
tatively with existing anatomical data of the human brain.
Additionally, we used computational fluid dynamics to inves-
tigate the hemodynamic characteristics, such as the maxi-
mum wall shear stress, of the reconstructed networks. Blood
flow simulation suggests that the numerical differences in
the blood pressure and wall shear stress between our models
and existing data are negligible and are not expected to have
remarkable effects on cancer metastasis simulations that use
the 3-D models reconstructed by our proposed method.

APPENDIX FLOWCHART
See Figure 11.
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