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ABSTRACT Uncertainty quantification in complex engineering problems is challenging because of
necessitating large numbers of expensive model evaluations. This paper proposes a two-stage framework
for developing accurate machine learning-based surrogate models in structural engineering. The studied
numerical model considers aleatory and epistemic uncertainties, i.e., ground motion features and material
properties. Our framework’s first step trains classification algorithms on the collected data from our
numerical model with a disproportionate ratio of observations from two categories, i.e., failed and safe
simulations. We investigate the performance of imbalanced learning strategies along with artificial neural
networks to achieve high classification accuracy. The second step of our framework aims to estimate three
quantities of interest using the same network architecture, comparing our approach with regularized linear
regression models. Moreover, we present a new approach to reducing the number of numerical simulations
for developing machine learning-based surrogate models with limited training data. This approach employs
Gaussian processes as a powerful probabilistic technique, providing an inherent uncertainty measure to
determine the quality of estimated response values. Extensive numerical experiments demonstrate the
superior performance of neural networks with three hidden layers compared to traditional machine learning
algorithms for both classification and regression tasks. Also, empirical investigations corroborate that
Gaussian processes enable us to predict the values of missing simulations for reducing the computational
cost associated with numerical models. To conclude this work, we present several applications and future
research directions.

INDEX TERMS Uncertainty, Gaussian processes, neural networks, imbalanced classification, regression.

I. INTRODUCTION
One of the vital tasks in the probabilistic risk assessment
(PRA) of engineering structures is the proper prediction of
structural responses (or as we define in the context of this
paper: quantities of interest (QoIs)) [1], [2]. This is the
first step towards the computation of failure probability. For
many of the modern PRA, a detailed numerical simulation
is required with all the nonlinearity and interaction sources.
The nature of limit state function in this type of simulations
is implicit (i.e., black box); thus, the efficiency of the proba-
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bilistic performance assessment relies on the type and number
of simulations.

This paper proposes a comprehensive data-driven seismic
risk analysis framework by considering uncertainties asso-
ciated with ground motion features and material/modeling
properties. These two uncertainty types belong to two dif-
ferent classes of random variables (RVs), i.e., aleatory and
epistemic [3]. The former one refers to natural (inher-
ent or stochastic) randomness in a process. It cannot be
reduced by performing more experiments or exhaustive mea-
surements. The latter one addresses the scientific uncer-
tainty due to limited data and lack of knowledge. These
two types of uncertainties are essentially separated and
should be combined appropriately towards a hybrid model.
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Several researchers provided distinctions between various
uncertainty sources, their quantification, and combinations;
among them: [4] for structures and pipelines, [5] for seismic
analysis of reinforced concrete framed structures, [6] for
buildings, [7] for flood frequency analysis, and [8] for coastal
dike.

Nearly all the current applications in the field of seismic
risk analysis of engineering structures with both aleatory and
epistemic uncertainties are limited to the so-called ‘‘direct’’
methods. In this approach, each numerical model (as a rep-
resentative of epistemic random variables) is directly con-
nected with a ground motion record (as a representative of
aleatory random variables), leading to a total of Neps × Nalt
numerical simulations, where Neps is the number of numer-
ical realizations, and Nalt is the number of ground motion
records.

Furthermore, most of the risk- and reliability-based seismic
assessments of structural systems need to be performed under
multiple seismic intensity levels (SILs). This is because struc-
tural responses and potential damage should be quantified for
various return periods of seismic hazard. This is the main
objective in probabilistic seismic hazard analysis (PSHA) [9],
where the seismic intensity is connected to the groundmotion
return periods. The outcome of such a study is typically
presented as a fragility function [10], [11]. Therefore, one
should redo all the Neps×Nalt numerical simulations for Nsil
intensity levels which leads to a total of Neps × Nalt × Nsil
runs. Samples of such extensive simulations can be found
in [12], [13] in the context of incremental dynamic analysis
(IDA). For example, for a minimum of 40 ground motion
records, each one scaled to at least 10 SILs, and applied to
a set of 25 structural realizations sampled based on Latin
Hypercube sampling (LHS), the ‘‘direct’’ method requires
at least 10,000 nonlinear transient simulations. While it can
be performed for a simple model with a limited number of
elements [12], it is nearly impossible to afford such a huge
computational cost for complex structures such as dams and
nuclear power plants [14].

Therefore, it is essential to develop alternative ‘‘indirect’’
methods in which only a subset of simulations are enough for
risk and reliability analysis purposes with the condition of
preserving the accuracy of the original direct method to the
extent possible. To this end, meta-models or surrogate models
have been extensively used [15], [16]. One of the promising
tools to achieve this goal is to employ machine learning (ML)
methods.

In the remainder of this section, we review the current
literature regarding the insertion of ML models into the field
of seismic risk and reliability analysis of structures to reduce
the cost of numerical simulations. In a recent review paper by
[17], the authors provided a comprehensive survey of existing
ML-based methods, including traditional learning algorithms
and artificial neural networks (NNs). To mention the most
relevant works, several papers [18]–[20] employed traditional
learning algorithms, such as support vector machines, for
predicting structural responses under uncertainties associated

with ground motions. Another work [21] compared various
traditional binary classification methods for the reliability
analysis of concrete dams. In [22], the authors used non-
linear regression analysis techniques for accelerating seis-
mic analysis. In [23], the authors developed a pool-based
active learning algorithm to choose partial data from ground
motion records to meet informativeness, representativeness,
and diversity criteria. They applied this method to reduce the
computation burden in finite element analyses. The authors
of [24] applied multiple ML techniques to develop seismic
fragility curves.Moreover, several works considered artificial
NNs for developing regression models to quantify uncertain-
ties related to ground motion features [25]–[31].

Therefore, based on the literature review, most existing
data-driven approaches focus on developing regression mod-
els for quantifying uncertainties linked with variation in
ground motion properties. Very few incorporate the material
andmodeling uncertainties, and nearly none of them included
the ground motion meta-features in the process of uncertainty
quantification. Thus, there is an intuitive research gap that we
aim to appropriately fill out in this work.

The main contribution of this work is to develop a two-
stage framework for predictive modeling: (1) classifying sim-
ulations into two categories (failed/safe); and (2) developing
regression models to predict continuous-valued QoIs for safe
simulations. As discussed, most existing data-driven methods
for seismic hazard analysis restrict the use of ML methods
for developing regression models. A reasonable explanation
for this choice is the difficulty of training classification algo-
rithms because obtained data sets are often imbalanced with a
disproportionate ratio of observations in each category [32].
In seismic risk analysis, only a small proportion of input
parameter combinations lead to structural failure. Therefore,
identifying rare and extreme events is challenging, as most
ML algorithms are biased towards the majority class. This
issue arises from the fact each observation has an equal
contribution to the total loss function and the corresponding
optimization problem as we will discuss later. We will inves-
tigate the effectiveness of two primary imbalanced learning
techniques [33], i.e., re-sampling methods and cost-sensitive
learning, to alleviate this problem and enhance the perfor-
mance of predictive models.

Another critical question that we answer is how to reduce
the number of numerical simulations for varying ground
motion scale factors to facilitate the predictive modeling
process. While we considered eight different scale factors
in the described model in Section IV, a valuable research
direction is to perform regression analysis across the scale
factor values so that we have to conduct a subset of numerical
simulations. To this end, we propose to utilize a Bayesian
nonlinear technique called Gaussian process regression [34]
for extracting relationships between ground motion scale fac-
tors and the resulting structural response. Themain advantage
of using Gaussian process regression is the ability to generate
distributions over functions, which provides a straightforward
approach for capturing uncertainty levels in the estimation
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process. We will present further details regarding the predic-
tive modeling aspects in Section III.

This paper begins with a brief review of the foundations of
ML and predictive modeling in Section II, followed by our
proposed two-stage framework in Section III. The numeri-
cal model and the associated uncertainties are described in
section IV. We present a detailed empirical evaluation of the
proposedmethodology in Section V, exemplifying the impor-
tance of imbalanced learning and the superior performance
of neural networks. We also offer concluding remarks and a
summary of our observations in Section VI.
In the following, we outline the four main contributions of

this work.

• Developing classification methods for automatically
identifying structural failures based on the information
concerning ground motion features and material prop-
erties. Due to the inherent complex characteristics of
imbalanced data collected from our numerical model,
we investigate the effectiveness of two primary meth-
ods to solve the class imbalance problem. Moreover,
we present a comprehensive comparison of traditional
machine learning algorithms and artificial neural net-
works.

• Training regression models using both regularized lin-
ear models and neural networks with different network
architectures. The resulting model based on neural net-
works allows accurate and reliable prediction ofmultiple
QoIs, significantly outperforming linear machine learn-
ing models.

• Presenting a new approach to reducing the number of
numerical simulations by utilizing Gaussian processes.
We show that the Gaussian process regression algorithm
is a powerful probabilistic technique to extract trends
between QoIs and the seismic intensity level, producing
both the most probable estimate and the confidence
interval to quantify uncertainties associated with the
predictive model.

• Application of hybrid uncertainty simulations for the
first time on high-rise towers.

II. BACKGROUND ON PREDICTIVE MODELING
In this section, we discuss incorporating appropriate ML
algorithms into complex engineering problems for construct-
ing data-driven predictive models. In recent years, much
research has focused on developing ML-based surrogate
models in various engineering applications to reduce the
computational complexity associated with numerical analysis
techniques such as the finite element method. This section
presents a brief problem formulation and an overview of
widely used ML algorithms, including traditional approaches
that work directly with input features (e.g., linear models) and
more recent artificial NNs that provide high expressive power
and flexibility.

Let us consider a numerical model with d input variables
that are vectorized as x ∈ Rd , representing the input param-

eter space. For example, we often work with input vectors
containing the characteristics of ground motions and mate-
rial properties in structural engineering problems. We also
denote the desired QoI or output variable, such as displace-
ment or stress, by y ∈ R. For the clarity of the presentation,
we start our discussion by considering just a single output
variable, and we will later describe the case of multiple out-
puts. Throughout this section, we use lower-case and upper-
case boldface letters for vectors and matrices, respectively.

The goal of predictive modeling in scientific computing,
also known as scientific ML, is to identify linear or nonlin-
ear relationships between the input parameter space and the
desired quantity of interest. That is, we aim to learn a function
fθ : x 7→ y, which maps the input parameters to the output
space using available observations from a numerical model
Dtrain = {(xi, yi)}ni=1, referred to as the training data set.
Therefore, ML methods often involve solving mathematical
optimization problems in the following form:

θ∗ ∈ argmin
θ

∑
(x,y)∈Dtrain

l(fθ (x), y) (1)

where θ represents parameters (or weights) of the ML model
and l : R × R → R denotes a suitable loss function that
measures how well predictions match the observations.

When we obtain the optimal parameters θ∗ by solving
Equation (1), the learned model enables making predictions
regarding response values corresponding to new input param-
eters as an alternative for the numerical model, i.e., ŷ =
fθ∗ (xnew). A critical aspect of developing ML models is to
utilize appropriate evaluation metrics to assess the general-
ization error, which is also known as the out-of-sample error.
The evaluation process requires access to an additional set of
observations Dtest = {(xti , y

t
i )}

n′
i=1 that can be set aside and

used as a test set. Therefore, we use Dtrain in the training
phase to find the optimal parameter values, and we report the
performance ofML algorithms based on the test data setDtest.
ML techniques can be divided into two categories based on
the type of response values: classification and regression.

A. CLASSIFICATION
In this discussion, we first focus on classification methods
that assume the desired quantity of interest is discrete, i.e., y
takes a finite number of values. We mainly explain the prob-
lem of binary classification in which y indicates one of two
states, such as failure/safety in a structural system. Hence,
the goal is to find a function that automatically categorizes
input parameter vectors into one of the two classes, i.e., y ∈
{0, 1}. Among existing ML methods, logistic regression [35]
is a simple and practical technique that applies the sigmoid
function to a linear combination of the input variables as:

fθ (x) = σ (θT x) =
1

1+ exp(−θT x)
(2)

where σ (z) = 1/(1 + exp(−z)) represents the sigmoid
function [36] and has two horizontal asymptotes at 0 and
1. Also, θT x ∈ R is the inner product between the two
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FIGURE 1. Schematic representation of artificial NNs with L hidden
layers. The input and output layers are assumed to be layer 0 and L + 1,
respectively. Therefore, W(i ) is a weight matrix for moving from layer i to
i + 1.

vectors, i.e., linear combinations of the input features. Thus,
one can design a classification rule by introducing a threshold
parameter, such as y = 1 if fθ (x) ≥ 0.5 and zero otherwise.
Training the logistic regression model boils down to solving
an optimization problem in the form of Equation (1) using the
following loss function (known as the binary cross-entropy
loss [37]):

l(fθ (x), y) = −y log(fθ (x))− (1− y) log(1− fθ (x)), (3)

where y ∈ {0, 1}. A downside of logistic regression is that
the argument inside the sigmoid function is restricted to be a
linear combination of the input features. Therefore, the per-
formance of this technique relies heavily on the selection of
appropriate and informative features.

Artificial NNs [38] can be viewed as a generalization
of the logistic regression model, consisting of three layers:
input, hidden, and output layers (illustrated in Figure 1). Like
logistic regression, we determine the number of neurons in
the input and output layers according to the number of input
variables d and the size of the output space, i.e., number
of QoIs. Compared to traditional methods such as logistic
regression, the expressive power of NNs can be seen as a
function of the depth, i.e., number of hidden layers, and the
width, i.e., number of neurons per hidden layer. Therefore,
we can express the mapping between input parameters and
output variables as a nested set of functions with the parame-
ter set θ = {W(i)

}
L
i=0:

fθ (x) = σL+1
(
W(L)σL(W(L−1)

· · · σ1(W(0)x))
)
, (4)

where L represents the number of hidden layers and σi(·), for
each i = 1, . . . ,L + 1, is a coordinate-wise scalar activation
function for the i-th layer to introduce nonlinearities into the
model. In this formulation, eachW(i) represents the weight of
the connection from layer i to i+ 1; thus, logistic regression
is a NN without hidden layers, i.e., L = 0.
For binary classification problems, it is common to use

the sigmoid activation function for the output layer since we
can still employ the cross-entropy loss given in Equation (3).
However, a widely used choice for hidden layers is the recti-
fied linear unit (ReLU) activation function, defined as σ (z) =

max{0, z} [39]. The reason for using nonlinear activation
functions is to improve the predictive model’s performance
on data sets that are not linearly separable. Assigning linear
activation functions to all layers will result in a surrogate
model with a linear decision boundary and impractical for
complex nonlinear data. When considering the nested func-
tion in Equation (4), we use the stochastic gradient descent
(SGD) algorithm or other iterative techniques such as the
ADAM optimization algorithm [40], [41] for solving the
problem in Equation (1).

The above formulation of NNs is known as Multi-Layer
Perceptron (MLP) networks because every layer is fully
connected. That is, every neuron in each layer connects to
all neurons in other layers. The main advantage of utilizing
such network architectures is to provide a powerful frame-
work for extracting relationships between inputs and desired
QoIs without making assumptions concerning their struc-
tures. In some areas such as computer vision, the primary
goal is to analyze high-dimensional image data with spatial
structures [42]. Therefore, using convolutional layers has
gained a lot of attention in image processing tasks, where each
neuron connects to only a restricted sub-area of the previous
layer [43]. This work considers MLP networks because the
input parameter space consists of a set of predefined fea-
tures, eliminating the need to perform feature extraction using
Convolutional Neural Networks (CNNs). Section V provides
an example to demonstrate the effect of using convolutional
layers in our case study.

In addition to logistic regression and artificial NNs, other
widely used classification algorithms that work directly on
the input parameter space include support vector machines
(SVMs) and the random forest (RF) algorithm [44], [45]. The
former aims to find an optimal separating hyperplane or deci-
sion boundary that maximizes the geometric margin for pro-
ducing a classification rule. Therefore, the main objective
of SVMs is to separate the two classes with a large gap.
The RF classifiers are ensemble learning methods that fit
multiple decision trees during the training stage. In a nut-
shell, decision trees aim to search for a variable which gives
the maximum information gain or divides the data in the
most homogeneous way. Hence, a decision tree constructs a
flowchart-like tree structure that has a root node and terminal
nodes. An advantage of employing these two classification
methods is that they require tuning fewer hyper-parameters
than training NNs (e.g., depth and width of the network and
selecting appropriate activation functions). One of the main
objectives of this work is to provide a thorough comparison
of artificial NNs with traditional learning algorithms.

B. REGRESSION
Another critical form of predictive modeling is to predict
continuous response values or QoIs, i.e., y ∈ R, known
as regression analysis. One can extract a linear relationship
between the input parameter space and the QoI by consider-
ing fθ (x) = θT x, where we replaced the sigmoid function in
Equation (2) with the identity function, i.e., σ (z) = z. Thus,
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we can represent a general optimization problem for linear
regression with a regularization term that controls the trade-
off between model complexity and the fit to the training data
as follows [46]:

θ∗ ∈ argmin
θ

‖y− Xθ‖22 + λg(θ ), (5)

where λ > 0 is a regularization parameter, and ‖θ‖2 repre-
sents the Euclidean norm or `2-norm of the parameter vector.
In this formulation, y ∈ Rn contains all outputs values

given in the training data setDtrain as a column vector and the
rows of the data matrix X ∈ Rn×d are corresponding input
parameters. Two popular choices of regularization functions
are g(θ) = ‖θ‖22 and g(θ ) = ‖θ‖1, where ‖θ‖1 is the `1 norm
of the weight vector, i.e., sum of absolute values of entries.
The former is known as the ridge regression problem [47]
and the latter is referred to as the least absolute shrinkage and
selection operator (LASSO) [48]. Compared to classification
tasks discussed before in Section II-A, we use the square error
loss function (instead of the cross-entropy loss) for regression
problems. When the objective is to predict multiple QoIs,
the easiest way is to train an independent linear regression
model for each output variable.

We can utilize artificial NNs with several hidden layers for
performing nonlinear regression analysis [49]. To this end,
we replace the sigmoid activation function for the output
layer with the identity function or other suitable activation
functions for enabling the prediction of continuous values
that are not restricted to the interval (0, 1). In these situations,
we extract nonlinear relationships using activation functions
such as ReLU for the hidden layers. A significant advantage
of using neural networks for the regression problem is the
ease of incorporating multiple QoIs in the analysis by adding
more neurons to the output layer. Therefore, we can share
the same network architecture (i.e., depth and width) and the
weightsW(i), i = 0, 1, . . . ,L−1, for predicting various QoIs.
In this case, the size of the last weight matrix W(L) depends
on the number of output variables.

III. PROPOSED TWO-STAGE FRAMEWORK FOR
PREDICTIVE MODELING AND GAUSSIAN PROCESSES
This section provides a detailed discussion concerning the
proposed data-driven framework. We also discuss a new
application of Gaussian process regression for understand-
ing the influence of seismic intensity levels. As mentioned
before, the proposed data-driven framework consists of two
steps. The first stage involves investigating the accuracy
of various binary classification algorithms for automatically
identifying combinations of input parameters, i.e., different
realizations of aleatory and epistemic uncertainties, that lead
to a collapse or failure. This stage can thus be viewed as an
initial surrogate model to divide the input parameter space
into two categories for assessing the severity of structural
damage. We thoroughly examine the performance of tradi-
tional learning algorithms (namely, logistic regression, sup-

port vector machines, and random forest) and artificial NNs
with one to three hidden layers, i.e., L = 1, 2, 3.

Regardless of the specific type of machine learningmethod
being used, a significant challenge is the unequal distribution
of classes within a data set, referred to as imbalanced learning
[32], [50]–[53]. In our problem of interest with skewed class
proportions, many observations belong to the safe category
(related to as the majority class), and much fewer samples
fit in the structural failure group (referred to as the minority
class). Without taking additional steps, standard machine
learning algorithms produce classifiers with poor predictive
accuracy for the minority class and tend to classify most
new samples in the majority class. It is worth pointing out
that the appropriate assessment of the performance in this
scenario is vital. Using standard evaluation metrics, such as
the fraction of correct predictions, can be misleading and not
representative of the trainedmodel’s actual performance [54].

To solve this problem, we will incorporate two major
imbalanced learning strategies, re-sampling methods and
cost-sensitive learning, into our predictive modeling pipeline
for enhancing the performance of binary classifiers; see
Figure 2 for an illustration. Re-sampling methods are pre-
processing techniques that either add repetitive observations
to the minority class (i.e., over-sampling) or remove sam-
ples from the majority class (i.e., under-sampling) for re-
balancing the original training data set Dtrain. Among these
methods, a practical and influential algorithm is titled syn-
thetic minority over-sampling technique [55] or SMOTE for
short. The main contribution of SMOTE is to carry out an
interpolation among neighboring minority class instances,
creating new synthetic examples to increase the size of the
minority class. In the following, we briefly summarize the
three main steps of SMOTE for creating such synthetic sam-
ples. Let us denote the minority class by M and recall that
SMOTE does not process the majority class. For each x ∈
M, we compute the K nearest neighbors of x, where K is
a parameter that should be set. The second step randomly
selects one of the examples from this set that we call xneighbor.
In the third step, we pick a random number β from the range
(0, 1) for generating a new synthetic example xsyn as follows:

xsyn = x+ β
(
xneighbor − x

)
, (6)

where this interpolation creates a sample on the line between
xneighbor and x. We repeat this process for other data samples
in the minority class until we generate the desired synthetic
examples for re-balancing the training data set. After this pre-
processing step on the given training data set, we utilize stan-
dard machine learning algorithms without modifying their
loss functions.

The second class of imbalanced learning methods, known
as cost-sensitive learning [56], adjust the optimization prob-
lem given in Equation (1) during the training process by
introducing a weighted loss function. To explain this line
of work, let us further denote the majority class by S. The
weighted loss function and related optimization problem for
extracting the mapping between the input parameters and the
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FIGURE 2. Two main techniques for tackling the class imbalance problem.

desired output can be expressed in the following form:

θ∗ ∈ argmin
θ

(
βM

∑
(x,y)∈Dtrain

IM(x)l(fθ (x), y)

+βS
∑

(x,y)∈Dtrain

IS (x)l(fθ (x), y)
)
, (7)

where IM(x) and IS (x) are indicator functions that spec-
ify each training data point x belongs to one of the two
classes. Also, βM and βS are two positive scalars represent-
ing class weights to asymmetrically penalize the prediction
error. When βM = βS , the optimization problem in Equa-
tion (7) reduces to Equation (1), ignoring the disproportionate
ratio of observations in the training data set Dtrain. However,
assigning larger weights to the minority class, i.e., βM > βS ,
allows us to improve the predictive accuracy of classification
algorithms when facing imbalanced data. Compared to re-
sampling techniques, cost-sensitive learning is task-specific
because the modification process differs for various machine
learning algorithms.

So far, we explained the first stage of our data-driven
framework for classifying the input parameter space into
two classes, i.e., safe and failed simulations. The second
task is to train accurate regression models for predicting
the desired structural responses for safe simulations. While
the previous research has primarily focused on developing
regression models based on just ground motion parameters,
we extend this line of work by considering uncertainties
associated with ground motion signals and material proper-
ties, i.e., both aleatory and epistemic uncertainties. Notably,
this paper presents a detailed analysis of artificial NNs with
varying numbers of hidden layers L for predicting various
QoIs. This problem is known as multi-target regression [57]
in the machine learning literature, where the goal is to simul-
taneously predict multiple outputs given an input vector. This
work investigates the performance of NNs with the number of
neurons in the output layer set to the number of QoIs. Hence,
this technique allows us to share the network architecture for
predicting different structural responses, eliminating the need
to train individual NNs. To provide a fair empirical evalu-
ation, we compare the performance of nonlinear regression
analysis using NNs with a family of methods for solving the
least-squares problem with regularization.

The main objective of the discussed regression model
is to capture the relationship between the input parameter

space, which is a combination of the ground motion fea-
tures and material properties, and the desired QoIs. In this
paper, we present a novel application of regression analy-
sis for predicting structural responses as a function of the
seismic intensity level. The primary purpose of this task is
to reduce the number of numerical simulations when taking
into consideration multiple values of the scale factor. This
step aims to extract and exploit the relationship between
structural responses and the scale factor to conduct a subset of
numerical simulations to save computing resources. To cap-
ture the trend between the ground motion scale factor and the
desired structural responses, we can view the input variable
as the index of the scale factor, i.e., an integer that shows
the ordering of ground motion scale factors. Thus, we fix all
other input variables, such as the material properties, to reveal
the connection between the scale factor value and the desired
structural response.

From the engineering perspective, it is reasonable to con-
sider scale factors over a small range of values; thus, the num-
ber of training examples is limited, and training NNs with
a large number of parameters is impractical. To tackle this
problem and develop a model that allows quantifying uncer-
tainties associated with predictions, we propose to employ a
Bayesian technique known as Gaussian process regression
[58]. A Gaussian process is a random process, where any
input variable x is assigned to a random variable f (x) and
the joint distribution of f = [f (x1), . . . , f (xn)]T ∈ Rn is
Gaussian, i.e.,N (0,K). In this work, we follow the common
practice of assuming the mean vector is set to 0 for simpli-
fying the presentation [34]. The main ingredient of Gaussian
processes is the covariance matrixK ∈ Rn×n, which controls
the distribution over functions such as smoothness. That is,
the kernel matrix encodes nonlinear similarities between all
pairs of data points xi and xj, i.e., [K]ij = κ(xi, xj), where a
widely used choice of the kernel function is the radial basis
function with the length-scale parameter r > 0 [59]:

κ(xi, xj) = exp
(
−
‖xi − xj‖22

2r2

)
. (8)

We can use this information regarding the kernel matrix in
order to compute the predictive distribution p(ŷ|xnew,Dtrain) =
N (µnew, σ

2
new) with the following mean and variance [60]:

µnew = kTK−1y, σ 2
new = knew − kTK−1k, (9)

where k = [κ(x1, xnew), . . . , κ(xn, xnew)]T ∈ Rn, knew =
κ(xnew, xnew) ∈ R, and y = [y1, . . . , yn]T ∈ Rn.

Hence, the Gaussian process regression algorithm provides
a probabilistic model of the target function for introduc-
ing confidence intervals. Unlike standard regression analy-
sis techniques, Gaussian processes offer a straightforward
framework for quantifying uncertainties using the posterior
variance σ 2

new, which is desirable in settings with limited
training data. We will present experimental results in the next
section to demonstrate the application of Gaussian processes
when the training data set is a subset of numerical simulations
corresponding to a fraction of ground motion scale factors.
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FIGURE 3. Summary of the finite element modeling.

IV. NUMERICAL MODEL WITH HYBRID UNCERTAINTIES
A high-rise telecommunication tower which is already devel-
oped and analyzed by the authors [61] is used for case study;
see Figure 3. This example has been selected as it is a
computationally expensive finite element model compared
to the typical framed structures. It includes four main parts:
foundation, shaft, head structure, and antenna mast. The shaft
is a 315 m high reinforced concrete (RC) structure (varying
from 8 m wide at the bottom to 17 m at the top), and is the
main load-carrying element of the tower that transfers the
lateral and gravitational loads to the foundation.

As mentioned, we perform a large number of transient
analyses in this paper. On the other hand, the model-
ing aspects such as material nonlinearities, i.e., cracking,
crushing, and damage, and geometric nonlinearities, i.e., P-
Delta effects, and large displacements, as well as interac-
tion between the different structural components, should be
considered. As a consequence, performing 3D finite element
analyses to address the transient effects together with the
other nonlinearity issues becomes very time-consuming [62].
Therefore, it is desirable to look for a model that not only
requires fewer elements and less computational time, but
also provides the desired outputs with an acceptable loss of
accuracy. One of the best alternatives is to model the structure
using uniaxial fiber beam-column elements [63].

A 2D nonlinear model of the tower, including the head
structure, shaft and transition, is developed using OpenSees
[64]; see Figure 3. The service core is modeled using 2D
force-based nonlinear fiber beam-column elements [65] with
five integration points. The core cross-section is discretized
into concrete and steel fibers. The superstructure is idealized
using equivalent mass of the floors. The base elevation of the
building is constrained in the lateral and rotational degrees
of freedom, excluding the effects of soil-structure interaction
[61]; however, some research shows the response of tall
towers affected by modeling the beneath foundation and the
soil flexibility [66], [67].

The concrete is modeled based on the uniaxial Kent-Scott-
Park constitutive model [68] with degraded linear unload-
ing/reloading stiffness as shown in Figure 3. In this model fc
is the compressive strength of concrete and ε0 is the strain at
the peak strength. In addition, fu and εu are the ultimate com-
pressive stress and its corresponding stain. Steel is modeled
based on the Giuffrè-Menegotto-Pinto model with isotropic
strain hardening, in which a transition curve is defined to
avoid the unsmoothed response of bi-linear kinematic hard-
ening behavior at the yield point, and consequently, the path-
dependent nature of the material can be traced effectively
[69], [70]. Furthermore, the Bauschinger effect [71] is intrin-
sically defined in the material stress-strain curve so that the
deterioration of strength in the element behavior is automat-
ically modeled.

In this study, Rayleigh damping is adopted where the mass
proportional part is constant during the analysis; however,
the stiffness proportional part alters according to the updated
stiffness matrix of the structure. In other words, the damping
property is updated for each load step of the transient analysis.
One should note that there are some preliminary studies
on the vibration characteristics of the telecommunications
towers proposing a new form of damping model [72] which
is beyond the objective of this paper.

The reader should note that the emphasis of this paper is
on proposing a generic framework for combining epistemic
and aleatory uncertainties in the context of PRA with limited
and imbalanced data. Therefore, the precise calibration and
verification of the numerical models is not within the scope
of the current study. However, we provided as many as pos-
sible peer-reviewed publications to support the engineering
aspects. We made some more assumptions: In the numerical
model, the bounded Gaussian distributional model is used.
A total of 10 randommodels are generated using LHS, to con-
sider the variability in 18 material parameters (since there
is no correlation among the random variables, we choose a
small batch of samples). A flat coefficient of variation (COV)
of 10% is assumed in all cases (except area which is 5%).

• Component level - Concrete: Compressive strength,
strain at maximum strength, crushing strength, strain at
crushing strength, weight per volume;

• Component level - Steel: yield strength, initial elastic
tangent, strain-hardening ratio, area of bars;

• System level: Damping ratio.

A total of 100 ground motions are selected randomly from
the PEER database [73] to cover a wide range of poten-
tial ground motions. This is in line with Cloud analysis,
where a large data set of signals are applied to the structural
system [74]. For each ground motion, 31 intensity measure
(IM) parameters are extracted to develop a side information
matrix [45]. These 31 IM parameters are selected from a
comprehensive list of over 70 IM parameters found in [14].
Finally, in order to simulate the structural response under
high intensity seismic actions, the acceleration time history
of the initial un-scaled records are multiplied by 8 different
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FIGURE 4. Matrix of binary responses (safe and failed) used for classification and regression. Left to right the scale
factors are increased.

scale factors (SF), i.e., 1, 5, 10, 20, 40, 60, 80, and 100.
This method is called scaled cloud analysis. While some of
these SF values seem to be very high, one should note that
the objective of this paper is to push a handful of records to
collapse regions to generate a database consisting of both safe
and failed simulations.

Figure 4(a) shows the binary (black: failed, white: safe)
response combination of numerical simulations. The eight
matrices present the 8 SFs and within each matrix the rows
are 100 (scaled) records and the columns are 10 structural
realizations. The first three matrices are gray since there is no
failure reported in those SFs (SF = 1, 5 and 10). The fourth
SF = 20 contains only one failure over 1,000 simulations.
Technically, if there is a failure in a particular cell in SF i,
all higher SFs should also report a failure in that particular
cell. However, there are few cases which show failure in
SF i and not i + 1. This can be attributed to the so-called
resurrection phenomenon explained in [75]. In the context of
this paper (and for simplicity) we revise/update the matrix
of the structural responses to have failure in i + 1, if there is
already a reported failure in i. This processed matrix is shown
in Figure 4(b).

In this paper, we consider three quantities of interest
(QoIs): maximum top displacement (1max), maximum base
shear (Fmax), and maximum total relative displacement
(δmax). Figure 5(a) presents the variation of 1max as a func-
tion of SF and structural realizations. For lower SILs where
there is no (i.e., SF = 1, 5, and 10) or only few (i.e., SF =
20) failed cases, the 1max is limited to 100, 500, 1000, and
2000 mm, respectively. In these cases the variation of 10 dif-
ferent structural realizations is small compared to seismic
responses. This is also partially true for SF = 40. However,
for higher SFs (i.e., SF= 60, 80, and 100) there is a large vari-

ation among different LHS-based structural models before
failure. These figures also show the percentage of failed cases
for each SF. For example, for SF= 100, 40-65%ofmodels are
failed (with the median of 55%). This is also consistent with
the physics of the problem in which some random variables
associated with high intensity ground motions are activated.

Figures 5(b) and 5(c) compare the median curves from
10 LHS-based random structural realizations and 8 differ-
ent SFs for 1max and Fmax , respectively. While the general
trend is similar (as expected), the base shear has larger lower
bounds especially for higher SFs. Finally, Figures 5(d) and
5(e) present the relationship between different input and out-
put quantities (in green) including the failed simulations (in
red) for higher scale factors (i.e., SF = 20 to 100). As seen,
the (safe) input-output pairs have a linear trend in logarithmic
scale implying a nonlinear relationship in Cartesian coor-
dinate system. The failed cases (red) follow a log-normal
distribution as well (not shown here).

V. EMPIRICAL EVALUATION
In this section, we evaluate our proposed data-driven frame-
work using observations from the numerical model discussed
in Section IV. The first part of this section relates to training
and assessing binary classification algorithms for automat-
ically categorizing combinations of input parameters into
two classes, i.e., safe and failed simulations. Our goal is to
demonstrate the performance of artificial NNs compared to
traditional ML algorithms. We also exhibit the significance
of utilizing imbalanced learning strategies in our problem of
interest. We then develop regression models for extracting
relationships between the input parameter space and three
QoIs, i.e., maximum top displacement,1max , maximum base
shear, Fmax , and maximum total relative displacement, δmax .
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FIGURE 5. Dependency of responses to scale factors, structural realizations, and ground motion intensity measures.

FIGURE 6. Evaluating classification and regression models.

Particularly, we evaluate the performance of NNs for the
case of multi-target regression. Figure 6 summarizes the main
steps involved in developing classification (Section V-A) and
regression (Section V-B) models in our framework. Note that
in these two sections, the input parameter space includes
various combinations of ground motion features and mate-
rial properties. However, regression analysis in Section V-
C considers just a single input variable, i.e., ground motion
scale factor. Thus, unlike Section V-B, themain objective is to
extract the trend between a structural response and the ground
motion scale factor (instead of considering all input variables
together).

In our numerical model, we have a total of 31 ground
motion features and 18 material properties; thus, the dimen-
sion of the input parameter space is d = 49. Moreover,
we consider 8 scale factors, 100 realizations of ground
motions, and 10 different material combinations, resulting

in a database of 8,000 numerical simulations to be used for
training and evaluation purposes. As the input variables fall
in significantly differing ranges, the first step of our data
normalization is to apply the z-score transformation [76].
Thus, we scale each input variable to have the mean 0 and a
variance of 1. For predicting QoIs simultaneously, we employ
a normalization technique, known as min-max normalization
[77], so that the minimum value of each QoI gets transformed
into 0, the maximum value gets transformed into 1. After
normalizing the input parameters and target values, we use
8-fold cross-validation to generate training and test data sets
Dtrain and Dtest. We split the available observations from our
numerical model into 8 smaller sets or ‘‘folds,’’ and we use 7
of these groups as the training data set and the remaining part
of the data is used for reporting accuracy. Thus, repeating this
process 8 times allows us to include all of the data exactly
once for assessing predictive power. For example, for the
binary classification task, we divide the available 8,000 simu-
lations into 8 groups, which means that we train 8 classifiers
using 7,000 training data samples and the remaining 1,000
simulations are used for reporting performance. We present
evaluation metrics over the 8 trials in the form of a boxplot.

The proposed data-driven framework is implemented in
Python using a machine with Intel Core i9 3.6 GHz CPU and
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32 GB RAM. We use the scikit-learn implementation
of traditional machine learning algorithms, such as logistic
regression and regularized linear regression. We implement
artificial NNs using Keras, which is an high-level API for
TensorFlow. In all experiments, we set the number of
epochs to 50, batch size is equal to 128, and the Stochas-
tic Gradient Descent (SGD) optimization method is used
with a fixed learning rate of 0.001. To implement cost-
sensitive learning algorithms, we use built-in functions in
scikit-learn and Keras. We use imblearn imple-
mentation [78] of SMOTE in our experimental results. All
parameters associated with ML algorithms are set to their
default values unless otherwise stated.

A. BINARY CLASSIFICATION
This section compares traditional ML algorithms with arti-
ficial NNs consisting of one to three hidden layers (i.e.,
L = 1, 2, 3). The three traditional classification algorithms
are support vector machines (SVM), random forests (RF),
and logistic regression (LogReg). We select the radial basis
function kernel for SVM and the number of trees in RF is
100. These three methods are widely used in the literature
and cover various learning techniques, such as margin-based
classification and ensemble learning. Since we are focusing
on a binary classification problem, we use target values 0
and 1 for failure and safe simulations, respectively. In this
problem, the input training data is highly imbalanced because
only 1,063 simulations lead to structural failure (13% of total
simulations). Thus, we will investigate the effectiveness of
two imbalanced learning strategies discussed in the previ-
ous section (illustrated in Figure 2). For each ML algorithm
used in this experiment, we refer to re-sampling methods as
‘‘sampled’’ and use ‘‘weighted’’ for cost-sensitive learning
methods. For over-sampling using SMOTE, the default value
of the number of nearest neighbors is set to 5, and the num-
ber of samples in the two classes will be equalized. Hence,
the number of training examples is significantly higher than
7,000 when using SMOTE because of generating synthetic
samples. The ‘‘weighted’’ mode automatically adjusts the
class weights, i.e., βM and βS in Equation (7), inversely pro-
portional to class frequencies in the input training data; thus,
the number of training examples in Dtrain will be unchanged.

Figure 7 presents classification accuracy results in the form
of a boxplot using two evaluationmetrics. In the binary classi-
fication problem with y = 0 (negative class) and y = 1 (pos-
itive class), true negatives and true positives are samples that
are correctly classified. On the other hand, false negatives and
false positives are samples that are misclassified. A widely
used metric to assess classification is basic accuracy, which
is the ratio of correct predictions to the total number of
samples in the test data setDtest (i.e., 1,000 test samples in our
setting). However, in the case of imbalanced data, this metric
is misleading since the minority class holds a small effect on
this measure [79]. Therefore, this section utilizes ‘‘balanced
accuracy,’’ which avoids inflated performance estimates on
imbalanced data sets. Balanced accuracy is defined as the

arithmetic mean of sensitivity (true positive rate) and speci-
ficity (true negative rate) in the following form:

balanced accuracy =
1
2

( TP
TP+ FN

+
TN

TN+ FP

)
(10)

where both accuracy and balanced accuracy take values
between 0 and 1, and higher values indicate better predictive
models.

Based on Figure 7(a), we see that utilizing imbalanced
learning methods generally improves the performance of the
three traditional ML algorithms. When facing imbalanced
data, using standard learning methods without modifying
them leads to higher accuracy levels, but the balanced accu-
racy score is lower because of overlooking the minority class.
Therefore, we mainly use the balanced accuracy score to
compare the performance of classification methods in this
experiment. Except for random forests, cost-sensitive learn-
ing (referred to as ‘‘weighted’’ in the plot) turns out to bemore
effective than SMOTE. Another advantage of cost-sensitive
learning is its lower time complexity during the training phase
because the number of examples from theminority class is not
increased to re-balance the training data. Among traditional
learning algorithms with imbalanced learning, support vector
machines and logistic regression have similar performance
(the median balanced accuracy gets very close to 0.92) and
outperform random forests. Interestingly, we observe that the
random forest algorithm’s standard loss function is less sensi-
tive to the class imbalance problem. Thus, if we cannot utilize
imbalanced learning methods, random forests outperform the
other two classification algorithms.

Figure 7(b) reports classification results for NNswith vary-
ing numbers of hidden layers. We use a brute-force approach
to determine the number of neurons in each hidden layer.
We use fully connected hidden layers with the ReLU acti-
vation function. For all three cases, we set the number of
neurons per hidden layer to 16. The main reason for this
choice is that we did not observe significant improvements
by changing the number of neurons per hidden layer when
L = 2 and L = 3. Moreover, using the same number of neu-
rons allows us to keep the width of the designed neural net-
work unchanged. Like traditional learning algorithms, we see
that employing imbalanced learning techniques enhances
the accuracy of NNs, and cost-sensitive learning leads to
improved results compared to SMOTE. When comparing
weighted NNs as we increase L, we see a consistent trend
that increasing the number of hidden layers improves the
trained model’s predictive power. However, increasing the
number of hidden layers requires more training observations,
and there is a trade-off between the model complexity and
the training size. Based on Figure 7(b), we observe that NNs
with L = 3 hidden layers leads to highly accurate results
with low standard deviation. For example, using NNs with
L = 1, 2 and weighted logistic regression, the minimum
value of the balanced accuracy score over 8 trials is close
to 0.90. However, the minimum value is slightly lower than
0.92 when using NNs with L = 3. Therefore, we can argue
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FIGURE 7. Comparing performance of classification algorithms using 8-fold cross-validation and two evaluation metrics.

that using 3 hidden layers produces an accurate classification
model to be used as a surrogate model in this experiment.

To further demonstrate the significance of employing
imbalanced learning, we plot the confusion matrix for one
of the 8 trials when the classifier is a NN with L = 3 hidden
layers. A confusion matrix is another evaluation metric with
a matrix format, where each row represents the samples in
an actual class, i.e., y ∈ {0, 1}. Each column represents the
instances in a predicted class, i.e., ŷ ∈ {0, 1}. Therefore,
the entries off the main diagonal indicate incorrect predic-
tions, and we can easily identify false positive and negative
rates. The confusion matrix in Figure 8(a) corresponds to
the NN classifier without using any imbalanced learning
strategy. As we can observe from this confusion matrix,
the trained model correctly classifies 855 out of 886 samples
from the majority class (approximately 97% of instances).
However, only 74% of test data points from the minority
class are correctly classified, which is significantly lower
than the majority class rate. Such a model is not valuable
because the minority group corresponds to simulations that
lead to structural failure, and identifying them is extremely
important. Fortunately, based on Figure 8(b), we observe that
using cost-sensitive learning substantially improves the ratio
of correctly classified points from the minority class, where
98% of test samples are correctly classified. At the same time,
we notice a modest decrease in the classification accuracy for
the majority class.

The next experiment examines the impact of utilizing con-
volutional layers on the classification performance. As men-

FIGURE 8. Confusion matrix for one of the trials with 1000 test data
points.

tioned earlier, a Convolutional Neural Network (CNN) con-
sists of both convolutional and fully-connected layers to
extract features from data with spatial or temporal patterns.
Neurons in a convolutional layer will only be connected to
a small region of the layer before it, instead of all neurons
in a fully-connected manner. The sets of weights for con-
volutional layers is referred to as a filter or kernel. Fig-
ure 9(a) plots the confusion matrix for MLP with L = 3
fully-connected hidden layers on a trial with 1000 test data
points (we set the number of neurons per hidden layer to 16).
In Figure 9(b), we implement a CNN by using the Conv1D
layer ofKeras for extracting features before the three hidden
layers. The convolutional layer has 64 filters of size 2. As the
main purpose of this experiment is understanding the effect
of using CNNs, we did not use any imbalanced learning tech-
nique. These results show that using CNNs does not notice-
ably affect the classification accuracy level because the input
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FIGURE 9. Examining the classification performance on a trial with 1000
test data points using MLP (L = 3 hidden layers) and CNN (Conv1D layer
plus L = 3 hidden layers). Each fully-connected layer has 16 neurons.

FIGURE 10. Learning curves of model performance on the train and test
data.

parameter space is relatively small (i.e., d = 49 features)
without spatial or temporal patterns. Moreover, we observed
that increasing the kernel size leads to a similar trend and
MLPs perform on par with CNNs in our case study.

In the final experiment of this section, we plot the values
of the cross-entropy loss and the classification accuracy as a
function of the epoch number for MLP with L = 3 hidden
layers and 16 neurons per hidden layer. These results are
shown in Figure 10, where we use 6400 samples for training
and the remaining 1600 points form the test set. Comparing
the test metrics to the train metrics reveal that the neural net-
work with L = 3 hidden layers manages to avoid overfitting.
This is consistent with our observation in Figure 7 because
the variation in cross-validation is relatively small.

B. REGRESSION ANALYSIS
In this section, our goal is to evaluate the performance of
regression models using traditional machine learning algo-
rithms and NNs that enable capturing nonlinear relationships.
We remove the minority class, i.e., structural failure, from
the entire data set used in the previous section. Also, 8-
fold cross-validation is used to generate training and test
data sets. The input parameter space consists of d = 49
features representing ground motion and material properties.
As mentioned before, we consider three quantities of interest:
maximum top displacement, 1max , maximum base shear,
Fmax , and maximum total relative displacement, δmax . In the
data normalization step, we use the min-max normalization
so that all three output variables are in the interval (0, 1).

Figure 11(a) compares three standard regression algo-
rithms: ordinary least squares or OLS for short, ridge regres-
sion (Ridge), and LASSO. Recall that based on Equation (5),
OLS sets the regularization parameter λ = 0. Ridge and
LASSO use regularization terms based on the `2-norm and
`1-norm of the weight vector. Using hyper-parameter tuning,
we set λ = 0.1 and λ = 0.01 for Ridge and LASSO,
respectively. Moreover, we use two evaluation metrics in
this experiment: explained variance and root mean square
error. To define these two scores, let y denote the actual
target outputs, and we use ŷ to denote the estimated outputs
generated by a regression model. The explained variance is
defined as follows:

explained variance = 1−
Var(y− ŷ)
Var(y)

, (11)

where Var(·) computes variance of its argument. In this case,
the best possible score is 1, and lower values indicate an
inferior model. Root mean square error represents the square
root of the second sample moment of the differences between
predicted values and observed values forDtest. That is, we get√
(1/n′)‖y− ŷ‖22, where n

′ is the size of the test data set.
To interpret this regression score, note that a value of 0 means
a perfect fit to the data, and lower values indicate better
performance (hence, opposite of explained variance).

We observe that OLS and ridge regression outperform
LASSO for all three quantities of interest according to the
reported results. Moreover, the median explained variance
score is greater than 0.92 when using OLS and ridge regres-
sion across three output variables. Also, the median root
mean square error is lower than 0.045, except for LASSO.
Therefore, we conclude that linear models provide reasonable
surrogate models for extracting relationships between the
input variables and the three QoIs. Another interesting obser-
vation is that a model with a higher explained variance score
does not necessarily lead to better performance concerning
other evaluation metrics. For example, based on explained
variance, estimating base shear is more accurate than the
other output variables. However, we notice that the trained
model for estimating base shear is the least accurate model
according to the root mean square error.

We present the two metrics for regression tasks in Fig-
ure 11(b) for artificial NNs with L = 1 to L = 3 hidden
layers. When L = 1, the number of neurons for the hid-
den layer is set to 32. For the other two cases, i.e., L =
2, 3, we select (32, 16) and (32, 16, 16) neurons per hidden
layer and all activation functions for hidden layers are recti-
fied linear units (ReLUs). Moreover, we set the number of
neurons in the output layer to 3 since we aim to estimate
three target values. As we see, all trained NNs result in
improved regression results for the three quantities of interest.
Notably, the minimum root mean square score using linear
regression models is roughly 0.03, whereas the maximum
value of root mean square error for NNs is approximately
0.035. Therefore, utilizing NNs significantly increases the
explained variance score and reduces root mean square error
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FIGURE 11. Comparing performance of regression models for three quantities of interest using 8-fold cross-validation.

for all three quantities of interest. This experiment shows the
importance of nonlinear regression techniques for extract-
ing relationships between the input parameter space and the
structural responses. While we used the identity function for
the output layer, the rectified linear unit (ReLU) activation
function in hidden layers enabled capturing nonlinear trends
in the training data set. We did not observe any significant
improvement in this experiment by increasing the number
of hidden layers L. For example, Figure 12 compares the
performance of MLP with L = 3 amd L = 6 hidden layers
for predicting 1max (we use 16 neurons in each additional
hidden layer). In this experiment, we also explore the use
of dropout for regularizing neural networks. The dropout
layer randomly sets input units to 0 with a rate specified by
the probability parameter p. Based on the reported results
in Figure 12, we notice that increasing the number of hidden
layers does not substantially improve the performance, and
using dropout with p = 0.1 degrades the performance in
our case study. Therefore, we conclude that using L = 3
hidden layers provides a reasonable trade-off between the
model performance and complexity due to the limited number
of observations in our case study.

To further demonstrate the predictive power of the neural
network with L = 3 hidden layers (which achieved the best
scores in the previous experiment), we present three scatter
plots of actual versus predicted values in Figure 13. We focus
on the neural network’s predictions in one of the eight folds
used in cross-validation. We observe that almost all points are

FIGURE 12. Investigating the impact of increasing the number of hidden
layers (L = 3 vs. L = 6) and using dropout for regularization.

close to a regressed diagonal line (i.e., equity line), and evenly
distributed on both sides. Therefore, there is a strong corre-
lation between the model’s predictions and its actual results.
Moreover, as expected, we see that the obtained predictive
models are more accurate in regions with a greater density
of training instances. Thus, this experiment suggests that we
can improve regression models’ performance by generating
additional training data points in low-density areas, i.e., closer
to 1.

We conclude this section by discussing the computational
complexity of machine learning-based surrogate modeling
in scientific computing. Two main factors contribute to the
overall cost: running numerical simulations of complex mod-
els to generate training data and the time complexity of
training machine learning algorithms. The former is typi-
cally the dominant cost due to the high computational cost
of running numerical models for complex problems, requir-
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FIGURE 13. Scatter plots of actual versus predicted values for three quantities of interest when using the neural network with L = 3
hidden layers.

ing days or weeks of computing time. On the other hand,
training machine learning algorithms on a data set with a
few thousand samples requires much less computation time.
In our regression analysis, linear regression models and neu-
ral networks take about 0.1 and 15 seconds, respectively.
Therefore, the increase in time complexity by utilizing neural
networks is negligible compared to the cost of running com-
plex numerical simulations. Additionally, neural networks
allow for developing more accurate predictive models as we
saw.

C. GAUSSIAN PROCESSES
A comprehensive data-driven seismic risk analysis frame-
work requires selecting various ground motion scale factors
and conducting numerical simulations for all of those val-
ues. Therefore, a challenging task is to generate sufficient
amounts of training data from numerical simulations to be
used for training ML algorithms. An interesting question that
has not been addressed in the previous research is whether we
can extract nonlinear relationships between scale factors and
the structural responses. In this problem, the input variable is
the the groundmotion scale factor (SF), which takes eight val-
ues in our numerical model, i.e., 1, 5, 10, 20, 40, 60, 80, and
100. Unlike the regression analysis in Section V-B, we have
access to a limited number of observations for training and
evaluating a regression model. For example, if we conduct
numerical simulations for half of scale factor values, we only
have access to 4 observed values, and the goal is to estimate
the remaining 4 target outputs. Therefore, training neural
networks and using cross-validation is impractical. To solve
this issue, we proposed to use the Gaussian process regression
algorithm (Section III).

Figure 14 exemplifies the performance of Gaussian pro-
cesses for estimating the desired structural responses as a
function of the scale factor. In this experiment, we use the
radial basis kernel function, and the nice feature of Gaus-
sian processes is that the kernel’s hyper-parameters are opti-
mized automatically during the training process. In each
case, the input to the Gaussian process regression algorithm
consists of 4 observations (denoted by green circles) and the
output variables are either base shear or relative displacement.

Gaussian processes allow us to obtain a point prediction using
its mean and uncertainty quantification using its posterior
variance. To this end, we plot the 95% confidence interval
in each case for comparison with true values obtained by
performing numerical simulations. As we see in Figure 14(a)
and 14(d), the trained regression models are confident in
their predictions (variance is almost 0), and they provide
accurate estimates of missing entries or simulations. On the
other hand, Figure 14(b) represents a situation where the
trained model accurately predicts missing target values for
SF = 5, 20. However, we can easily recognize that the
estimated value for SF = 100 is not reliable because of the
high variance for that point. Therefore, in this case, we can
only perform another numerical simulation for SF = 100,
which still leads to computational savings. To have a fair
comparison, we present another example in Figure 14(c) that
the trained model leads to high variances for most missing
entries and; thus, the inherent uncertainty quantification tells
us that we need to perform a complete set of numerical
simulations for this case. Overall, this experiment exhibits
that the Gaussian process regression algorithm allows us to
(1) extract nonlinear relationships between the scale factor
and structural responses, and (2) understand our uncertainty
regarding the predictions.

To clarify the previous observation concerning the esti-
mation of confidence intervals, we compare Gaussian pro-
cess regression with kernel ridge regression (KRR) [80].
Similar to support vector machines, KRR uses a kernel
function to extract nonlinear relationships. In this experi-
ment, we use the polynomial kernel function with degree
2. In Figure 14(a) and 14(d), we observe that KRR pro-
vides accurate estimates of the missing simulations, simi-
lar to Gaussian process regression. However, KRR is not
capable of returning confidence intervals, which is prob-
lematic when predicted values are not accurate. For exam-
ple, we see in Figure 14(c) that the estimated value for
SF = 100 using KRR is far from the actual value. On the
other hand, the confidence interval obtained from Gaussian
process regression allows us to understand when predicted
values are reliable, which is essential for scientific computing
applications.
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FIGURE 14. Gaussian process regression (in blue color) and kernel ridge regression (KRR) as a function of scale
factor for estimating missing entries or simulations.

VI. CONCLUSION
This paper presented a two-stage framework for developing
surrogate models, consisting of classification and regression
steps. We demonstrated the superior performance of neu-
ral networks and the effectiveness of imbalanced learning
for training accurate classifiers that automatically identify
failed simulations. Although the training data set for the
classification task is challenging because of being imbal-
anced, our experiments show that the integration of neural
networks with three hidden layers and cost-sensitive learning
results in 90% accuracy and balanced accuracy. Therefore,
we confirmed the practicality of the proposed framework
for distinguishing severe damages to civil structures. More-
over, our regression analysis using two evaluation matrices,
i.e., explained variance and root mean square error, reveals
that neural networks are more expressive than linear regres-
sion models, providing valuable predictive modeling tools in
scientific computing. For example, we observed that using
neural networks with three hidden layers lead to accurate
predictions with a minimum explained variance of 0.97. The
last experiment explored the use of Gaussian processes for
reducing the number of simulations when considering vari-
ous scale factors. Unlike the previous research, our numer-
ical model incorporated various scale factors to provide a
comprehensive seismic hazard analysis study. We showed
that Gaussian processes enable us to predict the values of
missing simulations with corresponding uncertainties for
reducing the computational cost associated with numerical
models.

An important future research direction is to explore the
trade-off between the number of numerical simulations and
the accuracy of the proposed framework. In this work,
we considered all combinations of aleatory and epistemic
uncertainties for the eight scale factors. On the other hand,
the Gaussian process regression model provides reliable esti-
mateswhen performing simulations for a fraction of scale fac-
tors. Therefore, our future work will utilize partial observa-
tions fromGaussian processes to train the proposed two-stage
framework. We will study the impact of using estimated val-
ues on the performance of both classification and regression
steps. Last but not least, an important step towards developing
an optimal surrogate model is to identify a group of efficient
and sufficient input parameters. The future research should
focus on developing a group of scalar meta-features for a
stochastic time-series in order to reduce the computational
burden of meta-modeling.

The proposed framework applies to a wide range of scien-
tific computing problems, including computational materials
science. The central goal is to predict material properties
given a set of input parameters. While the previous research
focused on just developing regression models, our frame-
work allows for identifying combinations of input parameters
that lead to materials with undesirable properties. Thus, our
framework’s second step trains a regression model on only
a fraction of the available data set comprising informative
input-output pairs. Other applications of the proposed frame-
work include constructing surrogate models in computational
biology, fluid dynamics, and risk analysis of natural hazards.
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