
Received December 25, 2020, accepted January 6, 2021, date of publication January 18, 2021, date of current version February 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3052525

A BitTorrent Mechanism-Based Solution for
Massive System Deployment
STEVEN J. H. SHIAU1, YU-CHIANG HUANG2, YU-CHIN TSAI1, CHEN-KAI SUN1,
CHING-HSUAN YEN2, AND CHI-YO HUANG 3
1National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu 30076, Taiwan
2Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan
3Department of Industrial Education, National Taiwan Normal University, Taipei 106, Taiwan

Corresponding authors: Steven J. H. Shiau (steven@nchc.org.tw) and Chi-Yo Huang (cyhuang66@ntnu.edu.tw)

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST 108-2634-F-492-001, and in part
by the National Center for High-Performance Computing in Taiwan.

ABSTRACT System deployment of a computer environment plays a critical role in the daily administration
of computer systems, and tasks of massive deployments may take a lot of time for data center administra-
tor(s). The existing solutions for massive deployment normally consist of storage spaces and extra computer
servers for running deployment services. Existing solutions of multicast massive deployment are not robust
because the overall deployment performancewill worsen if one client machine fails. Because of the limitation
of the network protocol, a multicast solution is not scalable. Although scholars have proposed solutions
based on BitTorrent (BT) to overcome performance and scalability problems, solutions are not good enough
because they still require the storage space to save the image file. In this paper, we present a novel mechanism
of massive deployment called ‘‘BT deployment mechanism from the raw device’’ (BDMfRD), which differs
from conventional solutions in that it avoids creating any image file in the deployment process or using
external storage for it. The proposed solution was verified by conducting 10 experiments to replicate the
50 GB system of the source machine to 1–32 destination computers. Experimental results showed that the
proposed method reduced the total time for deploying 32 computers by 45.289%. The implemented software
is the first massive deployment solution that provides light, robust, efficient, and scalable capabilities
simultaneously.

INDEX TERMS System deployment, bare-metal provisioning, massive deployment, free software, open
source, cloning, imaging, peer-to-peer (P2P), BitTorrent (BT).

I. INTRODUCTION
The activity to enable the uses of an operating system (OS)
and applications in computers is called system provision-
ing or system deployment [1]–[3]. As information is digi-
tized, scientific computing and information education play
increasingly important roles in the modern world, and sys-
tem deployment becomes critical daily because the OS and
applications are the bases for computer services. In computer
terminology, creating a backup (or saving information) is
the process of storing the contents of a disk or a partition
to an image file [4]; meanwhile, restoring refers to writing
an image to a disk or a partition. The processes of backing
up or restoring files are called imaging whereas the process
of duplicating the data from one machine’s disk partition

The associate editor coordinating the review of this manuscript and

approving it for publication was Zeev Zalevsky .

directly to another disk partition, without saving any image,
is called cloning. Disk restoring or cloning can be done
one to one or one to many in the local disks on the same
computer as well as on multiple destination computers. When
the process is executed on numerous destination computers,
it is called massive system deployment, or massive deploy-
ment for short. In order to reduce system administration’s
maintenance efforts significantly, an efficient scheme for
massive deployment is a must. As the number of machines
to be deployed concurrently increases, the performance and
functionality of massive deployment techniques have to be
enhanced. Many researchers and developers (e.g., ROCKS
and OpenGnSys [1], [5]) have tried to reduce the gap between
users’ needs and the current massive deployment solutions
by using solutions that rely on the automatic installation,
network booting, and network protocols (e.g., unicast, broad-
cast, multicast and peer-to-peer [P2P]). Some vendors also

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 21043

https://orcid.org/0000-0001-7673-6880
https://orcid.org/0000-0002-4459-3421


S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

providemassive deployment solutions, such as Norton Ghost,
Acronis True Image [3], Commercial Scale-Out (CSO) [6],
the P2P deployment patent by IBM Corporation [7], and
the method and apparatus for operating system deployment
patented by Sun Microsystems, Inc. [8]. Among these com-
mercially available solutions, the P2P mechanism being pro-
posed in the patent of IBM [7] is described as follows: ‘‘All
of the computer system will be sorted as different groups.
. . . For example, if the total computers are classified into
three groups, the first group sends a wake-on-LAN (WoL)
instruction and boots each of the second group in the begin-
ning. The second group identifies a set of third group that
corresponds to each of the selected second group. Following
the same mechanism, the second group sends the WoL signal
to each of the third group, and the third group is booted
over the computer network from the second group.’’ This
approach is one of the P2P solutions, and apparently the
solution proposed by IBM can provide good scalability for
massive deployment. However, an image has to be stored
in each level of computers belonging to the group. Thus,
more disk space is required, meaning there is still room for
improvement.

Some firms also provide different solutions for massive
deployment by using hardware. One example is the recovery
card [9] from the Taiwan-based company TOPOO Technol-
ogy, which uses a peripheral component interconnect (PCI)-
based interface card and embeds the data replication soft-
ware in its read-only memory (ROM). Every computer to
be deployed should be equipped with this peripheral card to
receive the data blocks being forwarded by the server. How-
ever, this solution is not flexible as every update in the replica-
tion software has to be written to the erasable programmable
read-only memory (EPROM), which is not easy for a system
administrator. In addition, the expense is a burden as extra
costs will be required to add a PCI card in every machine.

Generally speaking, existing solutions for massive deploy-
ment normally consist of storage spaces and extra computer
servers for running deployment services. Existing solutions
for multicast massive deployment are not robust because
overall deployment performance will worsen if one client
machine fails. Because of the limitation of the network
protocol, the multicast solution is not scalable. Our previ-
ous studies [3], [10] have revealed that the network-based
deployment system using unicast, broadcast, and multicast
mechanisms have some drawbacks. Such systems cannot be
enhanced to achieve good efficiency and scalability. The BT
deployment mechanism from an image (BDMfaI) solution
proposed in our previous study [10] was based on the BitTor-
rent (BT) protocol [11], a P2P [12] file-sharing technology
developed approximately 20 years ago. The BDMfaI has pro-
vided a robust and scalable scheme for massive deployment.
However, some improvements are still required so that the
BDMfaI solution can finish massive deployment in a lighter
and more efficient way, where lighter means the extra disk
space required is reduced. The original BDMfaI solution
requires extra storage spaces to store the image files. A lighter

solution can resolve this problem. Meanwhile, the original
system is inefficient as the disk of the source machine has to
be stored as an image and then the image must be converted
to the file system blocks transferring (FSBT) format [10].
These storing and converting actions are time consuming and
make the BDMfaI solution an imperfect solution when the
source machine’s hard drive contains huge used file blocks
by the installed OS and applications. For example, when the
OS and applications have the data size of about 100 GB,
the BDMfaI solution might have to spend 30 minutes saving
the contents of a disk as an image and then another 30minutes
converting the image to the FSBT format required by the
BDMfaI solution.

Nevertheless, the existing massive deployment solutions to
be discussed in section II have some problems or limitations,
which include the requirement of extra hardware resources,
unrobustness, inefficiency, and unscalability. No existing
solution(s) can address these issues altogether. To solve
these problems and limitations, we propose a novel massive
deployment solution that is lighter, more efficient, robust,
and scalable. The proposed solution differs from conventional
solutions by avoiding the creation of any image file in the
deployment process or adopting external storages for the
image file. In addition, for efficiency, robustness, and scal-
ability, BT was chosen as the data communications protocol
for massive deployment.

The focus in this study is to neglect the time required
to save the disk of the source machine as an image and
convert the image to the FSBT format. To greatly enhance
the performance, the system architecture of available solu-
tions [10] will be modified. Therefore, in Section 3, a novel
solution called the BT deployment mechanism from the raw
device (BDMfRD) is proposed. A raw device is a special
kind of block device file that allows for accessing a storage
device directly [13], bypassing the OS buffer. The proposed
BDMfRD solution does not need to save the contents of disks
of the source template machine as an image and convert these
images as the FSBT format.

To achieve the goals of reading directly from and writing
directly to the hard drives of the source machines, the open-
source programs Partclone [14] and EZIO [15] were modified
to provide the required functions that the BDMfRD solution
needs. In addition to proposing the solution, the implemen-
tation and improvements of existing solutions [10] will also
be discussed. To verify the feasibility and demonstrate the
efficiency, the proposed BDMfRD solution was tested and
verified in experiments by deploying the OS and applica-
tions from 1 up to 32 physical personal computers (PCs) in
the same place. Based on the proposed BDMfRD solution,
the total time of deploying 32 computers was reduced from
2526 seconds (secs) to 1382 secs when compared with the
earlier BDMfaI [10] solution, resulting in a time reduction of
45.289%. The experimental results, comparisons, and discus-
sions in this research demonstrate the feasibility, efficiency,
and performance of the proposed solution. With the proposed
method, a system administrator of cluster computing, for

21044 VOLUME 9, 2021



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

example, can put the software we developed in this research
in a USB flash drive, boot the template machine with it, and
dispatch its OS and applications in the internal storage device
to other machines or clusters. There is no need to create
any image file in the process or use any external storage for
storing the file. To the best of the authors’ knowledge, this
is the first to provide a light, robust, efficient, and scalable
solution for massive deployment.

The rest of this paper is organized as follows.
Section 2 reviews and discusses the system deployment meth-
ods and network protocols. Section 3 defines the proposed
system architecture for the massive deployment using the
BDMfRD solution. The experimental results are described in
Section 4. The differences and performance of the proposed
BDMfRD solution in this study are compared with our
previous BDMfaI solution, as well as other mass deployment
programs in Section 5. The rationalities of the enhancements
are also discussed. Section 6 concludes this study, and the
suggestions for future research are put forward.

II. RELATED WORKS
This section reviews and discusses the related works for
massive deployment, which include the system deploy-
ment methods and the related network protocols for system
deployment.

A. SYSTEM DEPLOYMENT METHODS
The system deployment methods can be classified into three
categories [3]: (1) differential update, or restoring previ-
ously saved files from a disk [16]; (2) automated installa-
tion, or installing OS and applications from scratch with
an automated installation and configuration program [17];
and (3) file system imaging, or restoring an image of a
previously saved file system [5]. Due to the efficiency in file
synchronization, the network bandwidth consumption, and
the requirement for a file system to be created prior to system
deployment, the differential update method is not adequate
for the bare-metal system deployment.

Many applications require massive deployment, such as
high-performance computing (HPC) clusters, modern class-
rooms, and modern offices, as well as numerous comput-
ers that should be rapidly deployed to fulfill users’ needs.
In addition to these applications, cloud computing adopts
emerging virtual technology (i.e., hypervisor and container)
for rapid system deployment [3], [18]–[21]. Thus, the OSs
and applications can be ready for people to use in a very
efficient way and the systems can be ready to serve users
in a short time. However, cloud computing relies on the OS
and applications installed on the physical host machines.
In other words, cloud computing cannot provide services
without the OS(s) and applications on the host machine(s).
Thus, system deployment on the physical machine is essential
for cloud computing because massive physical machines are
required to deliver cloud-based services when serving many
users. Accordingly, system deployment is indispensable in
the modern ages as computing power is required in many
locations.

TABLE 1. Summary of data transmission protocols for massive
deployment.

Given these identified requirements, many researchers
have endeavored to develop massive deployment techniques
by using an automatic installation technique or file system
imaging scheme. The solutions using an automated installa-
tion technique include Heckle [22], xCat [23], Perceus [24],
OSCAR [25], ROCKS [1], Chef [26], Puppet [27], Ansi-
ble [28], SaltStack [29], Kickstart Installation [1], Fully
Automatic Installation (FAI) [30], and metal as a ser-
vice (MAAS) [3] whereas resolutions using a file system
imaging mechanism include Norton Ghost [31], Acronis
True Image [32], Partimage, Partclone, Fsarchive, Redo
Backup, OpenGnSys, FOG, MS Windows Deployment Ser-
vices (WDS), Frisbee, and Emulab [3]. Although so many
massive deployment tools have been studied and developed,
these solutions all need an extra disk repository to store the
image. Meanwhile, scalability issues exist due to two rea-
sons: (1) the consumption of network bandwidth—that is, the
available network bandwidth between the server and every
unicast destination (client) machine—decreases linearly as
the number of destination machines increases and (2) the
deployment server’s high system loading due to too many
connections and requests from the client machines. A novel
scheme for massive deployment is required to address these
two issues, which include the extra disk repository require-
ment and scalability.

B. UNICAST, BROADCAST, MULTICAST, AND BITTORRENT
PROTOCOLS FOR SYSTEM DEPLOYMENT
Many protocols for data transmission in computer networks
have been proposed and existed for a long time. Typical
examples include the unicast, broadcast, multicast, [33],
and P2P networking [34]. Various researchers [3], [5], [10],
[33]–[42] have attempted to implement the last three pro-
tocols (i.e., broadcast, multicast, and P2P networking) for
massive deployments.

The characteristics of these four categories of protocols
are summarized in Table 1. A review of the literature [10]
indicated that the P2P solution, although consuming the most
bandwidth. surpasses the remaining protocols due to its excel-
lence in terms of reliability, efficiency, and scalability from
the aspect of massive deployment.

As shown in Table 1, data transmissions between one
sender and one receiver are the mechanism for unicast pro-
tocol. The broadcast protocol is designed for data transmis-
sions between one sender and all receivers. Furthermore,
the multicast protocol improves the efficiency of unicast
by transmitting data from one or many senders to many
receivers; thus, the multicast protocol has the ability to

VOLUME 9, 2021 21045



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

select the destination receivers instead of sending data to
all receivers. Although the multicasting mechanism outpaces
the traditional unicasting one in performance enhancement,
the multicast protocol has a drawback in packet loss stem-
ming from the user datagram protocol (UDP) [43]. Conse-
quently, the scalability of the multicast-based deployment is
very limited. The scalability and performance are acceptable
when the destination machines are limited, yet the scalabil-
ity/performance becomes worse as the number of destination
machines increases. Moreover, a multicast-based solution has
a limitation. When a client has a packet-receiving issue,
the server will be requested to resend the packets. At this
moment, other clients have to wait for the overall packet
transmission to be completed, which will lower the overall
performance of massive deployment. Therefore, the multicast
mechanism is not suitable for large-scale deployments.

In order to overcome the weaknesses of the broadcast
and multicast mechanisms in massive deployment, the P2P
protocol was proposed; its sharing mechanism leverages a
distributed network architecture, which enables the partici-
pants in the distributed network to serve as both providers
and requestors [12]. One of the merits of P2P solutions is that
they have the provisions of resources belonging to each peer,
which include computing power, storage space, and network
bandwidth. Consequently, once the peers obtain part of the
data, they can start sharing the data, and the system’s total
data-sharing capacity also grows.

On the other hand, for the client–server architecture with
a fixed set of servers, when more clients are added, the data
transmission rates for all clients decreases. Accordingly, this
distributed nature of P2P solutions also increases robust-
ness in the case of failures by replicating data over multiple
peers [7]. Therefore, the P2P solution is very suitable for data
transmission between many-to-many nodes due to the best
performance.

P2P sharing is an overall idea, and many protocols have
been proposed for this purpose. Typical examples include
eDonkey [44], Gnutella [45], FastTrack [46], and BT [47].
Of these, the BT protocol [47] developed in 2001 aims to cut
the file to be shared into segments called pieces, where the
file size generally varies from hundreds of kilobytes (KBs)
to a few megabytes (MBs). Typically, the BT environment
consists of three parts: (1) a torrent tracker, which keeps
track of senders and receivers; (2) a torrent server, where
the torrent metadata file is kept; and (3) peers, which are
the instances on the network that can transfer data. The BT
protocol has the mechanism to ensure the high availability
of resources, meaning that peers can download pieces in a
‘‘rarest-first’’ [48] approach, which enables peers to seek the
rarest piece available among the peers. Alternatively, peers
download pieces in a random approach. Based on these subtle
mechanisms of BT, the server, peers, and network can work in
an efficient mode when sharing big files. Thus, the BT-based
solution can be scalable. In addition, the proposed solution
can leverage the advantages of BTwhile reducing energy con-
sumption in the future. Because a large number of computers

is involved in P2P networks, total energy consumption can be
high. A good solution (e.g., Marozzo et al. [49]) can reduce
overall energy consumption in P2P networks. The BitTor-
rentSW proposed by Marozzo et al. [49] can save energy
while ensuring good file-sharing performance. This approach
is a sleep-and-wake mechanism for BT networks, which
allows seeders to switch cyclically between wake and sleep
modes. The analytic results demonstrate that in a network
with 50% seeders, compared with a standard BT-based solu-
tion in which all seeders are always turned on, BitTorrentSW
can reduce energy consumption by 20% while increasing
the average time required to complete a file download task
by 7% only. In addition, in a network with 60% seeders,
BitTorrentSW can reduce energy consumption by 28% while
just increasing download time by 4%. The BitTorrentSW
proposed byMarozzo et al. [49] demonstrates effectiveness in
reducing energy consumption with limited effects on average
download time.

Due to the features of the P2P protocol (i.e., its ability to
distribute large files efficiently and be scaled up), researchers
have studied related topics, and some typical examples are
reviewed herein. For example, Tracey and Sreenan ()[50]
proposed a P2P-based approach for fog computing and imple-
mented a prototype to demonstrate how a Holistic Peer-to-
Peer (HPP) architecture and application layer protocol can
meet the requirements for the Internet of Things (IoT). Viml
and Srivatsa [51] proposed a P2P-based Interplanetary File
System (IPFS) to share resources or files in a distributed
system. The IPFS aims to increase the efficiency of the P2P
file-sharing system by using the blockchain. To motivate the
miners, who have computing power and verify the transaction
on a blockchain, for successful transaction, an IPFS-based
incentive solution such as the filecoin has been proposed.
The services provided during the file transfer process and
the security strength and some of the incentives based on
IPFS are discussed in the work by Viml and Srivatsa [51].
Ali et al. [52] proposed a blockchain-based decentralized
P2P remote health monitoring system, built on the Ethereum
blockchain, which serves as a medium for negotiating and
record-keeping, along with the onion router (TOR) for deliv-
ering data from patients to doctors. The work byAli et al. [52]
enables patients to share their biomedical data with doctors
without the data being handled by trusted third-party entities.

As for the system deployment based on the BT protocol,
Jeanvoine et al. [40] developed a BT-based massive deploy-
ment solution called Kadeploy3, which has been widely
adopted on the Grid’5000 test-bed since the end of 2009.
The solution has been deployed more than 117,000 times by
620 different users, where the largest deployment involved
496 nodes [40]. Xue et al. [36] proposed a BT-based solu-
tion, the Efficiency, Scalability, Independence, and Relia-
bility (ESIR), for image transference in mass deployments.
The ESIR has demonstrated higher image distribution perfor-
mance than multicast solutions. Qadeer et al. [53] proposed a
flexible framework to automate the process of bringing up
an infrastructure for the deployment of several OpenStack

21046 VOLUME 9, 2021



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

distributions as well as resolving dependencies for a success-
ful deployment. To reduce the bare-metal provisioning time,
Shestakov and Arefiev [54], [55] introduced a BT solution to
the original OpenStack Ironic project. The computing node
to be deployed is able to download the image from both peers
and the object storage as well as share the downloaded data
with other peers. Only 15 minutes were required to deploy
a 3 GB image to 90 nodes by the work proposed by Shes-
takov and Arefiev [54], [55]. In comparison with the standard
OpenStack Ironic, which took 1 hour to provide 15 nodes
for the same sized image, the performance of Shestakov
and Arefiev’s work is apparently much better. Although the
number of nodes to be deployed is six times greater, the work
by Shestakov and Arefiev took only 25% of the deployment
time compared to the standard OpenStack solution. However,
Shestakov and Arefiev’s patch files have not been merged to
the OpenStack repository yet due to some concerns [54].

Although scholars have proposed various BT-based solu-
tions, earlier works related to the BT-based system deploy-
ment solutions have mainly concentrated on the efficiency,
reliability, and scalability of the systems. All BT-based solu-
tions reviewed thus far in this section have implicitly pre-
sumed that the image size of the OS and applications to be
deployed is smaller than the available random access memory
(RAM) size of the designated machine to be deployed. This
assumption is not universally applicable for all scenarios
because there is always some machine that does not have
sufficient RAM to store the image consisting of the OSs
and all the required applications. Consequently, our previous
work [10] has addressed the issue related to the shortage of
temporary storage by proposing a FSBT mechanism. Our
work [10] demonstrated the feasibility and efficiency that the
FSBT mechanism can solve the shortage problem of tempo-
rary storage in the destination machine(s). The robustness of
our previous BT and FSBTwork is due to the data distribution
to multiple peers in the BT mechanism. Thus, the BDMfaI
can reduce the possibility of failure that some peers cannot
receive the data, which is a drawback in server–client archi-
tecture. Furthermore, the BDMfaI solution was conducted
with the used blocks data to be deployed from the source
machine larger than the size of the destination machine’s
RAM. In addition, because the BDMfaI solution makes all
the destination machines to be deployed and the source
machine use BT protocol to transmit the used blocks data,
it has excellent scalability, as demonstrated in our previous
study [10].

Although the FSBT mechanism can solve the problem
related to the shortage of temporary storage, it creates some
additional issues—namely, the BT server has to prepare an
extra storage space to keep the image and requires extra
time to convert the image being saved from Partclone to the
FSBT format [10]. These two requirements are the major
drawbacks when the hard disk on the source machine con-
tains the OS and many applications where the size of used
blocks to be deployed could be more than 100 GB. A few
hours may be required to save the contents of the source

disk as an image and then convert the image to the FSBT
format. Thus, a mechanism must be designed and imple-
mented to ease this pain andmake the BT-based solutionmore
efficient.

Based on the reviews in this section, existing massive
deployment solutions have some problems or limita-
tions, which include the requirement of additional hard-
ware resources, unrobustness, inefficiency, and unscalability.
No existing solution can address these issues simultaneously.
Consequently, this study aims to propose a novel scheme,
the BDMfRD, for massive system deployment.

III. DESIGN AND IMPLEMENTATION
In our previous study [10], we proposed the BDMfaI scheme
that can apply the BT protocol on massive deployment and
verified it as feasible. However, as mentioned in Section II,
some drawbacks still need to be improved. Among these
drawbacks, one of the main concerns is the requirement to
save an image from the hard drive of the source machine,
and then the image is converted to the files in FSBT format
and used for the BT seeder to replicate the data to other
machines. This approach requires some time to save an image
from the source machine and then convert the image, and
the image needs storage space to be preserved. If these two
requirements for the image and storage space can be removed,
the efficiency of the massive deployment based on the BT
mechanism would be increased. Therefore, we proposed
the BDMfRD solution to address these two issues in this
work. This novel BDMfRD scheme contains four features:
(1) lightness; (2) good efficiency; (3) robustness; and (4) good
scalability. The software developed in this study, the upgraded
Clonezilla live [3], has a lightness feature because it does
not need to prepare these three extra resources: (1) no need
for storage space to store the image files; (2) no need to
prepare an extra server because the source template machine
can be booted by Clonezilla live as the server; and (3) no
need to insert an extra PCI interface card in each machine for
sending and receiving data. The proposed BDMfRD solution
has greater efficiency because the image is not required to
be stored in the storage and then converted to the FSBT
format. Instead, the proposed solution directly reads and
writes the used blocks from the disk device. Compared with
other BT-based solutions, the BDMfRD architecture pro-
posed in this research can be adopted to deploy the used
blocks data to be deployed from the disk of the source
machine, which is larger than the RAM size of the destination
machine. In addition, for the proposed BDMfRD solution,
the data are replicated to multiple peers so the sources are
diverse. Consequently, the proposed solution reduces the risk
of single point failure, which has commonly been seen in
server–client architectures. Hence, the proposed solution is
robust. Because all the destination machines to be deployed
and the source machine use the BT protocol to transmit the
used blocks data, excellent scalability can be achieved, as dis-
cussed in Part B of Section II. The feasibility of the proposed
solution will be demonstrated in Section IV by deploying

VOLUME 9, 2021 21047



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

FIGURE 1. The flowchart for the BDMfaI solution.

FIGURE 2. The flowchart for the BDMfRD solution.

a GNU/Linux system from a source template machine to
numerous destination machines in a computer classroom.

The flowchart of the original BDMfaI solution is depicted
in Figure 1while Figure 2 presents the flowchart for the newly
proposed BDMfRD solution in this study. For the BDMfaI
solution, the steps are:

O1: prepare the source template machine (i.e., install the
OS and applications).

O2: save the image from the source template machine’s
hard drive.

O3: convert the image to the FSBT format [10].
O4: create the BT metainfo files (∗.torrent) of the FSBT

files.
O5: start the tracker for the BTmechanism and the network

booting service.
O6: boot destination machines via network booting and

then start the massive deployment via the BT mechanism.
For the BDMfRD solution, the steps can be reduced as

follows:
N1: prepare the source template machine (i.e., install the

OS and applications).
N2: parse the used blocks of the file system on the source

template machine’s hard drive.
N3: create the BT metainfo files (∗.torrent) based on the

results of step N2.
N4: start the tracker for the BTmechanism and the network

booting service.
N5: boot the destination machines via network booting and

then start the massive deployment via the BT mechanism.
These two procedures are illustrated in Figures 1 and 2.

As shown in the two illustrations, Figure 2 has fewer pro-
cesses after the source template machine is ready for massive
deployment. Although there is such a merit, the BDMfRD
solution still has some limitations, as we will discuss in
Section V.

To combine procedures O2 and O3 from the BDMfaI solu-
tion into a single step (N2), a new mechanism was proposed
in BDMfRD. The basic idea is that the data already existed
on the hard drive, so there is no need to save the used blocks
of the file system on the hard drive as an image and then
convert the image to the files in the FSBT format. Apparently,
when the BDMfaI solution is implemented, the same data will
exist in three different formats: (1) the original used blocks
on the hard drive; (2) the image files; and (3) the files in the
FSBT format. Therefore, the BDMfaI solution is not efficient

because it requires two more storage spaces for the same
data but in different formats. Therefore, by introducing the
BDMfRD, the image file and the files in the FSBT format
are unnecessary. Although we do not have to save the image
and convert it to the FSBT format, the used blocks on the file
system still have to be parsed by the Partclone [14] so that a
mapping file and the metainfo file for the BT mechanism can
be created. In addition, the EZIO program [15], a BT-based
deployment program, has to be improved to read andwrite the
used blocks directly from and to a raw device. The details of
implementing Partclone and EZIO tomeet these requirements
are described in detail in section A of the Appendix.

Based on the mechanisms mentioned in Appendix A, our
earlier works on massive deployment [3], [10] were enhanced
so that the system could be deployed directly from a source
template machine without any external storage space and an
extra server machine. The template machine can be adopted
directly as both the source machine and massive deployment
server. Figure 3 demonstrates the services on the source
template machine and the corresponding functions required
by the destination machines during system deployments.
Once the source template machine is ready, it is booted by
Clonezilla live and enters the ‘‘Lite Server Mode’’ [56]. The
services started on the source template machine, including
the dynamic host configuration protocol (DHCP), trivial
file transfer protocol (TFTP), hypertext transfer protocol
(HTTP), EZIO, and BT tracker, are similar to those in
our previous work [3], [10]. However, the major difference
between this study and the previous one is step D3 for BT
deployment—that is, steps O2 and O3 were merged into step
N2, as previously mentioned in this section.

Figure 4 presents an example of adopting the mechanism
proposed in this study to replicate the OS and applications
reading directly from the source template machine’s hard
drive to three other machines. The major difference between
this mechanism and the one proposed in our earlier work [10]
is the lack of an image repository requirement. Users can
boot the source template machine with Clonezilla live, enter
the Lite Server Mode, assign the mode as ‘‘BT from the raw
device,’’ set the source template machine’s hard drive as the
source, and then boot the three destination machines via net-
work booting. The remaining jobs, including all deployment
tasks and system rebooting, will be finished automatically.
The used blocks on the hard drive from the source template
machine will be replicated to the three destination machines

21048 VOLUME 9, 2021



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

FIGURE 3. The services provided by Clonezilla lite server in the source template
machine and their corresponding functions in system deployment.

FIGURE 4. The schematic figure for massive deployment. The template machine runs as the
source and deployment server, and the three destination machines are deployed.

using the BT protocol by EZIO. In Figure 4, EZIO reads only
used blocks from the source template machine (seeder), while
both reading and writing the used blocks from and to the hard
drives of these three destination machines (leechers).

Based on the mechanism discussed in the section, the
software we have implemented has been released as an
open-source program for download [56]. Furthermore, a
step-by-step document has been released on the website [57].

IV. EXPERIMENTAL PROCESS AND RESULTS
This section presents the experimental process and results
of the proposed mechanism for massive deployment. The
conditions of experiments are presented in sub-section A.
Then, sub-section B demonstrates the process of system
preparations and massive deployments. Finally, sub-section

C demonstrates the experimental results and compares the
results being derived by various deployment methods.

A. CONDITION OF THE EXPERIMENTS
The experiments deployed a Linux system to 1 to 32 destina-
tion machines using the newly developed BDMfRD solution
in a computer classroom. The experimental environment
consisted of the following machines and images:
• The Cisco Catalyst 3560G switch with 48-gigabit ports,
was adopted as the network switch. The spanning tree
protocol was disabled to avoid the timeout of network
booting in the destination machines.

• A Dell T1700 source template machine was adopted,
which also served as the server. The central processing
unit (CPU) is a 3.3 GHz Intel Xeon E3-1226 processor.

VOLUME 9, 2021 21049



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

FIGURE 5. Configuration of the experiments. One of the PCs in the
computer classroom was chosen as the source template machine. The
rest of the 32 computers were connected with a 48-port gigabits
network switch.

The size of the RAM is 16 GB. The size of the hard disk
is 1 TB. An Ubuntu Linux system with applications and
data was installed on this template PC, occupying 50 GB
of the hard disk.

• For PC destination machines, Dell T1700 PCs with the
same configuration as the one serving as the server were
adopted.

In the experiments, 32 PC destination machines were con-
nected to the server using a Cisco Catalyst 3560G switch
and the Category 5e network cables. The configuration
of the experiments for massive deployments in large-scale
computers is presented in Figure 5.

When conducting the experiments, the source template
machine was booted with Clonezilla live and entered the
lite server mode, which has the function to relay the DHCP
requests from the PC destination machines to the existing
DHCP service in the LAN. After choosing the hard disk
(/dev/sda, i.e., the first disk in the source template machine)
as the source, the BT solution was chosen for the massive
deployment. The destination machines were booted from the
pre-boot execution environment (PXE) [58]. Ten experiments
were conducted to replicate the used blocks of the hard
drive on the source template machine to 1 to 32 destination
machines. During the deployment to some of the destina-
tion machines, the remaining destination machines from the
32 machines not deployed were powered off.

B. SYSTEM PREPARATION AND MASSIVE DEPLOYMENTS
When each massive deployment experiment is conducted,
the ‘‘total time’’ t is defined as the overall time required
to deploy the file system(s). The total time is equal to the
summation of the preparation time tp and the massive deploy-
ment time td (refer Eq. (1)). Here, the preparation time tp
includes the image saving time and metainfo file creating
time

t = tp + td (1)

TABLE 2. The time, tp (secs), required for massive deployment
preparation by different solutions.

TABLE 3. The time, td (secs), required to deploy a 50 GB Ubuntu Linux
system and applications using the sequential, multicast, BDMfaI, and
BDMfRD solutions.

The remaining time required for system booting, partition
table creation, image file conversion, and informing the server
regarding deployment results is not included.

Table 2 summarizes the preparation time required for
the jobs of the four types of solutions for massive deploy-
ments (i.e., the sequential [unicast], multicast, BDMfaI and
BDMfRD). No matter what the solution is, basically, three
types of jobs might be related to the four identified solutions
of massive deployments: (1) image saving; (2) FSBT file
creations; and (3) the creation of metainfo file. It should
be noted that these three types of job are not all required
by the four solutions. For example, the ‘‘image saving’’ is
required by the sequential and multicast solutions. There-
fore, the preparation time for both the sequential (tSQp) and
multicast (tMCp) solutions is 551 seconds. In addition, both
the ‘‘image saving’’ and ‘‘FSBT/metainfo file creation’’ jobs
are required by the BDMfaI solution only. The time (tBT1p)
required for the preparation is 1383 secs. For the BDMfRD
solution, the time is only required for creating metainfo file.
The required time for preparation (tBT2p) is 291 secs.
Table 3 summarizes the time td , which is required to

deploy a 50-GB Ubuntu Linux system and applications to
1 to 32 destination machines using the sequential, multicast,
BDMfaI and BDMfRD solutions. The time required for these
four solutions is obtained from the experiments conducted for
this study.

21050 VOLUME 9, 2021



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

TABLE 4. The total time, t (sec), required to deploy a 50-GB Ubuntu Linux
system and applications using the sequential, multicast, BDMfaI, and
BDMfRD solutions.

C. EXPERIMENTAL RESULTS AND THE COMPARISONS
BETWEEN DIFFERENT DEPLOYMENT METHODS
Tables 4 and 5 summarize the total and average time required
to deploy the machines using these four solutions, respec-
tively. The values in Table 4 were obtained by aggregating
the values from Table 2 and Table 3 using Eq. 1. The total
time required to deploy a 50-GB Ubuntu Linux system and
applications using the sequential is

tSQ = tSQp + tSQd (2)

while the time required for the BDMfRD solution is

tBT2 = tBT2p + tBT2d (3)

According the results in Table 4, the BDMfRD solution
clearly outperformed the other three solutions in all the
deployments to different numbers of destination machines
because the time required for the BDMfRD solution to deploy
all the files is the shortest, except when two destination
machines were deployed. For such a case, the multicast
solution (1025 seconds) performed slightly better than the
BDMfRD (1125 seconds).

Table 5 summarizes the average time required to deploy
a destination machine using the four previously mentioned
solutions. The values were obtained from the total time to
deploy the whole system divided by the number of des-
tination machines. Basically, the trend is the same as the
trend observed in Table 4. When 32 destination machines
were deployed (see Table 5), the BDMfRD solution only
spent 8.758% of the average time required by the sequential
solution, 50% of the average time required by the multicast
solution, and 54.430% of the average time required by the
BDMfaI solution.

Figures 6 and 7 demonstrate the results of the massive
deployments using the multicast, BDMfaI, and BDMfRD
solutions. The total time and average time required by these
three massive deployment solutions are demonstrated in
these two figures. As the sequential solution is not ade-
quate for this kind of massive deployment, the results of

TABLE 5. The average time, ta (sec), required to deploy a 50 GB Ubuntu
Linux system and applications to a destination machine using the
sequential, multicast, BDMfaI, and BDMfRD solutions.

FIGURE 6. The total time required for the massive deployment to various
destination machines using the multicast, BDMfaI, and BDMfRD solutions.

FIGURE 7. The average time required for the massive deployment to
various destination machines using the multicast, BDMfaI, and BDMfRD
solutions.

deployment when using the sequential solution is not pre-
sented in Figures 6 and 7.

Based on the illustrations in Table 4 and Figure 6, the total
time required for massive deployment by the proposed
BDMfRD solution is lowest compared with the total time
required by the multicast and BDMfaI solutions, except when
deploying two destination machines. This case is discussed
in Section V. In addition, the average time required for

VOLUME 9, 2021 21051



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

FIGURE 8. The speedup for the massive deployment to various
destination machines using the multicast, BDMfaI, and BDMfRD
solutions. The ideal speedup is also shown for comparisons.

TABLE 6. Speedups and ratios for BDMfRD to BDMfaI solutions.

deploying a destination machine using the BDMfRD solution
decreases as the number of destination machines increases.
This phenomenon reveals that the proposed BDMfRD solu-
tion has a good scalability in the massive deployment. All
of the destination machines deployed by these three massive
deployment solutions were verified as bootable and could
enter the Ubuntu Linux after being deployed. Therefore, these
experiments verified the feasibility, efficiency, and scalability
of the proposed BDMfRD solution.

V. DISCUSSION
This section discusses the performance achieved by the
proposed BDMfRD solution. The comparisons between the
proposed method and other solutions are also discussed.
Finally, the limitations of this study are presented.

A. PERFORMANCE OF THE PROPOSED SOLUTION
Based on our earlier definition [3], the speedup of the massive
deployment is the ratio of time required to deploy numerous
computers sequentially versus the time required to deploy
numerous computers through a massive deployment solu-
tion. Here, the time is the ‘‘total time’’ required, which
includes both preparation time and massive deployment time.
Figure 8 and Table 6 demonstrate the speedup being achieved
in the experiments incorporating 1 to 32 machines. The ideal
speedup case is provided for comparison. In the ideal case,
no overhead exists. Meanwhile, the speedup increases lin-
early as the number of destination machines increases, which
is provided for comparison.

TABLE 7. The time-saving ratio by the proposed BDMfRD solution
compared to the previous BDMfaI solution.

FIGURE 9. The time-saving ratio achieved by the massive deployment
solution BDMfRD when compared with the BDMfaI solution.

The results from the real-world experiments show that
both multicast and BT solutions achieved limited enhance-
ments of performance compared to the ideal case. Among
the multicast, BDMfaI, and BDMfRD solutions, the pro-
posed BDMfRD achieved the best performance from the
aspect of massive deployment. The speedup value of the
BDMfRD solution is 11.374 when 32 destination machines
were deployed, while the values of the multicast and the
BDMfaI solutions are 5.708 and 6.223, respectively. The
speedup ratio of the BDMfRD versus the BDMfaI solution
is 2.659 when there is 1 destination machine. The ratio
decreases slightly to 1.828 when 32 destination machines
were deployed.

In general, the proposed BDMfRD solution is about two
times faster than the BDMfaI one based on the speedup
ratios. The time-saving ratios are summarized in Table 7 and
demonstrated in Figure 9. The values of the time-saving ratios
were derived from the differences between the time required
by the BDMfaI and the BDMfRD solutions for the same
number of destination machines. The difference between the
time required by the two solutions was then divided by the
time derived from the BDMfaI solution.

Based on the analytic results, the proposed BDMfRD solu-
tion improved 62.391% when one destination machine was
deployed. The time-saving ratio was kept as 45.289% when
32 destination machines were deployed. From Tables 2 and 3,
the preparation time for the BDMfaI solution is 1383 secs

21052 VOLUME 9, 2021



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

while the time required by the BDMfRD solution is only
291 secs. The preparation time for the BDMfaI is 4.753 times
that of the BDMfRD, and it is almost about the same order
of time compared with the BDMfaI deployment time for
32 destination machines. This overhead takes too much for
the BDMfaI solution; thus, its performance is not as good
as that of the BDMfRD solution. As mentioned in the pre-
vious section, the time required by the BDMfRD solution is
lowest except when two destination machines were deployed,
when the multicast solution showed better performance.
Although the preparation time for the BDMfRD solution is
only 291 secs, which is less than the preparation time for the
multicast solution (i.e., 551 secs), during deployment, the BT
solution adopted for deploying a small number of destination
machines will be choked in the source machine, which is the
only source of the data. As more destination machines join,
the downloading rate of BT can be achieved when all peers
increase [59]. When the number of destination machines is
very small, like the 2-destination-machine case in this work,
the strength of the BT-based solution cannot be demonstrated.
Therefore, the multicast solution performed better in such a
scenario.

The deployment time between the BDMfaI and BDMfRD
solutions can be compared in Table 3. Based on the compar-
ison results, the deployment time by the BDMfRD solution
is smaller than that of the BDMfaI if the preparation time is
neglected, nomatter what the number of destinationmachines
is. When the BDMfRD solution is adopted, the used block
data on the file system to be transferred is read directly
from the disks of all destination machines joining in the BT
mechanism. Instead, for the BDMfaI solution, the source data
is from the FSBT files located in one of the directories on the
source template machine (server). Hence, the OS has to spend
some time first locating the FSBT files and then sending the
files to the destination machine(s) via the BT mechanism.
Thus, the BT-based mechanism in the BDMfaI solution is not
as efficient as the BDMfRD solution as the EZIO program
can directly read the used blocks from the disk of the source
template machine in the BDMfRD solution. However, when
more destination machines join the BT-based mechanism in
the BDMfaI solution, the FSBT files exist only on the server
while the rest of the peers will also use the EZIO program
to read and write the block data directly from and to the
disks on the destination machines. Therefore, as the number
of destination machines increases, the impact on the required
time to locate the FSBT files on the server will become less
when the BDMfaI solution is adopted.

From Table 3 and Figure 6, the scalability of the BDMfRD
solution can be demonstrated. When the number of destina-
tion machines increases from 8 to 32, the total time to deploy
all destination machines increases from 899 to 1091 secs,
which is about a 21.357% performance enhancement at the
moment when the number of destination machines increases
by 400%. Based on the results derived in this study, this
trend cannot be guaranteed when the number of destination
machines is more than 32. However, based on the nature of

TABLE 8. Comparisons of the BDMfRD and BDMfaI solutions.

TABLE 9. Summary of comparisons of characteristics of the BDMfRD and
BDMfaI solutions.

BT [47] and earlier works [60], the BT protocol canworkwell
when more than 32 peers exist.

B. COMPARISONS
Our previous study [10] identified the pros and cons between
BT and multicast mechanisms. In this study, although the
same BT protocol is applied, the BDMfaI and BDMfRD
solutions can still be differentiated. The pros and cons should
be discussed, as summarized in Table 8. According to the
usage scenarios, the BDMfaI solution showed better flexibil-
ity because the user can choose different images to deploy
the destination machines. The BDMfRD solution has the pros
that no extra disk space is required and it can provide better
performance and scalability.

Table 9 compares the work and the previous solutions
for BT-based massive bare-metal provisioning. From the
aspect of efficiency, the BDMfRD solution has better effi-
ciency than the BDMfaI solution based on the experimental
results demonstrated in Section 4 and Table 7. The aver-
age time-saving ratio for 10 experiments is 52.211% (see
Table 7); thus, the time reduction due to the BDMfRD solu-
tion is 52.211% for these 10 experiments when compared
with the BDMfaI solution. Considering the number of des-
tination machines, the time reduction can be sustained when
the number of destination machines to be deployed is more
than 32.

Table 10 compares Clonezilla live and other massive
deployment solutions, including open source and proprietary
ones. Clonezilla live, which has been improved by using
the BDMfRD solution in this work, was released under the
open source, free software GNU General Public License
(GPL) [61], while Kadeploy [40] is offered under another
open source, free software license CEA CNRS INRIA Logi-
ciel Libre (CeCILL) [62]. The remaining programs, includ-
ing SmartDeploy [63], Acronis Snap Deploy [32], Microsoft
Deployment Toolkit [64] and EZ-Back System [65], are all
proprietary software. As demonstrated in Table 10, Clonezilla
live is superior to other solutions as it supports more features,
such as allowing the source to be from an image or a raw

VOLUME 9, 2021 21053



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

TABLE 10. Comparisons of massive deployment solutions.

device, having the capability to deploy bothMSWindows and
GNU/Linux systems, and being able to adopt the BT protocol
to replicate the data, resulting in better reliability and scalabil-
ity than other solutions based only on the unicast or multicast
protocols. In light of these factors, the improved Clonezilla
live with the newly added BDMfRD solution adopting the BT
protocol in this research once again demonstrated superiority
for massive deployments.

C. LIMITATIONS
Despite the successful implementation in this study, the pro-
posed BDMfRD solution still has some limitations, including
no option for choosing the source image and a fixed device
name. Overall, the BDMfRD solution lacks flexibility. These
limitations are discussed next.

1) NO OPTION TO CHOOSE THE SOURCE IMAGE
When using the BDMfRD solution, there is no need to save
the image of the disk because the source data will be read
directly from the template machine’s raw device. Hence, only
one source is available for deployments. However, when the
BDMfaI solution is adopted, the user can choose the image
to be deployed from many of the images in the repository.
Moreover, the image file is portable; the file can easily be
duplicated and transferred to different places. However, raw
devices, like the hard drive in the BDMfRD solution, cannot
be duplicated and transferred in the same way to different
places because the hard disk is a physical item. Hence, the
circulation of the hard disk is not as easy as the digitalized
image file.

However, the BDMfRD and BDMfaI solutions do not
conflict with each other. One can put the image on the stor-
age server as the repository and then use the Clonezilla lite

server to mount the image repository to perform massive
deployment when using the BDMfaI solution. If the template
machine is ready to serve as the source machine, where the
OS and applications have been installed, one can boot the
source template machine as the Clonezilla lite server. The
system can then be massively deployed to other destina-
tion machines using the proposed BDMfRD solution. Hence,
users still have the option to choose either the BDMfRD or
BDMfaI solution.

2) DEVICE NAME
When the BDMfRD solution is applied, the used block data
on the file system has to be read and written directly from and
to the physical raw device. If the BDMfaI solution is adopted,
users can choose the image from the repository. If the des-
tination device is different from the source device due to
the differences in the type of hard drives (e.g., the source
device is /dev/sda while the destination is /dev/nvme0n1),
then Clonezilla can convert the image saved from the /dev/sda
to the /dev/nvme0n1 format. However, as previously men-
tioned, Clonezilla has no way to convert the raw device name
if the BDMfRD solution is applied, as the data have to be
directly read andwritten from the physical raw device. Hence,
the BDMfRD solution can only be used for the same type of
hard drives between the source and the destination machines.

VI. CONCLUSION
This work proposed a novel mechanism of massive deploy-
ment, BDMfRD, based on the BT protocol. Previous works
have been improved by making the Partclone program scan
the file system on the hard drive and then list the used
blocks so that the EZIO program can directly read and write
the used blocks on the hard drive. This BDMfRD mecha-
nism allows the OS and applications of the source template
machine to be massively replicated directly from the hard
drive of the source template machine to other destination
computers without the preparation and usage of an image file.
In addition, the BT-based mechanism proposed is light, more
robust, efficient, and scalable. The BDMfRD solution is light
because no storage space is required to store the image files.
Furthermore, no extra server is required because the source
template machine can be booted as the server. Unlike other
hardware solutions, the mechanism proposed does not need
to insert an extra PCI card in each machine in order to send
and receive data. To the best of the authors’ knowledge, this
is the first solution that can provide such a light, robust, effi-
cient, and scalable solution formassive deployment. Based on
the empirical study, the proposed solution outperformed the
previous BDMfaI solution with a 45.289% time savings when
32 computers were deployed. Overall, based on the compar-
isons with the features and performance of prior works as well
as some commercial solutions, the proposed solution offers
significant advantages and better performance.

As for the future research possibilities, it is valuable to
apply the work done by Marozzo et al. [49] to our mas-
sive deployment solution so that the energy consumption

21054 VOLUME 9, 2021



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

FIGURE 10. The mechanism to parse the used blocks of the file system in the BDMfRD solution.

can be reduced while the impact on the average deployment
time can be negligible. Moreover, it is worth extending this
research to non-x86 architecture, especially the Advanced
RISC Machine (ARM)-based platforms because such solu-
tions are widely adopted in the HPC environment [66], [67]
due to their energy-efficient features. Meanwhile, the BT
mechanism has been adopted in only system deployments; the
network booting process, where every destination machine
to be deployed downloads about 300 MB of system booting
files, has not been studied. If the number of destination
machines increases, the network booting process will become
the bottleneck for the whole deployment procedure when all
of the destination machines boot at almost the same time.
Hence, this improvement is essential when the BDMfRD
solution is applied to a deployment with a very large scale.
Furthermore, both the BDMfaI and BDMfRD solutions have
the potential to be adopted for data replications in multiple
sites when the files to be transferred contain numerous small
files. In this case, transferring the used blocks on the file
system might provide better efficiency than transferring the
files for data transmission because, by reading and sending
the used blocks on the file system, it does not have to go
through the OS file system for every single file. This topic
is very suitable for future explorations.

APPENDIX
A. SOFTWARE IMPLEMENTATION
To combine procedures O2 and O3 from the BDMfaI
solution (Figure 1) into a single step (N2) in BDMfRD
(Figure 2), a new mechanism shown in Figure 10 was intro-
duced. We improved Partclone with the options ‘‘-t’’ or
‘‘–btfiles_torrent’’ for generating the metainfo file required
by the BT mechanism in this study. Thus, the used blocks on
the file system can be parsed and listed. The new options,
‘‘-t’’ or ‘‘–btfiles_torrent,’’ in Partclone are different from
the options ‘‘-T’’ or ‘‘–btfiles’’ in our previous study [10].
The option ‘‘-t’’ or ‘‘–btfiles_torrent’’ in Partclone in this

study only generates the torrent information file, which lists
the offsets and lengths of the used blocks on the file system
while the ‘‘-T’’ or ‘‘–btfiles’’ in Partclone in the previous
study [10] creates the files in FSBT format based on the
used blocks of that file system. Here, we provide an example
of using the option ‘‘-t’’ or ‘‘–btfiles_torrent’’ in Partclone.
To parse the used blocks of the ‘‘ext4’’ file system on the first
partition of the first disk (/dev/sda1), the buffer size for the
data being parsed is ‘‘16777216’’ bytes, and the output file
‘‘torrent.info’’ is put in the path /bt-data/, so the command
for Partclone is

partclone.ext4 -c -t –buffer_size 16777216 -s /dev/sda1 -o
/bt-data/

In this command, the option ‘‘-c’’ is used to enable Part-
clone to save the information from the file system instead of
restoring it.

The content of the generated file ‘‘torrent.info’’ is demon-
strated in Figure 11 as an example, where every set of the
offset and length on the file system forms the so-called
used blocks on the file system. When the used blocks are
parsed by Partclone and their size is larger than the buffer,
the checksum of the used blocks will be created by the Secure
Hash Algorithm 1 (SHA-1) [68], and the checksum will
be stored in the ‘‘torrent.info’’ file. Although other modern
and better hash algorithms (e.g., SHA-256 or SHA-512) are
available nowadays, the checksum is still calculated by the
SHA-1 algorithm because the checksum has to be derived
using the SHA-1 algorithm according to the BT metainfo
definition [47].

Then, a BTmetainfo file containing the information, which
includes (1) the used blocks list file from the ‘‘torrent.info’’
file, (2) the torrent server, (3) the creator’s name, and (4)
the partition name, can be created. In this work, a program
called ‘‘gen-torrent-from-ptcl’’ was developed to fulfill this
purpose. For example, based on the following information:
(1) the used blocks from the first partition of the first disk is
‘‘sda1’’; (2) the torrent server’s IP address is ‘‘192.168.1.1,’’

VOLUME 9, 2021 21055



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

FIGURE 11. The used blocks list generated by Partclone for the BDMfRD solution;
only the first few parts are shown.

with transmission control protocol (TCP) port 6969; (3)
the creator’s name is ‘‘Clonezilla’’; (4) the used blocks list
file is ‘‘/bt-data/torrent.info’’; and (5) the desired output BT
metainfo file is ‘‘/bt-data/sda1.torrent,’’ the following com-
mand is executed to combine them and create the metainfo
file ‘‘/bt-data/sda1.torrent’’:

gen-torrent-from-ptcl -p sda1 -t http://192.168.1.1:6969/
announce -c Clonezilla -i /bt-data/torrent.info -o /bt-data/
sda1.torrent

The EZIO program [15] is a BT-based deployment pro-
gram. In our previous work [10], EZIO can only support
the reading of used blocks from an image file. In this work,
EZIO has been improved to read and write the used blocks
directly from and to a raw device so that we can skip step
O2 in Figure 1. The novel BT-based mechanism follows the
flowchart in Figure 2. Moreover, with the features being
implemented in the BDMfRD solution, there is no need to
provide more storage space for extra files in the different
formats required in BDMfaI. In the BT mechanism, a peer
with all data is called a seeder whereas a peer with only part
of the data is called a leecher [10]. In the BDMfRD solution,
the seeder only reads the used blocks from the raw device
whereas the leecher reads and writes the used blocks directly
from and to the raw device. Here, we provide two examples
of the improved EZIO serving as the deployment program in
the seeder and leecher:

• Seeder:

For the seeder, when the cache size is set as 2459085 KiB
(half the size of the free memory on the destination machine;
decided before the execution of EZIO), the file containing the
used blocks information is ‘‘/bt-data/sda1.torrent.’’ The used
blocks are loaded from the partition /dev/sda1. No timeout
will occur. That is, the program will be executed continually
until the process is terminated by the system administrator.
The command for EZIO in the seeder is

ezio -U –cache 2459085 -T /bt-data/sda1.torrent -L
/dev/sda1

• Leecher:
As for the leecher, when the timeout is defined as one minute,
the file containing the information of the used blocks is
‘‘/bt-data/sda1.torrent.’’ The blocks are written to and read
from the partition /dev/sda1. The leecher will share data if
available. So the leecher not only receives data from others
but also sends data to them. The command for EZIO in
the leecher is ezio -t 1 /bt-data/sda1.torrent /dev/sda1 Here,
the one-minute timeout means that, once the leecher finishes
deploying the raw device, /dev/sda1, it will continually spend
one more minute waiting for other leechers to request data.
If no other leechers request data within one minute, the EZIO
command will be terminated, and another EZIO command
will be started to deploy the rest of the partition(s). After all
the partitions are deployed, the post tasks (e.g., boot loader
restoring) will be performed.

ACKNOWLEDGMENT
The authors thank those Clonezilla users who provided feed-
back about the program.

REFERENCES
[1] P. M. Papadopoulos, M. J. Katz, and G. Bruno, ‘‘NPACI rocks: Tools and

techniques for easily deploying manageable linux clusters,’’ Concurrency
Comput., Pract. Exper., vol. 15, nos. 7–8, pp. 707–725, 2003.

[2] A. E. Bruno, S. J. Guercio, D. Sajdak, T. Kew, and M. D. Jones, ‘‘Grendel:
Baremetal provisioning system for high performance computing,’’ inProc.
Pract. Exper. Adv. Res. Comput., 2020, pp. 13–18.

[3] S. Shiau, C.-K. Sun, Y.-C. Tsai, J.-N. Juang, and C.-Y. Huang, ‘‘The design
and implementation of a novel open source massive deployment system,’’
Appl. Sci., vol. 8, no. 6, p. 965, Jun. 2018.

[4] J. Xie, Y. Su, Z. Lin, Y. Ma, and J. Liang, ‘‘Bare metal provisioning
to OpenStack using xCAT,’’ J. Comput., vol. 8, no. 7, pp. 1691–1695,
Jul. 2013.

[5] T. J. M. Sanguino, I. F. de Viana, D. A. L. García, and E. C. Ancos,
‘‘OpenGnSys: A novel system toward centralized deployment and man-
agement of computer laboratories,’’ Comput. Edu., vol. 75, pp. 30–43,
Jun. 2014.

21056 VOLUME 9, 2021



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

[6] D. Daly, J. H. Choi, J. E. Moreira, and A. Waterland, ‘‘Base operating
system provisioning and bringup for a commercial supercomputer,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp., Mar. 2007, pp. 1–7.

[7] G. E. Chalemin, I. Naick, C. J. Spinac, and C. L. Sze, ‘‘System and
method for operating system deployment in a peer-to-peer computing
environment,’’ U.S. Patent 11 567 599, Jun. 12, 2008.

[8] J. R. Danielsen, ‘‘Method and apparatus for operating system deployment,’’
U.S. Patent 7 546 450, Jun. 9, 2009.

[9] TOPOO. (2020). TOP CPR Computer Recovery Card. [Online]. Available:
https://www.topoo.com.tw

[10] S. J. H. Shiau, Y.-C. Huang, C.-H. Yen, Y.-C. Tsai, C.-K. Sun, J.-N. Juang,
C.-Y. Huang, C.-C. Huang, and S.-K. Huang, ‘‘A novel massive deploy-
ment solution based on the peer-to-peer protocol,’’ Appl. Sci., vol. 9, no. 2,
p. 296, Jan. 2019.

[11] M. Yang and Y. Yang, ‘‘Applying network coding to peer-to-peer file
sharing,’’ IEEE Trans. Comput., vol. 63, no. 8, pp. 1938–1950, Aug. 2014.

[12] R. Schollmeier, ‘‘A definition of peer-to-peer networking for the classifica-
tion of peer-to-peer architectures and applications,’’ in Proc. 1st Int. Conf.
Peer Peer Comput., 2001, pp. 101–102.

[13] Y.-W. Ko, M.-J. Kim, J.-G. Lee, and C. Yoo, ‘‘Deduplication TAR scheme
using user-level file system,’’ IEICE Trans. Inf. Syst., vol. E97.D, no. 8,
pp. 2174–2177, 2014.

[14] Partclone. (2019). Partclone Project. [Online]. Available: https://github.
com/Thomas-Tsai/partclone

[15] EZIO. (2018). EZIO Project. [Online]. Available: https://github.
com/tjjh89017/ezio

[16] D. Sampaio and J. Bernardino, ‘‘Open source backup systems for SMEs,’’
in New Contributions in Information Systems and Technologies. Cham,
Switzerland: Springer, 2015, pp. 823–832.

[17] K. Aswani, M. Anala, and S. Rathinam, ‘‘Bare metal cloud builder,’’
Imperial J. Interdiscipl. Res., vol. 2, no. 10, pp. 1844–1851, 2016.

[18] B. B. Rad, H. J. Bhatti, and M. Ahmadi, ‘‘An introduction to Docker and
analysis of its performance,’’ Int. J. Comput. Sci. Netw. Secur., vol. 17,
no. 3, p. 228, 2017.

[19] T. Combe, A. Martin, and R. Di Pietro, ‘‘To docker or not to docker:
A security perspective,’’ IEEE Cloud Comput., vol. 3, no. 5, pp. 54–62,
Sep. 2016.

[20] G. M. Kurtzer, V. Sochat, and M. W. Bauer, ‘‘Singularity: Scientific
containers for mobility of compute,’’ PLoS ONE, vol. 12, no. 5, May 2017,
Art. no. e0177459.

[21] M. Saleem and J. Rajouri, ‘‘Cloud computing virtualization,’’ Int. J. Com-
put. Appl. Technol. Res., vol. 6, no. 7, pp. 290–292, 2017.

[22] L. Ramakrishnan, A. Liu, P. T. Zbiegel, S. Campbell, R. Bradshaw,
R. S. Canon, S. Coghlan, I. Sakrejda, N. Desai, and T. Declerck, ‘‘Mag-
ellan: Experiences from a science cloud,’’ in Proc. 2nd Int. Workshop Sci.
Cloud Comput. (ScienceCloud), 2011, pp. 49–58.

[23] N. Besaw, L. Scheidenbach, J. Dunham, S. Kaur, A. Ohmacht, F. Pizzano,
and Y. Park, ‘‘Cluster system management,’’ IBM J. Res. Develop., vol. 64,
nos. 3–4, pp. 7:1–7:9, 2020.

[24] C. Connor, A. Jacobson, A. Bonnie, and G. Grider, ‘‘An innovative
approach to bridge a skill gap and grow a workforce pipeline: The Com-
puter System, Cluster, andNetworking Summer Institute,’’USENIX J. Edu.
Syst. Admin., vol. 2, no. 1, p. 27, 2016.

[25] V. Holmes and I. Kureshi, ‘‘Developing high performance computing
resources for teaching cluster and grid computing courses,’’ Procedia
Comput. Sci., vol. 51, pp. 1714–1723, Jan. 2015.

[26] M. Younas, I. Ghani, D. N. A. Jawawi, andM.M. Khan, ‘‘A framework for
agile development in cloud computing environment,’’ J. Internet Comput.
Services, vol. 17, no. 5, pp. 67–74, Oct. 2016.

[27] W.-T. Tsai, W. Wu, and M. N. Huhns, ‘‘Cloud-based software crowdsourc-
ing,’’ IEEE Internet Comput., vol. 18, no. 3, pp. 78–83, May 2014.

[28] S. Thakur, S. C. Gupta, N. Singh, and S. Geddam, ‘‘Mitigating and patch-
ing system vulnerabilities using ansible: A comparative study of various
configuration management tools for iaas cloud,’’ in Information Systems
Design and Intelligent Applications. New Delhi, India: Springer, 2016,
pp. 21–29.

[29] S. Johann, ‘‘Kief morris on infrastructure as code,’’ IEEE Softw., vol. 34,
no. 1, pp. 117–120, Jan. 2017.

[30] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, ‘‘Management of
an academic HPC cluster: The UL experience,’’ in Proc. Int. Conf. High
Perform. Comput. Simulation (HPCS), Jul. 2014, pp. 959–967.

[31] D. J. Cougias, E. L. Heiberger, and K. Koop, The Backup Book: Disaster
Recovery From Desktop to Data Center. Washington, DC, USA: Network
Frontiers, 2003.

[32] G. Tiwari, ‘‘Automated deployment of windows 7 and application software
on large installations of computers having similar hardware,’’ Int. J. Inf.
Electron. Eng., vol. 4, no. 3, p. 195, 2014.

[33] K.-M. Lee, W.-G. Teng, J.-N. Wu, K.-M. Huang, Y.-H. Ko, and T.-W. Hou,
‘‘Multicast and customized deployment of large-scale operating systems,’’
Automated Softw. Eng., vol. 21, no. 4, pp. 443–460, Dec. 2014.

[34] M. Shojafar, J. H. Abawajy, Z. Delkhah, A. Ahmadi, Z. Pooranian, and
A. Abraham, ‘‘An efficient and distributed file search in unstructured peer-
to-peer networks,’’ Peer Peer Netw. Appl., vol. 8, no. 1, pp. 120–136,
Jan. 2015.

[35] A. Baláž and N. Ádám, ‘‘Peer to peer system deployment,’’ Acta Elec-
trotechnica et Inf., vol. 16, no. 1, pp. 11–14, Mar. 2016.

[36] Z. Xue, X. Dong, J. Li, and H. Tian, ‘‘ESIR: A deployment system for
large-scale server cluster,’’ in Proc. 7th Int. Conf. Grid Cooperat. Comput.,
Oct. 2008, pp. 563–569.

[37] P. Agrawal, H. Khandelwal, and R. K. Ghosh, ‘‘MTorrent: A multicast
enabled BitTorrent protocol,’’ in Proc. 2nd Int. Conf. Commun. Syst. Netw.
(COMSNETS), Jan. 2010, pp. 1–10.

[38] T. N. M. A. Silva, ‘‘Bitocast: A hybrid BitTorrent and IP multicast content
distribution solution,’’ Ph.D. dissertation, Dept. Inform., Fac. Sci. Technol.,
New Univ. Lisbon, Almada, Portugal, 2009.

[39] C. M. O’Donnell, ‘‘Using BitTorrent to distribute virtual machine images
for classes,’’ inProc. 36th Annu. ACMSIGUCCSConf. User Services Conf.
(SIGUCCS), 2008, pp. 287–290.

[40] E. Jeanvoine, L. Sarzyniec, and L. Nussbaum, ‘‘Kadeploy3: Efficient
and scalable operating system provisioning for clusters,’’ USENIX, Login,
vol. 38, no. 1, pp. 38–44, 2013.

[41] C. Neumann, V. Roca, and R. Walsh, ‘‘Large scale content distribution
protocols,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 5,
pp. 85–92, Oct. 2005.

[42] S. Luo, H. Yu, K. Li, and H. Xing, ‘‘Efficient file dissemination in data
center networks with priority-based adaptivemulticast,’’ IEEE J. Sel. Areas
Commun., vol. 38, no. 6, pp. 1161–1175, Jun. 2020.

[43] F. T. Al-Dhief, N. Sabri, N. M. A. Latiff, N. N. N. A. Malik, M. Abbas,
A. Albader, M. A. Mohammed, R. N. Al-Haddad, Y. D. Salman,
M. Khanapi, and O. I. O. A. Ghani, ‘‘Performance comparison between
TCP and UDP protocols in different simulation scenarios,’’ Int. J. Eng.
Technol., vol. 7, no. 4.36, pp. 172–176, 2018.

[44] O. Heckmann, A. Bock, A. Mauthe, R. Steinmetz, and M. K. KOM, ‘‘The
eDonkey file-sharing network,’’ Jahrestagung der Gesellschaft Informatik,
Ulm, Germany, Tech. Rep., Sep. 2004, vol. 51, pp. 224–228.

[45] M. Ripeanu, ‘‘Peer-to-peer architecture case study: Gnutella network,’’ in
Proc. 1st Int. Conf. Peer Peer Comput., 2001, pp. 99–100.

[46] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak, ‘‘Cache
replacement policies revisited: The case of P2P traffic,’’ in Proc. IEEE Int.
Symp. Cluster Comput. Grid (CCGrid), Apr. 2004, pp. 182–189.

[47] B. Cohen, ‘‘Incentives build robustness in BitTorrent,’’ in Proc. Workshop
Econ. Peer Peer Syst., vol. 6, 2003, pp. 68–72.

[48] A. Legout, G. Urvoy-Keller, and P. Michiardi, ‘‘Rarest first and choke
algorithms are enough,’’ in Proc. 6th ACM SIGCOMM Internet Meas.
(IMC), 2006, pp. 203–216.

[49] F. Marozzo, D. Talia, and P. Trunfio, ‘‘A sleep-and-wake technique for
reducing energy consumption in BitTorrent networks,’’Concurrency Com-
put., Pract. Exper., vol. 32, no. 14, p. e5723, Jul. 2020.

[50] D. Tracey and C. Sreenan, ‘‘How to see through the fog? Using peer to peer
(P2P) for the Internet of Things,’’ in Proc. IEEE 5th World Forum Internet
Things (WF-IoT), Apr. 2019, pp. 47–52.

[51] S. Vimal and S. K. Srivatsa, ‘‘A new cluster P2P file sharing system
based on IPFS and blockchain technology,’’ J. Ambient Intell. Humanized
Comput., pp. 1–7, Sep. 2019.

[52] M. S. Ali, M. Vecchio, G. D. Putra, S. S. Kanhere, and F. Antonelli,
‘‘A decentralized peer-to-peer remote health monitoring system,’’ Sensors,
vol. 20, no. 6, p. 1656, Mar. 2020.

[53] A. Qadeer, A.W.Malik, A. U. Rahman, H.M.Muhammad, and A. Ahmad,
‘‘Virtual infrastructure orchestration for cloud service deployment,’’ Com-
put. J., vol. 63, no. 2, pp. 295–307, Feb. 2020.

[54] A. Shestakov and A. Arefiev. (2016). Patch File to Allow User to Provi-
sion Image Using Bittorrent Protocol in OpenStack. [Online]. Available:
https://review.openstack.org/#/c/311091/

[55] V. Drok, A. Shestakov, A. Arefiev, P. Shchelokovsky, and S. Kovaleff.
(2016). Cut Ironic Provisioning Time Using Torrents. [Online]. Avail-
able: https://www.mirantis.com/blog/cut-ironic-provisioning-time-using-
torrents/

VOLUME 9, 2021 21057



S. J. H. Shiau et al.: BT Mechanism-Based Solution for Massive System Deployment

[56] Clonezilla. (2020). Clonezilla Project. [Online]. Available: https://
clonezilla.org

[57] Clonezilla. (2020). Massive Deployment Using the BDMfRD
Mechanism. [Online]. Available: https://clonezilla.org/show-live-doc-
content.php?topic=clonezilla-live/doc/12_lite_server_BT_from_dev

[58] Network Booting: Preboot Execution Environment, Bootstrap Protocol,
Netboot, Gpxe, Remote Initial Program Load, LLBooks, Kennewick, WA,
USA, 2010.

[59] R. L. Xia and J. K. Muppala, ‘‘A survey of BitTorrent performance,’’ IEEE
Commun. Surveys Tuts., vol. 12, no. 2, pp. 140–158, 2nd Quart., 2010.

[60] S. Le Blond, A. Legout, and W. Dabbous, ‘‘Pushing BitTorrent locality to
the limit,’’ Comput. Netw., vol. 55, no. 3, pp. 541–557, Feb. 2011.

[61] R. Stallman, Free Software, Free Society: Selected Essays of Richard M.
Stallman. Morrisville, NC, USA: Lulu, 2002.

[62] CeCILL. (2013). Cecill and Free Software. [Online]. Available: https://
cecill.info

[63] SmartDeploy. (2020). SmartDeploy Solution. [Online]. Available: https:
//www.smartdeploy.com/

[64] J. Stokes and M. Singer, Mastering the Microsoft Deployment Toolkit.
Birmingham, U.K.: Packt, 2016.

[65] S. F. Inc. (2020). EZ-Backup System. [Online]. Available: http://www.
sanfong.com.tw

[66] D. Yokoyama, B. Schulze, F. Borges, and G. Mc Evoy, ‘‘The sur-
vey on ARM processors for HPC,’’ J. Supercomput., vol. 75, no. 10,
pp. 7003–7036, Oct. 2019.

[67] B. Sorensen, ‘‘Japan’s flagship 2020 ‘Post-K’ system,’’ IEEE Ann. Hist.
Comput., vol. 21, no. 1, pp. 48–49, Jan. 2019.

[68] Q. H. Dang. (2015). Secure Hash Standard. [Online]. Available:
https://doi.org/10.6028/NIST.FIPS.180-4

STEVEN J. H. SHIAU was born in Hsinchu,
Taiwan, in 1971. He received the B.S. and
M.S. degrees in nuclear engineering from
National Tsing Hua University, Hsinchu, Taiwan,
in 1993 and 1995, respectively, and the Ph.D.
degree in engineering science from National
Cheng Kung University, Tainan, Taiwan, in 2019.

In 1997, he joined the National Center for
High-Performance Computing, Taiwan, where he
is currently a Research Fellow. His research inter-

ests include the development of opensource, free software for diskless
systems, massive deployment, and OpenStreetMap.

Dr. Shiau won the Public Sector Software Award at the International Free
Software Contest, Soissons, France, in November 2007. In 2008, he was
recognized for his outstanding contribution in science and technology by the
Executive Yuan, Taiwan.

YU-CHIANG HUANG was born in Taichung, Tai-
wan, in 1994. He received the B.S. degree from
the Department of Computer Science and Infor-
mation Engineering, National Central University,
in 2016, and the M.S. degree in computer sci-
ence and engineering from National Chiao Tung
University, in 2018.

He is currently the Senior Engineer with
EdgecoreNetworks, Taiwan, and theMaintainer of
the DozenCloud Project and ARM64 VPS Project.

His research interests include porting OpenStack to ARM64 and peer-to-peer
bare-metal system provisioning in HPC, working on data center networks
with open networking technology. He has presented at OpenStack Day
Taiwan 2016–2017, Open Source Summit North America 2017, ISC High
Performance Project Poster 2018, Hong Kong Open Source Conference
2019, China Open Source Conference 2019, and Open Source Conference
Tokyo Fall 2019.

YU-CHIN TSAI is currently a Developer and an
Associate Researcher with the Free Software Lab-
oratory, NCHC, Taiwan. He is also a Core Devel-
oper of Partclone, a tool for saving file systems on
a partition as an image or cloning the file system
to another disk. His research interests include mid-
dleware and free software research for high per-
formance computing (HPC). His recent research
has examined streaming data and AI framework
integration systems, and he is also in charge of

DAS, a data analysis platform in NCHC.
In November 2007, he won the Public Sector Software Award at the

International Free Software Contest, Soissons, France. In 2008, he was
recognized for his outstanding contribution in science and technology by the
Executive Yuan, Taiwan.

CHEN-KAI SUN is currently a Developer and
an Associate Researcher with the Free Software
Laboratory, NCHC, Taiwan. His research explores
middleware and free software research for high
performance computing (HPC). His research inter-
est includes using and developing FOSS. He is also
one of the developers for the DRBL, Clonezilla,
and DRBL-Winroll used for deploying systems.
His recent research has examined data sharing and
market platforms. He is also in charge of Scidm,

which is a data market platform in NCHC.
In November 2007, he won the Public Sector Software Award at the

International Free Software Contest, Soissons, France. In 2008, he was
recognized for his outstanding contribution in science and technology by the
Executive Yuan, Taiwan.

CHING-HSUAN YEN was born in Pingtung, Tai-
wan, in 1994. He received the B.S. and M.S.
degrees in computer science and engineering from
National Chiao TungUniversity, in 2016 and 2018,
respectively.

In October 2018, he joined Appier, a Taiwan
AI startup company. His works have improved
the infrastructure of this company in terms of
both security and efficiency. Since 2016, he has
contributed to this research, including the initial
development and experimental data.

CHI-YO HUANG received the B.S. degree in
electrical engineering from National Cheng-Kung
University, Taiwan, in 1990, the M.S. degree in
computer engineering from Syracuse University,
Syracuse, NY, USA, in 1993, and the Ph.D. degree
in the management of technology from National
Chiao-Tung University, Taiwan, in 2006. From
1994 to 2006, he worked with the IC industry as
an IC Design Engineer, the Marketing Manager,
and the Director. He is currently a Distinguished

Professor with the Department of Industrial Education, National Taiwan
Normal University, Taiwan. His current research interests include the man-
agement and applications of technology, multiple attribute decision making,
and business data analytics.

21058 VOLUME 9, 2021


