
Received December 24, 2020, accepted January 4, 2021, date of publication January 18, 2021, date of current version January 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3052505

Forensic Recovery of SQL Server Database:
Practical Approach
HOYONG CHOI 1, SANGJIN LEE 1, AND DOOWON JEONG 2
1Institute of Cyber Security and Privacy (ICSP), Korea University, Seoul 02841, South Korea
2College of Police and Criminal Justice, Dongguk University, Seoul 04620, South Korea

Corresponding author: Doowon Jeong (doowon@dgu.ac.kr)

This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by
the Korean Government (MSIT) (Development of Digital Forensic Integration Platform) under Grant 2018-0-01000.

ABSTRACT Database forensics is becoming more important for investigators with the increased use of
the information system. Although various database forensic methods such as log analysis and investigation
model development have been studied, among the database forensic methods, recovering deleted data is
a key technique in database investigation for DB tampering and anti-forensics. Previous studies mainly
focused on transaction or journal log to recover deleted data, but if logs are set to be deleted periodically
or logs containing critical evidence are overwritten by new logs, the log-based recovery method can not be
used practically. For this reason, an engine-based recovery method that analyzes data file at a raw level
has been also introduced. There is research to recover small-sized databases such as SQLite and EDB,
but there is no prior work describing the structure of data file and technology to recover deleted data of
large databases used by enterprises or large organizations. In this context, we investigate Microsoft SQL
Server (MSSQL), which is one of the most used large databases. Our method focuses on a storage engine
of MSSQL. Through analyzing the storage engine, we identify the internal structure of MSSQL data files
and the storage mechanism. Based on these findings, a method to recover tables and records is presented
by empirical examination. It is compatible with various versions of MSSQL because it accesses data at the
raw level. Our proposed method is verified by a comparative experiment with forensic tools implemented
to recover deleted MSSQL data. The experimental results show that our method recovers all deleted records
from the unallocated area. It recovers all data types including multimedia data, called Large Objects (LOB)
in the database field. To contribute digital forensic community, we also provide the source code of the
implementation; it facilitates the knowledge sharing of database forensics.

INDEX TERMS Database, forensics, SQL server, MSSQL, servers.

I. INTRODUCTION
Database forensics is a branch of digital forensics that ana-
lyzes the structure of database and examines contents [1]. It
has motivated forensic researchers since database manages
important data of personal or enterprise. With the increased
use of Internet of Things (IoT) devices, database allows
countless users to access a variety of applications and stores
the users’ data and log [2]; database forensics is becoming
more important for a forensic investigator.

Various forensic methods have been studied to find critical
evidence in database, such as log analysis [3]–[6] and inves-
tigation model development [7]–[9]. Among the database

The associate editor coordinating the review of this manuscript and

approving it for publication was Shaohua Wan .

forensic methods, recovering deleted records plays an impor-
tant role in finding the evidence, because it can recover data
that existed in the past or that was intentionally deleted for
anti-forensics [10]. Especially, attackers try to the database
tampering to take away sensitive information or try to delete
the information [11]; by recovering deleted records, an inves-
tigator can detect and deal with these behaviors [12]. The
recovery of deleted records is also used to solve the financial
fraud cases in forensic accounting [13].

The techniques to recover deleted records are divided into
two main categories: the log-based method and engine-based
method [14]. Many researchers proposed the log-based meth-
ods that analyze the transaction log or journal log. The
approach showed a notable achievement, but there is a
limit that logs containing critical evidence may not exist

14564
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9792-7133
https://orcid.org/0000-0002-6809-5179
https://orcid.org/0000-0001-7593-9416
https://orcid.org/0000-0001-7013-9081


H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

on the database. The logs are recorded by the administra-
tor’s security settings, so if the logs are set to be deleted
periodically or to be small fixed-size, it is impossible to
recover deleted data by analyzing the logs. For this reason,
engine-based methods that analyze the structure of the data
file and then recover deleted data were also studied. The
methods approach raw data directly, so it can improve the
drawback of the log-based method. Previous studies mainly
analyzed small-sized databases such as SQLite [15]–[17] and
EDB [18], [19], used in endpoint devices (desktop computers,
smartphones, and tablets). On the other hand, there is no
research describing an engine-based recovery method for
large databases, mainly used in enterprises or large organi-
zations, such as MSSQL and Oracle. This is because the
Database Management Systems (DBMS) structure of the
large databases is complex and the source code of the DBMS
is not open to the public, making it difficult to identify the
structure of data file and storage mechanism.

In this paper, we propose an engine-based recovery method
to recover deleted data inMSSQL that is one of the most used
DBMS globally [20].We research the internal structure of the
MSSQL storage file and then describe the system tables used
to recover deleted records. The storage engine of MSSQL
remains unchanged when the MSSQL version is updated,
so this approach is compatible with various versions from
MSSQL 2008 R2 to 2019. Based on the MSSQL data file
format and system table, we reconstruct all types of records
including LOB. Lastly, we implement the proposed method
as a tool. The developed tool is evaluated for performance
with existing forensic tools that are developed to recover
deleted data in MSSQL.

The main contribution of this paper is summarized as
follows.

• We present the detailed internal structure of the MSSQL
data file.

• We introduce MSSQL data recovery algorithm based
on the storage engine. To the best of our knowledge,
this paper is the first systematic study about MSSQL
recovery.

• The proposed method recovers all deleted records on
the unallocated area and it is compatible with various
MSSQL versions.

• This paper provides a comparative performance eval-
uation of our method and well-known forensic tools
developed to recover deleted data of MSSQL.

• We publish our implementation1 that facilitates the
knowledge sharing of database forensics.

The remainder of this paper is organized as follows:
Related works are presented in Section II. In Section III,
we introduce an internal structure of the MSSQL stor-
age. Next, we describe several system tables used to
recover deleted records in Section IV. In Section V
and VI, we describe and evaluate our proposed method

1URL: https://github.com/hoyoi05/database

by experiment. Finally, we give the conclusion and the future
work in Section VII.

II. RELATED WORK
A. DATABASE FORENSICS MODEL
Several database forensic models have been researched
steadily. Themodels focused on how an investigator performs
tasks to discover information on database. The researchers
tried to propose universal database forensic models.

Khanuja and Adane [21] proposed a framework for analyz-
ing and reconstructing the activity of the suspect’s behaviour.
They described their framework in general digital forensic
procedures: identification, collection, analysis, validation,
interpretation, report, and preservation. Beyers et al. [22]
focused on the data model of the DBMS and proposed a
method to transform the data model into a clean state. Flores
and Jhumka [23] presented a database investigation model
for audit records. They tried to satisfy the chain of custody
requirements by implementing triggers and stored proce-
dures. Bria et al. [19] proposed five stages of database foren-
sic analysis: identification, investigation, artifacts collection,
analysis, and documentation. The stages are similar to general
forensic procedures, so they attempted to match database
forensics with digital forensics. Al-Dhaqm et al. [7], [24]
proposed a forensic model by reviewing 54 investigation pro-
cesses from 18 forensic models of databases. They presented
database forensics with four phases: identification, artifact
collection & preservation, artifact analysis, and documenta-
tion & presentation.

Wagner et al. proposed architectures in the context of
database reconstruction model: ‘DBDetective [25]’ and
‘DBCarver [26]’. The DBDetective works on capturing snap-
shots from RAM and hard drive. The DBCarver was devel-
oped to reconstruct the database from a forensic image.
It carves individual pages using three parameters: the page
header, row directory, and the row data. Wagner et al. [27]
also designed a tool, named ‘DICE’, to recover deleted data.
It analyzes data files directly and identifies the remnant
data, marked as deleted but not actually deleted. The studies
contributed to the digital forensic community, however, it is
difficult to fully grasp various DBMS; more explanations
about the detailed parameters and recovery algorithm are
needed. Especially, commercial DBMSes such as MSSQL
have complex algorithms to store LOB, therefore we enhance
the knowledge ofmetadata and structure of LOB in this paper.

B. DBMS-DEPENDENT FORENSIC ANALYSIS
Previous researches have tried to create DBMS-independent
models, but, owing to the complexity and multidimensional
nature of DBMS, the proposed database forensic models have
little practical application. For this reason, DBMS-dependent
forensic models have been studied.

1) MSSQL
Fowler [28] proposed a method for investigating MSSQL.
The method consists of 4 investigation phases: preparation,

VOLUME 9, 2021 14565

https://github.com/hoyoi05/database


H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

incident verification, artifact collection, and analysis.
Khanuja and Adane [29] presented artifact collection of
MSSQL log files, data files, cache, and so on. Based on the
collected artifacts, it detects whether the database has been
tampered with by an attacker. Toombs [30] explored MSSQL
forensics through standard forensic processes. Toombs also
demonstrated that the size and distributed nature of the
database should be considered in database forensics.

Previous studies show practical methodologies when
MSSQL is attacked by hackers. The methodologies are avail-
able when the forensic investigator can access transaction
logs or use DBMS functions provided by MSSQL. This arti-
cle has a different point of view about the research subject and
method to analyze MSSQL. We doesn’t research transaction
log but data file, so we access MSSQL directly without
using DBMS services. By this approach, our method can be
applied even if MSSQL is crashed or the transaction logs are
overwritten or damaged.

2) ORACLE
Litchfield [3] demonstrated that an Oracle log file can be used
to reveal attacker events. He also presented a forensic model
to recover the dropped objects like tables and views [31].
In his continuous research of Oracle, he introduced a method
to find and capture evidence [32]–[34] and inspired foren-
sic researchers by providing investigation technique using
Oracle artifacts [35], [36]. Tripathi and Meshram [4] con-
ducted a study of tamper detection for Oracle. They exam-
ined Oracle artifacts such as redo logs, data blocks, etc.
Finnigan et al. [37] introduced the practical method to Oracle
using SQL query.

Similar to MSSQL forensics, Oracle forensics also has
focused on the method with log files or DBMS functions.
MSSQL and Oracle are generally supplied for large-scale
business systems. Thus, their internal structures are compli-
cated and mechanisms to store data are sophisticated; these
characteristics make a forensic analysis without a log or
DBMS service more difficult for forensic researchers.

3) MySQL AND SQLite
As MySQL and SQLite are based on open source projects,
identifying the internal structure is relatively easier than iden-
tifying that ofMSSQL; there are several studies to reconstruct
database based on analyzing the file format of the databases.
Frühwirt et al. [5], [38] presented InnoDB, the storage engine
ofMySQL. Frühwirt et al. also analyzed the structure of FRM
file containing metadata of MySQL and proposed the method
to reconstruct transaction history through analyzing redo log
files. Noh et al. [39] studied the internal structure of MYI
andMYD, which are data files of MyISAM storage engine of
MySQL. They proposed a method to recover deleted records
by analyzing MYI and MYD. Jung et al. [14] suggested a
method to recover MySQL based on the ibdata file, which is
a data file of the InnoDB storage engine of MySQL.

In the SQLite forensics field, Jeon et al. [40] studied data
management rules used by SQLite and the structure of deleted

data in the system. Li et al. [41] proposed a method to recover
SQLite data based on WAL (Write-Ahead Logging) log.
They tested the algorithm on SQLite files of mobile phones.
Nemetz et al. [15] suggested the method to recover deleted as
well as partially overwritten data based on the analysis of the
internal structure of SQLite.

4) NoSQL
NoSQL forensics has been also researched. Yoon and
Lee [10] and Yoon et al. [42] studied MongoDB, ranked
5th among overall databases, and ranked 1st among NoSQL
category. They analyzed two storage engines MMAPv1 and
WiredTiger of MongoDB and proposed a forensic framework
for MongoDB. Xu et al. [43] developed the tool to extract
the contents of deleted elements from Redis, a key-value
database. They examined AOF (Append Only File) and
RDB (Redis Database File); the AOF contains the execu-
tion of write operations and the RDB contains the actual
data including deleted data. Kumbhare et al. [44] focused
on tamper detection in MongoDB and CouchDB. They pre-
sented how to investigate the tampering in NoSQL data files.
Golhar et al. [11] also proposed the method to detect NoSQL
tampering. They explored log files of Redis and Cassandra to
identify problems of databases such as data consistency, data
integrity, and availability.

III. INTERNAL STRUCTURE OF THE MSSQL STORAGE
The MSSQL consists of two kinds of files. One is a data
file (.mdf,.ndf) that stores actual data, and the other is a
transaction log file (.ldf) that stores log data [45]. The trans-
action log may not be acquired during data collection and it
may be modified or deleted by the attacker [25]. In addition,
it may not be possible to obtain enough data to investigate
incidents due to a policy for log size limitation. Given the
situation, we focus on the data file where the raw data is
stored. When the table or record is stored in the data file,
MSSQL uses a storage engine that has not been changed
even if the MSSQL version was updated. To analyze the
storage engine, we reverse-engineeredMSSQL. Based on our
findings, this section presents the internal structure of the data
file and how MSSQL stores the data.

A. PAGE
The page is the smallest unit of MSSQL data file and its
default size is 8,192 (0×2000) bytes. Fig. 1 shows the overall
structure of the page; it consists of the page header, data row,
and the row offset array. This subsection describes the page
header and row offset array. The data row is represented in
Section III-B.

The page header is 96 bytes in size. The first 64 bytes,
described in Fig. 2, contain the pagemetadata and the remain-
ing 32 bytes are filled with 0 × 00. Among the fields of
the page header, 7 fields are used to recover records: Type,
Flag Bits, SlotCnt, Page Object ID, Page ID, File ID, and
Checksum (TornBits).

14566 VOLUME 9, 2021



H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

FIGURE 1. Page structure (applied with Tornbits).

The Type field indicates the type of the page. It is known
that there are 14 types of the page [46]; this paper focuses on
data page (Type 1), text mixed page (Type 3), and text page
(Type 4). The Type 1 page stores data records. The data value
can be classified into normal value and large object value;
the Type 1 page can store the normal value. The Type 3 and
4 pages are used to manage the LOB data, which is described
in Section III-C.

The Flag Bits field indicates how the Checksum field is
used. If the Flag Bits value is 0× 200, the Checksum field is
used for validating the page. However, if the value is 0×100,
the Tornbit is stored in the Checksum field. The Tornbit is
described in Section III-D.

The SlotCnt field represents the number of normal records
on the page. The Page Object ID field is used to store an iden-
tifier of the object such as a table, index, and so on. Therefore,
by analyzing the Page Object ID, it is determined to which
page the data of the table is allocated. The Page ID indicates
the page number. By calculating the ‘Page ID’×‘size of page
(0× 2000)’, the page’s location is identified.
The File ID represents the file identification number. In

MSSQL, table data can be stored in multiple data files. The
primary data file has.mdf extension and the secondary data
file has.ndf extension.

The row offset array indicates the location where records
are stored on the page. It consists of 2 bytes values that
represent the start position of each record. As seen in Fig. 1,
the value at the end of the array points to the first record on
the page; the row offset array is stored in reverse order.

B. RECORD
In MSSQL, a record of the table is stored in a data row of
the Type 1 page. The way to store the record is determined
by the size of the record. If the size of the record is less
than 8,060 bytes, the record is stored with In Row Data
method. Fig. 3 shows the structure of record stored with the
In Row Data. As seen in the figure, at the front of the
record, fixed-length columns such as int, float, and date are
stored. And then, the variable-length columns such as varchar,

FIGURE 2. Page header structure.

FIGURE 3. Record structure: In row data.

VOLUME 9, 2021 14567



H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

FIGURE 4. Large data structure (B-tree).

nvarchar, and varbinary are followed. The description of each
field is as follows [47].

The first 2 bytes of the row, called Status Bits A
and Status Bits B, are the bitmaps containing the infor-
mation about the row. The bitmaps indicate row type
(ghosted or NULL), MSSQL version, and the presence of
variable-length columns. The next two bytes indicate the size
of the fixed-length data. After the fixed-length data portion,
the number of columns and the NULL bitmap is stored.
Following the NULL bitmap, there is the variable-length
data portion. The first two bytes indicate the number of
the variable-length columns. MSSQL stores two bytes offset
values per each variable-length column in the variable col-
umn offset array. It is followed by the actual variable-length
portion of the data.

C. LARGE DATA
When the size of the record exceeds 8,060 bytes, MSSQL
stores the record on multiple pages. In this case, the value of
the record in the Type 1 page indicates the location of another
page where the large data is stored. The page that stores the
large data is Type 3 and Type 4 pages. Fig. 4 shows how large
data is stored. As seen in the figure, the data of the Type 1 page
is used to indicate the address of Type 3 or Type 4 pages.

There are three different ways to store large data, depend-
ing on the data type and length: Row-overflow Data, LOB
Data, and MAX-length Data.

Row-overflow Data called restricted-length Large object
data is used when the data type is varchar(n), varbinary(n),
or nvarchar(n). Row-overflow data refers to the large data
whose record size exceeds 8,060 bytes, but the size of
each column data is less than 8,060 Bytes. For example,
if the schema of a table consists of varchar(8000) and
nvarchar(4000), the size of each column data is less than

8,060 bytes but the total record size is 16,000 bytes. There-
fore, MSSQL stores the record in Row-overflow Data form.
However, the record can be stored as In Row Data when the
size of the actual record data does not exceed 8,060 bytes even
if the predefined size is more than 8,060 bytes.

LOB Data called unrestricted-length large object data is
used when the type is text, ntext, image, varchar, nvarchar,
or varbinary. Since MSSQL 2005, the text, ntext, and image
data type are deprecated and varchar, nvarchar, and varbinary
data type with MAX specifier are substituted for them. We
name records using the deprecated data types (text, ntext,
image) LOB Data.
MAX-length Data is also unrestricted-length large object

data like LOBData. WhenMAX specifier is used as a parame-
ter of the data type varchar, varbinary, or nvarchar, the record
is stored as MAX-length Data. It means that the size of the
record can exceed 8,060 bytes like LOB Data, but there is
a difference from LOB Data. When data of 8,060 bytes or
less is stored in a record defined as a data type using MAX
specifier, it is stored in the same manner as In Row Data.
When more than 8,060 bytes of data are stored, the data is
stored as MAX-length Data.

D. TORNBITS
There are two ways to verify the page’s integrity in MSSQL;
One is Checksum and the other is TornPageDetection. When
creating a database, the user can choose three options:Check-
sum, TornPageDetection, and None. In particular, the Torn-
PageDetection uses the byte substitution. It is applied to the
pages of data files such as.mdf and.ndf, so interpreting the
Tornbits is important when parsing records. The Tornbits is
similar to Fixup Arrays of NTFS [48].

When the Tornbits option is applied, the last two bits of par-
ticular bytes are replaced by the last two bits of the Tornbits.

14568 VOLUME 9, 2021



H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

FIGURE 5. Tornbits example.

Fig. 5 shows an example of the Tornbits. As seen in the
figure, the last two bits of bytes from 0 × 3FF to 0 × 1FFF
at 0 × 200 interval are replaced 102, the last two bits of
the Tornbits. And then the original binary data of the bytes
are recorded in the TornBits. When the page is loaded into
memory, the original data stored in the TornBits are also
loaded; in this way, MSSQL verifies the integrity of the page.

IV. MSSQL SYSTEM TABLES
This section describes the system tables that are required to
recover the deleted records. Among many system tables, five
system tables are used for recovery in this paper: syscolpars,
sysschobjs, sysiscols, sysrowsets, sysallocunits.
We analyzed the schema structure of system tables based

on MSSQL 2017. Some versions have different schema
structures of system tables, but the columns required for
record recovery remain unchanged regardless of the MSSQL
version. So, the recovery method proposed in Section V is
independent of versions because system tables are analyzed
before data in user tables are accessed. The schema structures
of system tables are described in Appendix A.

A. SYSCOLPARS
In the syscolpars, column information of all tables of the
database, including system tables and user tables, is stored.
By analyzing the syscolpars, column’s name, the order in
which columns are stored, size, and type are identified.

B. SYSSCHOBJS
The sysschobjs stores all table information used in the
database. It contains the table name, the number of columns,
the table type (system table or user table), and the
Table Object ID.

C. SYSISCOLS
The sysiscols stores the index column information of the
table. Generally, the column data of a record is stored in the
data file in the order specified by the user, which is identified
in the syscolpars. However, when an index is created on
the table (e.g. designating a primary key), column data of
records are stored in a different order (See Table 1). This
characteristic is an important issue when recovering deleted
records; this issue is discussed in detail in subsection V-C.

TABLE 1. The order change according to primary key setting.

D. SYSROWSETS
The sysrowsets stores Partition ID for each table. Parti-
tion ID is used to obtain the Allocation Unit ID from the
sysallocunits.
Among the columns of sysrowsets, the idmajor column

represents the Table Object ID and the rowsetid column
represents the Partition ID. The Partition ID of the table to
be analyzed can be obtained by comparing the Table Object
ID obtained from the sysrowsets with the Table Object ID
obtained from the sysschobjs.

E. SYSALLOCUNITS
The sysallocunits manages Allocation Unit IDs. The Allo-
cation Unit ID of the table can be obtained via the Partition

VOLUME 9, 2021 14569



H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

ID obtained from the sysrowsets. The Allocation Unit ID is
used to acquire the Page Object ID of the table. Among the
columns of sysallocunits, the ownerid column represents the
Partition ID and the auid column represents the Allocation
Unit ID.

V. RECOVERY METHOD
This section introduces a method to recover deleted records
by analyzing the internal structure of the data file and system
tables described in Section III and IV. The proposed method
is version-independent because it is based on the storage
mechanism that is constant even if the version of MSSQL
is updated. There are four phases in the method: scanning
pages, collecting system table information, collecting user
table information, and recovering deleted records. We imple-
ment the proposed method in this paper as open-source tool.
It can be downloaded from GitHub as mentioned in Section I.

A. SCANNING PAGES
In this phase, all pages of the data files are scanned in page
units. By scanning the files, all Page IDs and Page Object IDs
are identified.

B. COLLECTING SYSTEM TABLE INFORMATION
This phase aims to collect the column information of the
system tables such as sysschobjs, sysiscols, sysrowsets, and
sysallocunits by parsing syscolpars. Although the schema
of the system tables varies by MSSQL version, the column
names that are needed to recover deleted records are constant.
Therefore, by identifying the column names stored in syscol-
pars, columns required for recovery are acquired regardless
of the MSSQL version.

C. COLLECTING USER TABLE INFORMATION
In this phase, the information of the user table to be recov-
ered is obtained by parsing the system table analyzed in
Section V-B. This phase is further divided into four phases.

1) TABLE INFORMATION IN SYSSCHOBJS
By using the columns information identified in the previous
phase, sysschobjs can be parsed and analyzed. In this phase,
the user table’s information such as table name, Table Object
ID, and the number of columns is identified.

2) COLUMN INFORMATION IN SYSCOLPARS
Through matching syscolpars with sysschobjs, the column
information of the user table is identified. The data type,
length, name, the order in which columns data are stored,
parameters of specific data types (time, numeric, and date-
time) are obtained in this phase. Based on the information,
a temporary table is created to store the recovered records,
by using CREATE TABLE query.

3) CLUSTERED INDEX COLUMN INFORMATION
IN SYSISCOLS
After obtaining the column information, the index column
information is collected from the syscolpars and sysiscols. In
this phase, the order in which the column data are stored is

identified. Particularly, in the sysiscols, the clustered index
information should be checked. As the indexing is developed
to speed-up the query process in MSSQL, many databases
are using this function, so identifying whether the indexing is
used or not is an important procedure. For example, by setting
the primary key, which is a typical function of the indexing,
the order is completely changed (See Table 1).

4) LOCATION INFORMATION IN SYSROWSETS
AND SYSALLOCUNITS
To identify Allocation Unit ID, sysrowsets and sysallocu-
nits tables are parsed. The Page Object ID is calculated by
Equation 1.

indexid = allocUnitld � 48

pageObjectld = (allocUnitld − (indexid � 48))� 16 (1)

To obtain the Page ID to which user table is allocated,
the Page Object ID of each page obtained in Section V-A is
compared with the Page Object ID obtained in Equation 1.
Finally, the start offset of the page is calculated by a formula,
Page ID×page unit size(0× 2000).

D. RECOVERING DELETED RECORDS
In this phase, records of the user table are recovered. It is
further divided into three phases.

1) ACCESSING DATA PAGE
The page (Type 1) to which the data is allocated is identified
through the location information of the user table acquired in
Section V-C4

2) IDENTIFYING UNALLOCATED AREA
Fig. 6 shows three cases where the unallocated area can
exist in a data page. In the first case, the unallocated area
exists when more than one record below the page header
was deleted. The second is that the unallocated area exists

FIGURE 6. Cases of the unallocated area in a data page.

14570 VOLUME 9, 2021



H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

Algorithm 1 Reconstruct Deleted Records
Input: Unallocated area data
Output: Array of INSERT query

1 LUnalloc← Unallocated area data size;
2 SSchema← Table schema; /* from syscolpars and sysiscols */
3 LTotal ← 0 ; /* Recovered record length */
4 Create empty array Q ; /* Create empty array for storing INSERT query */
5 while LTotal < LUnalloc do
6 LRecord ← Deleted record length;
7 if LRecord + LTotal ≤ LUnalloc then
8 Create empty array Dcolumns; /* Create empty array for storing column data */
9 OStatic← Start offset of fixed-length data area;
10 OVariable← Start offset of variable-length data area;
11 foreach column information C ∈ SSchema do
12 if C .type is STATIC_COLUMN then
13 Access static column data area using OStatic;
14 D← get_ColumnData(OStatic, C .size);
15 OStatic← OStatic + C .size;
16 else

/* if VARIABLE_COLUMN */
17 Access variable column data area using OVariable;
18 Calculate LVariable from variable column offset array;
19 D← get_ColumnData(OVariable, LVariable);
20 OVariable← OVariable + LVariable;
21 end
22 Decode D according to C .datatype;
23 Add D to Dcolumns;
24 end
25 LTotal ← LTotal + LRecord ;
26 q← make_Query(Dcolumns);
27 Add q to Q;
28 else
29 break;
30 end
31 end

between the records. The third is that the unallocated area
exists between the last record and the row offset array. The
following is a procedure for determining the unallocated area
according to these cases.

1) After storing the row offset array values in array (Slot)
and arranging it in ascending order, the record length is
calculated using column information from Section V-
C2

2) If the value of the (Slot[i]+ record length+ 1) is equal
to the value of Slot[i + 1], it is judged that there is no
unallocated area between the records

3) If the value of Slot[i+ 1] is larger than (Slot[i]+ record
length+ 1), it is determined that there is the unallocated
area between the i-th record and the (i + 1)-th record

3) RECONSTRUCTING DELETED RECORDS
Based on the record structure shown in Fig. 3, the data
is analyzed by separating the fixed-length column and

the variable-length column, and then an INSERT query is
generated.

The algorithm to reconstruct deleted records is shown in
Algorithm 1. First, it calculates the size of the unallocated
data area (LUnalloc). Next, the length of the record to be
recovered in the unallocated area (LRecord ) is calculated.
Then, to get the data of each column, the starting position of
the divided fixed-length (OStstic) and variable-length column
(OVariable) data area is calculated with reference to the Fig. 3.
When accessing column data, data is acquired according

to the column order and data size of each column through
schema information (SSchema) obtained from Section V-C2
and V-C3. Finally, the acquired data (D) is decoded according
to the data type and used to make an INSERT query (q).
Since there may be more than one record in the unallocated
area, the length of the recovered record (LRecord ) is stored
in LTotal and compared to the size of the unallocated area
(LUnalloc). If the value LTotal is greater than or equal to the

VOLUME 9, 2021 14571



H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

value LUnalloc, recovery of the record in the input unallocated
area is finished.

In this section, we present a method to recover deleted
data in four stages. This approach may be applicable to other
databases. For example, in Oracle, ‘block’ that is the smallest
unit of the data file is mapped to the page of MSSQL. There
are also system tables and user tables in the Oracle data file.
If the identification of the unallocated area and the storage
mechanisms of data types are researched, deleted data in
Oracle can be also recovered by our proposed methodology.

VI. EXPERIMENT
While there is no article introducing the internal structure
of the MSSQL storage, we assess the performance of the
proposed method through comparative analysis with com-
mercial tools, used in the practical forensic field, such as
ApexSQL Recover [49], Stellar Repair for MSSQL [50], and
SysTools SQLRecovery [51]. To identify the algorithms used
in these commercial tools, reverse engineering of software
protection should be conducted; it does not comply with the
ethical research standards. We create data sets with various
data types, security settings, and scenarios and then indirectly
verify the tools whether they can deal with each element.

As there is no sample data set for evaluating the algorithm
for MSSQL recovery, we created four data sets based on SQL
Server 2017 that is the most widely used version. The data set
A and A′, which consist of only In Row Data records, and the
data set B and B′, which consist of both In Row Data and the
large data records. As mentioned in Section III-D, there are
two ways to verify the page’s integrity in MSSQL; the data
set A and B use the Checksum and the data set A′ and B′ use
the TornPageDetection.

Based on the data sets, we evaluate recovery rates accord-
ing to the following six cases.
• Case 1: Delete 1,000 records.
• Case 2: Delete 3,000 records.
• Case 3: Delete 5,000 records.
• Case 4: Insert 1,000 records after deleting 5,000 records.
• Case 5: Insert 3,000 records after deleting 5,000 records.
• Case 6: Insert 5,000 records after deleting 5,000 records.
In case 1∼3 the records were randomly deleted, and these

cases are designed to check the difference in recovery rate
as the number of deleted records increases. In case 4∼6,
1,000, 3,000, and 5,000 records were inserted into the data set
created in case 3, and these cases were designed to check the
difference in recovery rate according to the number of records
inserted after deletion. In particular, the scenario, deleting
records and then inserting new records, is constructed by
referring to previous studies [10], [25] to verify the recovery
rate of large data introduced in Section III-C. The large
data is stored in dispersed pages, so metadata linking the
pages may not be restored correctly when an inserted record
overwrites part of a deleted records in the unallocated area.
Therefore, by measuring the recovery rates in case 4∼6,
we verify how well the tools handle issues related to the large
data.

TABLE 2. Table schema of data sets (Note, the * mark means the primary
key).

A. DATA SET
The schema of the table to be recovered is shown in Table 2.
The number of records in the original table of data set A and
A′ is 255,861 and the size of the data files is about 200 MB.
The data set A and A′ are generated to evaluate whether the
tools can recover deleted records with the In Row Data.
On the other hand, the number of records in the data set B
and B′ is 50,000 and the size of the data files is 13.8 GB. The
schema of the data set B and B′ has an additional column,
varbinary (MAX), to evaluate the performance of the large
data recovery. To evaluate whether the tools can consider the
TornPageDetection, we applied the Tornbits option to the data
set A′ and B′.

In the digital forensics field, it is very important that evi-
dence must be collected while maintaining the integrity of the
evidence, so we applied a rigorous standard for recovery. We
judged whether the recovery is successful by comparing the
hash values of the recovered data and original data. If the data
was partially restored, we determined that it was not restored
correctly.

B. RESULT
As shown in Table 3, in case 1∼3 which are no insert oper-
ation after deletion, the recovery rate is 100% except for
Stellar Repair for MSSQL. By verifying the non-recovered
records when using Stellar Repair, it is identified that the
Stellar Repair does not recover deleted records stored after
page header, which is the first case of Fig. 6.We speculate that
the reason lies in an implementation error when accessing the
unallocated area on a data page.

TABLE 3. Recovery performance for data set A / A′ (%). For example,
‘70/0’ means that the forensic tool recovers 70% of deleted records in
data set A but it recovers 0% in data set A′ .

In case 4∼6, deleted records are recovered partially.
It shows that the recovery rate decreases as the number of

14572 VOLUME 9, 2021



H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

records inserted after deletion increases. This tendency is
natural because it is more likely that the deleted data is
overwritten as new data is inserted. We also observed that
the difference in accuracy between the proposed method and
ApexSQL increases as new records are inserted after the
delete operation. It is estimated that ApexSQL skips pages
that are partially overwritten when scanning data pages of the
data file under certain conditions.

In particular, it shows that Stellar Repair does not recover
any deleted record for data set A′. The same result is shown in
data set B′ (See Table 4). This finding indicates that the Stellar
Repair considers the Checksum only, not TornPageDetection.

TABLE 4. Recovery performance for Data set B / B′ (%).

The experimental result for the data set B and B′ reports
that the proposed method shows slightly better performance
than SysTools, when recovering the large data records, as seen
in Table 4. By analyzing the records that could not be recov-
ered by SysTools, we identified that SysTools cannot recover
the last part of some large data records. In digital forensics,
the integrity of the evidence is a crucial aspect, so we regarded
the partial recovery of the deleted record as a failure.

In conclusion, the proposed method shows a high recovery
rate compared to other tools. The proposed method recovers
deleted records in database applied with not only Check-
sum but also TornPageDetection. The implemented tool is
designed to investigate MSSQL database in the practical
forensic field, so it recovers the deleted large data records
completely, including the last part of the records; the exper-
imental results show better performance than other commer-
cial tools.

C. DISCUSSION
Our experiment measured the recovery rate as a performance
indicator. Although recovery speed is also important to foren-
sic investigators, we did not measure the speed because our
tool is CLI-based implementation while the commercial tools
are GUI-based software. Ease of use may also be one of the
performance indicators, but it was also not considered in our
experiment because it comes down to a matter of preference.

When a record is deleted in MSSQL, the flag value of the
metadata changes, but the record data remains intact. This
is similar to the file system. Most file recovery algorithms
use the method of analyzing the flag value of metadata to
reconstruct the deleted data [52]. As the performance of file
recovery tools differs in the process of finding and recon-
structing deleted data, it is also observed that MSSQL record
recovery tools also differ in performance.

TABLE 5. Syscolpars schema.

TABLE 6. Sysschobjs schema.

TABLE 7. Sysiscols schema.

To recover deleted records from MSSQL, it is needed to
understand how records are stored. Among various data types
of MSSQL, a record of large data types store data on multiple
pages. Furthermore, the large data is classified into three
large data categories. Because each category has a different
way of storing records, the details of navigating pages in
which deleted data is stored in order are also different. The
result of the experiment shows that some commercial tools
are unable to fully navigate deleted records for some large
data. On the other hand, our proposed method identified all
deleted records, which was verified by comparing data sets
and original data files that all records are live.

Tornbits used for the page’s integrity must be considered to
correctly interpret the page’s information. The experimental
result for one of the commercial tools shows that it may

VOLUME 9, 2021 14573



H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

TABLE 8. Sysrowsets schema.

TABLE 9. Sysallocunits schema.

not restore any deleted records without considering the Torn-
PageDetection option.

VII. CONCLUSION
Database is used by many users to store and manage sen-
sitive data of personal or enterprise. Furthermore, with the
increased use of Internet of Things devices, database allows
countless users to access a variety of applications and stores
the users’ data and log; database forensics is becoming more
important for a forensic investigator. Although some previous
researches proposed an universal investigation method to
DBMSes, there is insufficient information on how to inves-
tigate DBMS and recover deleted records practically.

In this paper, we have researched MSSQL, which is the
most used DBMS globally. We have described the internal
structure of MSSQL including large data, tornbits. To recover
deleted records regardless of theMSSQL version, several sys-
tem tables have been analyzed. We have proposed a method
to recover deleted records and implemented the method as
open-source tool. Finally, the performance of our method has
been verified by comparing the commercial recovery tools.

Thoughwe have focused on one DBMS,MSSQL, there are
many DBMSes that need to be analyzed and new DBMSes
are still being developed. In database forensics, there is a
lack of practical researches to investigate these DBMSes [13].

To overcome this circumstance, we will study practical anal-
ysis methods for various DBMSes based on the methods
proposed in this paper.

APPENDIX A
SYSTEM TABLE SCHEMA
Each system tables’ schema is shown in Table 5, 6, 7, 8, and 9
respectively.

REFERENCES
[1] M. S. Olivier, ‘‘On metadata context in database forensics,’’ Digit. Invest.,

vol. 5, nos. 3–4, pp. 115–123, Mar. 2009.
[2] M. Díaz, C. Martín, and B. Rubio, ‘‘State-of-the-art, challenges, and open

issues in the integration of Internet of Things and cloud computing,’’
J. Netw. Comput. Appl., vol. 67, pp. 99–117, May 2016.

[3] D. Litchfield, ‘‘Oracle forensics part 1: Dissecting the redo logs,’’
NGSSoftware Insight Secur. Res. (NISR), Next Gener. Secur. Softw. Ltd.,
Sutton, U.K., Tech. Rep., 2007.

[4] S. Tripathi and B. B. Meshram, ‘‘Digital evidence for database tamper
detection,’’ J. Inf. Secur., vol. 3, no. 2, pp. 113–121, 2012.

[5] P. Frühwirt, P. Kieseberg, S. Schrittwieser, M. Huber, and E. Weippl, ‘‘Inn-
oDB database forensics: Enhanced reconstruction of data manipulation
queries from redo logs,’’ Inf. Secur. Tech. Rep., vol. 17, no. 4, pp. 227–238,
May 2013.

[6] J. Sablatura and B. Zhou, ‘‘Forensic database reconstruction,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Dec. 2017, pp. 3700–3704.

[7] A. Al-Dhaqm, S. A. Razak, S. H. Othman, A. Nagdi, andA. Ali, ‘‘A generic
database forensic investigation process model,’’ Jurnal Teknologi, vol. 78,
nos. 6–11, pp. 45–57, Jun. 2016.

[8] M. H. Bhagwani, R. V. Dharaskar, and V. Thakare, ‘‘Comparative analysis
of database forensic algorithms,’’ in Proc. IJCA Nat. Conf. Knowl., Innov.
Technol. Eng. (NCKITE), Jul. 2015, vol. NCKITE 2015, no. 3, pp. 33–36.

[9] A. Al-Dhaqm, S. Abd Razak, D. A. Dampier, K.-K. R. Choo, K. Siddique,
R. A. Ikuesan, A. Alqarni, and V. R. Kebande, ‘‘Categorization and organi-
zation of database forensic investigation processes,’’ IEEE Access, vol. 8,
pp. 112846–112858, 2020.

[10] J. Yoon and S. Lee, ‘‘A method and tool to recover data deleted from a
MongoDB,’’ Digit. Invest., vol. 24, pp. 106–120, Mar. 2018.

[11] A. Golhar, S. Janvir, R. Chopade, and V. Pachghare, ‘‘Tamper detection in
Cassandra and Redis database—A comparative study,’’ in Proc. Int. Conf.
Comput. Sci. Appl. Singapore: Springer, 2020, pp. 99–107.

[12] J. Wagner, A. Rasin, K. Heart, T. Malik, J. Furst, and J. Grier, ‘‘Detecting
database file tampering through page carving,’’ in Proc. 21st Int. Conf.
Extending Database Technol., 2018, pp. 1–12.

[13] R. Chopade and V. K. Pachghare, ‘‘Ten years of critical review on database
forensics research,’’ Digit. Invest., vol. 29, pp. 180–197, Jun. 2019.

[14] S. K. Jung, J. W. Jang, D. W. Jeong, and S. J. Lee, ‘‘A study on the
improvement method of deleted record recovery in MySQL InnoDB,’’
KIPS Trans. Comput. Commun. Syst., vol. 6, no. 12, pp. 487–496, 2017.

[15] S. Nemetz, S. Schmitt, and F. Freiling, ‘‘A standardized corpus for SQLite
database forensics,’’ Digit. Invest., vol. 24, pp. S121–S130, Mar. 2018.

[16] C. Meng and H. Baier, ‘‘Bring2Lite: A structural concept and tool for
forensic data analysis and recovery of deleted SQLite records,’’ Digit.
Invest., vol. 29, pp. S31–S41, Jul. 2019.

[17] L. Zhang, S. Hao, and Q. Zhang, ‘‘Recovering SQLite data from frag-
mented flash pages,’’ Ann. Telecommun., vol. 74, nos. 7–8, pp. 451–460,
Aug. 2019.

[18] J. Kim, A. Park, and S. Lee, ‘‘Recovery method of deleted records
and tables from ESE database,’’ Digit. Invest., vol. 18, pp. S118–S124,
Aug. 2016.

[19] R. Bria, A. Retnowardhani, and D. N. Utama, ‘‘Five stages of database
forensic analysis: A systematic literature review,’’ in Proc. Int. Conf. Inf.
Manage. Technol. (ICIMTech), Sep. 2018, pp. 246–250.

[20] DB-Engines Ranking—Popularity Ranking of Database Management Sys-
tems. Accessed: Dec. 24, 2020. [Online]. Available: https://db-engines.
com/en/ranking

[21] H. K. Khanuja and D. Adane, ‘‘A framework for database forensic analy-
sis,’’ Comput. Sci. Eng., Int. J., vol. 2, no. 3, pp. 27–41, 2012.

[22] H. Beyers, M. S. Olivier, and G. P. Hancke, ‘‘Arguments and methods for
database data model forensics,’’ in Proc. WDFIA, 2012, pp. 139–149.

14574 VOLUME 9, 2021



H. Choi et al.: Forensic Recovery of SQL Server Database: Practical Approach

[23] D. A. Flores andA. Jhumka, ‘‘Implementing chain of custody requirements
in database audit records for forensic purposes,’’ in Proc. IEEE Trust-
com/BigDataSE/ICESS, Aug. 2017, pp. 675–682.

[24] A. Al-Dhaqm, S. Razak, S. H. Othman, K.-K. R. Choo, W. B. Glisson,
A. Ali, and M. Abrar, ‘‘CDBFIP: Common database forensic investigation
processes for Internet of Things,’’ IEEE Access, vol. 5, pp. 24401–24416,
2017.

[25] J. Wagner, A. Rasin, B. Glavic, K. Heart, J. Furst, L. Bressan, and J. Grier,
‘‘Carving database storage to detect and trace security breaches,’’ Digit.
Invest., vol. 22, pp. S127–S136, Aug. 2017.

[26] J. Wagner, A. Rasin, T. Malik, K. Heart, H. Jehle, and J. Grier, ‘‘Database
forensic analysis with DBCarver,’’ in Proc. 8th Biennial Conf. Innov. Data
Syst. Res., 2017, pp. 1–10.

[27] J. Wagner, A. Rasin, and J. Grier, ‘‘Database image content explorer:
Carving data that does not officially exist,’’ Digit. Invest., vol. 18,
pp. S97–S107, Aug. 2016.

[28] K. Fowler, SQL Server Forenisc Analysis. London, U.K.: Pearson, 2008.
[29] H. K. Khanuja and D. D. S. Adane, ‘‘Forensic analysis of databases by

combining multiple evidences,’’ Int. J. Comput. Technol., vol. 7, no. 3,
pp. 654–663, Jun. 2013.

[30] E. Toombs, ‘‘Microsoft SQL server forensic analysis,’’ Ph.D. dissertation,
Utica College, Utica, NY, USA, 2015.

[31] D. Litchfield, ‘‘Oracle forensics part 2: Locating dropped objects,’’
NGSSoftware Insight Secur. Res. (NISR), Next Gener. Secur. Softw. Ltd.,
Sutton, U.K., Tech. Rep., 2007.

[32] D. Litchfield, ‘‘Oracle forensics part 3: Isolating evidence of attacks
against the authentication mechanism,’’ NGSSoftware Insight Secur. Res.
(NISR), Next Gener. Secur. Softw. Ltd., Sutton, U.K., Tech. Rep., 2007.

[33] D. Litchfield, ‘‘Oracle forensics part 4: Live response,’’ NGSSoftware
Insight Secur. Res. (NISR), Next Gener. Secur. Softw. Ltd., Sutton, U.K.,
Tech. Rep., 2007.

[34] D. Litchfield, ‘‘Oracle forensics part 5: Finding evidence of data theft in
the absence of auditing,’’ NGSSoftware Insight Secur. Res. (NISR), Next
Gener. Secur. Softw. Ltd, Sutton, U.K., Tech. Rep., 2007.

[35] D. Litchfield, ‘‘Oracle forensics part 6: Examining undo segments, flash-
back and the oracle recycle bin,’’ NGSSoftware Insight Secur. Res. (NISR),
Next Gener. Secur. Softw. Ltd, Sutton, U.K., Tech. Rep., 2007.

[36] D. Litchfield, ‘‘Oracle forensics part 7: Using the oracle system change
number in forensic investigations,’’ NGSSoftware Insight Secur. Res.
(NISR), Next Gener. Secur. Softw. Ltd, Sutton, U.K., Tech. Rep., 2008.

[37] P. Finnigan, P. Finnigan, and Gennick, Oracle Incident Response and
Forensics. New York, NY, USA: Apress, 2018.

[38] P. Frühwirt, M. Huber,M.Mulazzani, and E. R.Weippl, ‘‘InnoDB database
forensics,’’ in Proc. 24th IEEE Int. Conf. Adv. Inf. Netw. Appl., Apr. 2010,
pp. 1028–1036.

[39] W.-S. Noh, S.-M. Jang, C.-H. Kang, K.-M. Lee, and S.-J. Lee,
‘‘The method of deleted record recovery for MySQL MyISAM database,’’
J. Korea Inst. Inf. Secur. Cryptol., vol. 26, no. 1, pp. 125–134, Feb. 2016.

[40] S. Jeon, J. Bang, K. Byun, and S. Lee, ‘‘A recovery method of deleted
record for SQLite database,’’ Pers. Ubiquitous Comput., vol. 16, no. 6,
pp. 707–715, Aug. 2012.

[41] Q. Li, X. Hu, and H. Wu, ‘‘Database management strategy and recovery
methods of android,’’ in Proc. IEEE 5th Int. Conf. Softw. Eng. Service Sci.,
Jun. 2014, pp. 727–730.

[42] J. Yoon, D. Jeong, C.-H. Kang, and S. Lee, ‘‘Forensic investigation frame-
work for the document store NoSQL DBMS: MongoDB as a case study,’’
Digit. Invest., vol. 17, pp. 53–65, Jun. 2016.

[43] M. Xu, X. Xu, J. Xu, Y. Ren, H. Zhang, and N. Zheng, ‘‘A forensic analysis
method for Redis database based onRDB andAOFfile,’’ J. Comput., vol. 9,
no. 11, pp. 2538–2544, Nov. 2014.

[44] R. Kumbhare, S. Nimbalkar, R. Chopade, and V. Pachghare, ‘‘Tamper
detection in MongoDB and CouchDB database,’’ in Proc. Int. Conf. Com-
put. Sci. Appl. Singapore: Springer, 2020, pp. 109–117.

[45] Files and Filegroups Architecture. Accessed: Dec. 24, 2020. [Online].
Available: https://technet.microsoft.com/en-us/library/ms179316(v=sql.
105).aspx

[46] John Huang’s Blog. Accessed: Dec. 24, 2020. [Online]. Available:
http://www.sqlnotes.info/2011/10/31/page-type/

[47] SQL Server Storage Engine: Data Pages and Data Rows. Accessed:
Dec. 24, 2020. [Online]. Available: http://aboutsqlserver.com/2013/10/15/
sql-server-storage-engine-data-pages-and-data-rows/

[48] Fixup—Concept—NTFs Documentation. Accessed: Dec. 24, 2020.
[Online]. Available: https://flatcap.org/linux-ntfs/ntfs/concepts/fixup.html

[49] ApexSQL. SQL Server Recovery Tool. Accessed: Dec. 24, 2020. [Online].
Available: https://www.apexsql.com/sql-tools-recover.aspx

[50] Stellar Data Recovery. SQL Recovery Tool. Repair MDF, NDF Database
Files. Accessed: Dec. 24, 2020. [Online]. Available: https://www.
stellarinfo.com/sql-recovery.php

[51] SysTools. SQL Recovery Software to Repair MDF, NDF Database
File. Accessed: Dec. 24, 2020. [Online]. Available: https://www.
systoolsgroup.com/sql-recovery.html

[52] G. Horsman, ‘‘Tool testing and reliability issues in the field of digital
forensics,’’ Digit. Invest., vol. 28, pp. 163–175, Mar. 2019.

HOYONG CHOI received the B.S. degree from
the Division of Computer and Communication
Engineering, Korea University, in 2014. He is cur-
rently pursuing the Ph.D. degree with the Graduate
School of Information Security, Korea University.
His research interests include database forensics,
artificial intelligence, and digital forensics.

SANGJIN LEE received the Ph.D. degree from
the Department of Mathematics, Korea Univer-
sity, in 1994. From 1989 to 1999, he was with
the Electronics and Telecommunications Research
Institute, Korea, as a Senior Researcher. He has
been with the Digital Forensic Research Center,
Korea University, since 2008. He is currently the
President of the Division of Information Security,
Korea University. He has authored or coauthored
over 130 papers in various archival journals and

conference proceedings and over 200 articles in domestic journals. His
research interests include digital forensics, data processing, forensic frame-
work, and incident response.

DOOWON JEONG received the B.S. degree from
the Division of Industrial Management Engineer-
ing, Korea University, in 2011, and the Ph.D.
degree from the Graduate School of Information
Security, KoreaUniversity, in 2019. He is currently
an Assistant Professor with the College of Police
and Criminal Justice, Dongguk University. His
research interests include digital forensics, infor-
mation security, artificial intelligence, and digital
profiling.

VOLUME 9, 2021 14575


