
SPECIAL SECTION ON EDGE INTELLIGENCE FOR INTERNET OF THINGS

Received November 26, 2020, accepted December 9, 2020, date of publication January 18, 2021, date of current version January 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3052458

Improving IoT Services Using a Hybrid Fog-Cloud
Offloading
SAIF ALJANABI AND ABDOLAH CHALECHALE
Department of Computer Engineering, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran

Corresponding author: Abdolah Chalechale (chalechale@razi.ac.ir)

ABSTRACT With the rapid development of the internet of things (IoT) devices and applications, the neces-
sity to provide these devices with high processing capabilities appears to run the applications more quickly
and smoothly. Though the manufacturing companies try to provide IoT devices with the best technologies,
some drawbacks related to run some sophisticated applications like virtual reality and smart healthcare-based
are still there. To overcome these drawbacks, a hybrid fog-cloud offloading (HFCO) is introduced, where the
tasks associated with the complex applications are offloaded to the cloud servers to be executed and sent back
the results to the corresponding applications. In the HFCO, when an IoT node generates a high-requirement
processing task that cannot handle itself, it must decide to offload the task to the cloud server or to the
nearby fog nodes. The decision depends on the conditions of the task requirements and the nearby fog nodes.
Considering many fog nodes and many IoT nodes that need to offload their tasks, the problem is to select
the best fog node to offload each task. In this paper, we propose a novel solution to the problem, where the
IoT node has the choice to offload tasks to the best fog node or to the cloud based on the requirements of the
applications and the conditions of the nearby fog nodes. In addition, fog nodes can offload tasks to each other
or to the cloud to balance the load and improve the current conditions allowing the tasks to be executed more
efficiently. The problem is formulated as a Markov Decision Process (MDP). Besides, a Q-learning-based
algorithm is presented to solve the model and select the optimal offload policy. Numerical simulation results
show that the proposed approach has superiority over other methods regarding reducing delay, executing
more tasks, and balance the load.

INDEX TERMS Internet of Things, cloud computing, fog computing, task offloading, Q-learning.

I. INTRODUCTION
New digital devices that use emerging networking technolo-
gies generate sophisticated tasks, which require broad pro-
cessing capabilities. These sophisticated tasks, which are
presented as online applications increase the needs of the
processing power, required data rates, and other different
resources [1]–[3]. For these reasons, new digital devices
have been designed to be able to meet these requirements.
However, with all the powerful features embedded in the
latest devices, these devices are not able to run new smart
applications that require high processing capabilities such as
virtual reality, smart healthcare, some internet of things (IoT)
applications, and so on [4]–[7]. In comparison to desktop
computers and even mobile phones, it can be said that the
IoT nodes have limited capabilities due to the functions it can

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenyu Zhou .

perform in factory environments, hospitals and many other
places [8].

For this, the IoT nodes are often small in size, which
leads to limited processing capacities as well as energy
consumption considerations. To overcome these, the concept
of task offloading was proposed, where the smart applications
can be executed in a remote-way on a high-performance
entity [1]–[8]. For this, these applications must be designed
capable to contact with other components in the network.
In other words, other network components have to be able
to run these applications instead of end-nodes devices. The
network components that execute the applications on behalf
of the end-nodes are referred to as fog nodes or cloud
servers. After performing the applications, the results must
be sent back to the end nodes to be used by the starting
application. Task offloading technique is suitable for some
kind of networks, where the end-nodes have limited resources
to run specific applications [10]–[12]. At the same time, a
cloud sever or fog nodes are exist in the system and are

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 13775

https://orcid.org/0000-0002-7217-905X
https://orcid.org/0000-0002-3344-4463

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

FIGURE 1. The structure of the hybrid fog-cloud computing.

compatible to coexist with the end-nodes and to execute their
applications. End-nodes can be mobile phones in normal
places, sensors in factories or sensing fields, or other control
devices in special cases.

Generally, from network administration’s point of view,
the task-offloading technique is needed to achieve different
goals. For example, providing computational resources to
help edge-nodes to execute high complex tasks, balancing
traffic load, save energy in un-rechargeable devices, or for
some other QoS metrics related to latency, especially for
real-time applications [13]–[15].

From another side, cloud computing has gotten more atten-
tion to perform high-complex jobs in different areas. There-
fore, the cloud is provided with great capabilities related to
large storage, high-speed communication, and powerful pro-
cessing units. One of the essential features presented in cloud
computing is that they can be accessed online at any time and
from anywhere [16]–[20]. Many cloud-computing providers
are now on the business side, offering cloud-computing
services in the form of virtual machines. Based on [1],
about 90 percent of internet users benefit from some
cloud-computing services in different ways.

Sometimes, edge-node devices or IoT devices can be
located far away from the cloud. This results in a considerable
delay, which is not suitable for some applications, espe-
cially for real-time applications, which are sensitive to delay.
To overcome this problem, fog-computing was proposed
in which fog nodes are located between cloud servers and
edge-node devices, and close to the end-nodes. Many types
of fog computing, such as cloud-lets, mobile edge computing,
were proposed and discussed in the literature [1], [2], [4], [6],
and [8], [9]. Fog nodes are distributed to be close to the IoT
devices, thereby covering more larger areas. Figure 1 shows
how fog computing consists of distributed fog-nodes, which
work as a middleware between cloud-computing and IoT
devices. The fog-nodes that are distributed at different loca-
tions make it easier for the end devices to exploit resources,
and reduce latency. Some examples of fog computing can be
central servers, controllers, or base stations.

To meet the QoS requirements of IoT nodes, task-
offloading technique is used to send some jobs or tasks to the
cloud or to the fog nodes. This technique is expected to solve
the problem of running heavy applications on resource-poor
devices. The main problem here is to specify when and
where task offloading must be performed. In other words,

‘‘when’’ an IoT node decides to offload a task, and ‘‘where’’
to offload it. The answer to the question ‘‘when’’ depends
on the running application requirements and the currently
available resources on the operator node. On the other hand,
the answer to the question ‘‘where’’ depends on the applica-
tion specifications that has to be offloaded and the network
state. In other words, an IoT node needs to decide to which
place a task should be offloaded; to a certain fog node or to
the cloud.

Many fog nodes with different resources capabilities and
delay constraints can exist nearby to IoT nodes. Therefore,
the problem here is to select the best fog node that can run
the task under the constraints tomeet the QoS requirements of
IoT nodes. Another choice is that IoT nodes can offload a task
directly to the cloud. In these cases, IoT nodes are considered
as decision-makers. In some different cases, fog nodes can
be the decision-makers, which decide to offload a task (or
some tasks) to other fog nodes or to the cloud according to
the changes in the network state aiming at balancing load
between fog nodes.

Based on the above background, the main contributions of
this paper can be summarized as follows:

1. We consider the task offloading problem by taking
both load balancing and delay minimizing into account.
In the previous related works, only one parameter was
considered during task offloading.

2. To choose the best fog node for each new task,
sequential decisions need to be taken. Therefore,
task-offloading problem is modelled as an MDP, where
two decision-makers (IoT users and fog nodes) can
make decisions to where to offload tasks. To the best
of our knowledge, this is the first work for sequential
decisions that consider two decision-makers.

3. We presented a Q-Learning task offloading scheme
to solve the MDP model. The main advantage of
Q-Learning is that it can solveMDPwithout the explicit
specification of the transition probabilities, which are
needed in policy iteration and value iteration.

4. Simulation results show that the proposed approach
makes better performance than other related works
concerning load balancing and minimizing delay.

The structure of this paper is organized as follows.
In Section II, we review some related works, which discuss
the task-offloading problem. Section III presents the imper-
atives on why we need to offload tasks. Some scenarios of
task offloading are discussed in details in Section IV. System
description and assumptions are provided in Section V.
Section VI, presents modelling the problem as MDP and
present a Q-learning-based algorithm to determine a bet-
ter choice. Formulation and simulation results are described
in Sections VII and VIII, respectively. Finally, Section IX
concludes the paper.

II. LITERATURE REVIEW
Since the objective of this research is to study task offloading,
we review some works that studied criteria on how to offload

13776 VOLUME 9, 2021

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

tasks from IoT nodes to corresponding servers. Many works
can be found which discussed the task offloading problem
because this problem becomes more attractive recently, espe-
cially for emerging communication technologies. In [2], task
offloading is used to balance the load between two fog nodes,
where load balancing was done using a cooperative model
between two fog-nodes. In the same way, the authors in [3]
discussed the load-balancing problem between multiple fog
nodes. The fog nodes were represented as data centers, which
are connected to construct a ring network. In this scheme, if a
task is offloaded to one data center with its task buffer full,
then the task is forwarded to the other cooperating data center
and served by that data center, consuming its CPU cycles.

A task offloading problem to reduce the latency of IoT
devices was discussed in [4]. In this paper, first, IoT devices
offload a task to one fog node which in turn may process the
task, forwards it to the cloud, or offloads it again to other
fog nodes. Also, no constraints on the number of fog nodes
or the type of network structure were considered in details.
In [5], the radio access network is integrated with cloud and
fog computing to manage the network efficiently, aiming at
minimizing end-to-end delay for real-time applications in 5G
networks.

Another technique to manage tasks and to distribute them
among fog nodes is task assignment. In this technique, all
tasks that could be generated at each IoT node is assumed
to be known. Therefore, each task is pre-allocated to one
fog node before generating the task. In other words, the task
assignment is static and cannot be changed during running
time. Before task offloading becomes necessary to be done,
task assignment may solve the problem of delay minimizing
or load balancing. Task assignment assigns a task to one fog
node or the cloud servers. If the task assignment considers the
state of all fog nodes, further task offloading can be avoided.
However, to optimally assign tasks, the states of all fog nodes
and properties of applications are required. For example,
a medical system was considered in [6], where the problem is
to assign tasks to suitable base stations. In each base station,
many virtual machines can exist. Therefore, the problem of
virtual machine assignment was also discussed. The task
assignment problem was also studied in [7], where energy
consumption was considered while minimizing end-to-end
delay. Another work that discussed task assignment in IoT
structure was presented in [8], where energy consumption is
considered as long as latency and also QoS requirements.

As mentioned before, task assignment is expensive and
complex where the specifications of running applications and
the states of all fog nodes must be known before start solving
the task assignment problem. For this reason, task offloading
is more practical in the real world to be applied; for example,
the authors in [9] modelled task assignment problems as an
optimization problem. Since solving the optimization prob-
lem is complex and must be centralized, the authors then pre-
sented a distributed algorithm to handle the task assignment
problem. Nevertheless, many important parameters, like pro-
cessing power and traffic load, were not considered carefully

in the distributed algorithm. Besides, fog nodes need to send
their states periodically to IoT nodes, which does not apply
to the large-scale networks.

The main objective of our research is to minimize
end-to-end delay and to distribute tasks between fog nodes
by minimizing the number of offloading operations needed
to assign a task to a suitable fog node. Our proposed
approach is different from the works discussed above such
as [4]–[6], [8], [9], and has no constraints on the type of
network or the number of fog nodes or IoT nodes like [2], [3].

The authors in [10] studied the energy consumption prob-
lemwith the constraint that the latency of IoT applications has
to be more than a predefined threshold. Energy minimization
was done by optimally assigning tasks to fog nodes. Another
offloading mechanism was presented in [11], where the goal
is to minimize the total response time of all tasks. This
mechanism can work online to assign tasks to fog nodes.
The work [12] also aimed at minimizing response time in a
distributed way under the constraint that energy consumption
must be less than a threshold. Moreover, this work focused
also on task offloading from fog nodes to cloud servers.

Fog network combines all fog nodes in a system to con-
struct a network. The authors in [13] presented a new frame-
work to merge the fog nodes in one entity to construct a
network. This network canmanage the resources of fog nodes
efficiently, where it can assign each task to a fog node that
can meet the QoS requirements such as latency. In [14],
the latency was also considered as the main objective, and
the fog network is studied, where the tasks that are executed
periodically are cached for future purposes. The task offload-
ing algorithm presented in [15] is based on graph theory
and allow each IoT device to build its fog network from the
nearby fog nodes. When a new task is generated at one IoT
device, it can offload it directly to the fog network. The work
in [16] focused on one task offloading for the IoT devices
that are used in smart cities. Moreover, task offloading in
mobile cloud computing was discussed in [17], where no fog
computing exists in the system. Therefore, an IoT device can
offload tasks only to cloud servers.

Mobile edge computing (MEC) works in a similar way like
fog computing that is adopted and developed for the cellular
networks such as 5G [18]. In the structure ofMEC, computing
nodes are provided in the radio access network (RAN), which
is referred to as Cloud-RAN. As a result, task offloading can
be optimized by network operators. Task offloading is also
an important issue in MEC and has increased attention in
the literature. For example, the authors in [19] studied the
problem of joint channel assignment and task offloading aim-
ing at reducing latency and energy consumption. Similarly,
a joint channel assignment and task offloading problem were
studied in [20]. However, in this work, the decision is taken
in a centralized model where the authors assumed that MEC
nodes have no constraints on computation resources.

More recent works was presented in [21]–[25]. In [21],
collaborative cloud-edge-end task offloading is proposed to
handle the task offloading problem. The main goal is to

VOLUME 9, 2021 13777

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

FIGURE 2. Criteria used in offloading.

increase the processing efficiency of the tasks considering
the limited resources and communication’s limitations. In this
study, mobile devices partially process the tasks, and based
on the tasks’ priorities, these tasks are offloaded to the
edge nodes and the cloud server. To organize task offload-
ing, the authors proposed pipeline-based offloading tasks.
The problem is modeled as a non-convex problem, which
is hard to solve. Therefore, an approximation model was
proposed.

Task offloading problem is also studied in [22], where,
module placement method was proposed by classification
and regression tree. This algorithm was proposed in order to
select the best fog node to offload a task. This method consid-
ered the energy consumption when offload a task, and based
on the energy consumption, the decision to offload a task is
taken.

A block chain and learning-based method task offload-
ing for vehicular fog computing was proposed in [23]. The
aim is to reduce task offloading delay, queuing delay, and
handover cost with incomplete information while simultane-
ously ensuring privacy, fairness, and security. A subjective
logic-based trustfulness metric to quantify the possibil-
ity of task offloading success was designed. An online
learning-based intelligent task offloading algorithm was pro-
posed, which can learn the long-term optimal strategy and
achieve awell-balanced tradeoff among task offloading delay,
queuing delay, and handover costs.

An ant colony optimization and particle swarm optimiza-
tion were used to efficient task offloading for IoT-based
applications in fog computing [24]. Here, the main goal is
to load the balance between fog nodes.

In [25], the aim is to provide a new offloading technique
where latency for task offloading is optimized by taking Peer-
to-Peer (P2P) technology as a basic mode of a network envi-
ronment for fog computing and also taken P2P file-sharing
protocol as a basic mode of offloading technique.

III. IMPERATIVES OF TASK OFFLOADING
This section discusses reasons for needing the tasks to be
offloaded, where the decision to offload a task depends on
these reasons (or criteria) [26]. These criteria answer the
question of why to offload a task. Figure 2 shows the most

common reasons that require tasks to be offloaded, and they
are explained in details below.

A. HIGH-LEVEL USAGE OF THE RESOURCE
High-level usage of the resource happens when the usage
level of device resources such as CPU or RAM exceeds a
threshold. In this situation, some applications that occupy
the largest portion of resources have to be offloaded to other
devices such as fog nodes or cloud servers. If this happens in
a fog node, the applications must be offloaded to other fog
nodes or cloud servers. For example, video processing which
needs a powerful CPU.

B. TO GUARANTEE A MINIMUM DELAY THRESHOLD
When some applications offload tasks to the cloud server,
if these applications are delay-sensitive, then these tasks need
to be offloaded to nearby fog nodes to guarantee that the
delay remains acceptable. The authors in [27] discussed in
details task offloading tomeet delay constraints. For example,
in video streaming services, cloud servers need to offload the
video to fog nodes that are close to end-users.

C. LOAD BALANCING
Load balancing happens when there is a large number of
end-users in a certain location, and offload their tasks to a
sub-set of fog nodes, while other fog nodes have a smaller
number of tasks to process. In this case, busy fog nodes may
offload some tasks to other fog nodes to balance the load
among them. Such a problem was studied in [28], where one
fog node with a high-level load can distribute some tasks to
other fog nodes. For example, a fog network manager in a
datacenter distributes new arrival tasks among fog nodes to
guarantee similar levels of occupation in them.

D. STORING NECESSARY DATA
To store a large amount of data, end-users’ devices, are not
a good place because they are not reliable, and there is no
enough capacity to store all data. Therefore, data that are
needed to be stored is offloaded to the cloud server. In the
case of data storage, even fog nodes maybe not a good choice.

E. DATA ANALYSIS
In some scenarios, a manager in a cloud server may need
to make some decisions on the system-level. Therefore, data
from all end-node devices and even fog nodes need to be
offloaded to cloud servers. In addition to data analysis, data
may be offloaded to be organized or to remove redundant and
replicated data. Some works studied tasks offloading in terms
of data organization and data analysis, such as [28], [29].

F. SECURITY ISSUES
Security issues are similar to storing data, where the end-
user nodes are not the perfect place to keep data secure or
to save privacy. For example, personal information may be
offloaded from smartphones to cloud servers, such as Drop-
box, OneDrive, and Google Drive. Another example is that
the information related to patients in a body area network is

13778 VOLUME 9, 2021

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

offloaded from medical machinery to a data center to keep
the privacy [30].

G. OTHER CRITERIA
Task offloading can be done for other reasons such as
availability or accessibility. In this situation, end-nodes may
offload tasks to be available to other nodes and to be
accessible from anywhere at any time.

IV. TASK OFFLOADING SCENARIOS
In the previous section, the reasons that make it necessary to
offload tasks were discussed. In this section, we study where
the task offloading may happen. Task offloading can take
place at almost all system components based on the reasons
of why we need to offload tasks. In what follows, we classify
the possible locations.

A. FROM PERIPHERAL EQUIPMENT TO EDGE NODES
This scenario is simple and is related to special cases such as
smart glasses or smartwatches that are designed to offload all
gathered data to smartphones.

B. FROM IOT NODES TO FOG NODES
1) FACTORY SCENARIO
Factory scenario is the most common type of task offloading
where IoT nodes do not have enough resources to process
all data. For example, IoT nodes in industrial areas are nodes
that provide sensors, weak CPUs, and low storage capacities.
Therefore, these IoT nodes almost offload all tasks to fog
nodes to process gathered data and to take decisions. Fog
nodes may be local data centers.

2) HEALTHCARE SCENARIO
This scenario can also be found in hospitals where sensor
nodes that are responsible for patient monitoring offload tasks
towards fog nodes that may be a central device in the nurses’
room. Also, in the field of health surveillance, in the body
area network, which consists of sensors installed in/on the
patient’s body, the same task of offloading type can be noted.
Sensor nodes in this network send signals related to different
organs of the body to sink node, which in its turn sends these
signals to the local server representing a fog node.

3) VEHICULAR AD-HOC NETWORK (VANET) SCENARIO
In VANET, vehicles send messages about street traffic, acci-
dents, or other information directly to other vehicles or the
fog nodes. Fog nodes in this scenario can be roadside units
(RSUs), which are installed in predefined locations to mon-
itor and control traffic. In this scenario, vehicles offload
most tasks to RSUs because RSUs have better conditions to
distribute messages and to broadcast alarms when needed.
Some works studied this type of task offloading like [31]
to [32]. In [31], the authors discussed real-time services in
VANET, while the works in [32] and [33] studied the problem
of distributing alarm messages when needed.

C. FROM IOT NODES TO THE CLOUD
IoT nodes may offload tasks to the cloud server for many
reasons. The common scenario is that IoT nodes offload

tasks to store data, in body area networks, where fog nodes
may not have enough capacity or reliability to store such
important data [34]. Another example can be security issues,
and in this case, it is preferable to save data in cloud servers
than fog nodes. Processing purposes can also be a common
example when fog nodes cannot perform tasks under some
QoS requirements such as latency.

D. FROM FOG NODES TO THE CLOUD
When many tasks are offloaded from IoT nodes to the fog
nodes and consume their resources, in this case, fog nodes
may offload some tasks to cloud servers. Storing and man-
aging data can be another reason to offload tasks from fog
nodes to cloud servers. In some scenarios, if there are no
direct connections between IoT nodes and cloud servers, IoT
nodes may offload a task to fog nodes first, and fog nodes,
in turn, offload the task to the cloud.

E. FROM FOG NODE TO OTHER FOG NODES
The main goal in this scenario is to balance the load between
fog nodes. For example, one base station with a high load
may decide to offload some tasks to other fog nodes with a
lower load. This type of offloading can be done by fog nodes
themselves or can be decided by the cloud that can have a
complete view of the system. Another reason for this type
of offloading may be accessibility or availability concerns.
Some information is required for all IoT nodes, and if this
information is stored only in some fog nodes; some other fog
nodes may not have access to this information. Therefore,
this information has to be offloaded to all fog nodes. How-
ever, for accessibility purposes, the offloaded information
and the original one has to be synchronized if it is updated
somewhere.

F. FROM CLOUD TO FOG NODES
This scenario happens in different cases. For example, in mul-
timedia services, cloud servers may offload a part of the
video to some fog nodes to meet delay requirements. In this
case, fog nodes have to provide the service instead of the
cloud. Tasks are offloaded to the fog nodes that are as close
as possible to the users. When there is a high-level inter-
action between cloud and end-users with no need for cen-
tral processing, it is better to offload a task to nearby fog
nodes. Interaction between RSUs and vehicles in VANET
is a good example [35]. In 5G communication, when two
connecting nodes located under the coverage of one base
station, the cloud gives this fog node the right to manage the
connection.

G. MUTUAL OFFLOADING BETWEEN CLOUD AND FOG
NODES
In the previous scenarios, task offloading is done from fog
nodes to the cloud and vice versa. This scenario combines
these two scenarios where information related to one task
needs to be offloaded from cloud to fog nodes, and the
fog nodes in turn offload other needed information to the
cloud. Target tracking can be a good example, where fog

VOLUME 9, 2021 13779

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

FIGURE 3. Offloading scenarios in hybrid fog-cloud computing.

nodes send the current location to the cloud, and the cloud
analyzes this information and send some results to fog nodes
to stop/start/continue tracking the target.

H. FROM CLOUD TO IOT NODES
This is not very common, but it happens when the cloud needs
to collect some information from the field or environment, for
example, to get the coordinates of some events such as fire or
explosion. In this case, cloud offloads a task to appropriate
IoT nodes. Another example happens when the cloud needs
to control something by controllers or actuators. Such types
of task offloading were discussed in literature like [36]–[38].

To this end, three directions of offloading can be noted: Up
direction, down direction, and Side direction. Figure 3 shows
the types and directions in which task offloading can take
place. In the case of cloud-to-fog nodes, cloud-to-IoT nodes,
fog nodes-to-IoT nodes, and peripheral equipment to edge
nodes are classified as Up direction. There is only one side-
by-side case between fog nodes as explained in Section IV,
down direction includes the cases of cloud-to-fog nodes,
cloud-to-IoT nodes, and fog nodes-to IoT nodes.

V. MOTIVATIONS AND SYSTEM DESCRIPTION
In this research, the main goal is to decide where to offload
a task, to one fog node, or to the cloud servers. This decision
can be made at IoT nodes, at the fog nodes, or even at
the cloud servers. In [4], the decision is first made in fog
nodes, where the IoT nodes directly offload the tasks to the
fog nodes. The fog nodes then decide to perform the task,
offloading it to other fog nodes, or offload it to the cloud
servers. In the mentioned scheme, IoT nodes cannot send
tasks directly to the cloud server. In [39], the offloading
decision on a task is made in IoT nods, where IoT nodes
decide to offload the task to either a fog node or the cloud
servers. In [39], there is no decision making in fog nodes.
The main drawback of [4] is that IoT nodes cannot directly
offload tasks to the cloud servers, while the main challenge
in [39] is that there is no offloading between fog nodes, which
results in unbalanced service time.

FIGURE 4. Possible locations of decision making.

Motivated by the above discussion, we proposed HFCO,
a new decision-making scheme where the decisions can be
made in IoT nodes or in fog nodes, which results in better
decisions regarding latency and load balancing. The main
objectives can be summarized as follows:

1. Minimizing the service delay: the main goal is to min-
imize the service delay by making the best decision to
offload a task to the cloud servers or a suitable fog node.

2. Minimizing the number of offloading operations: The
service delay can also be improved by minimizing the
number of offloading operations. For example, under
some conditions, an IoT node may decide to offload
a task to a fog node, which in turn decides to offload
the task to other fog nodes or the cloud server. If the
IoT node made a better decision from the beginning,
service time could be improved dramatically. Therefore,
making the optimal decision to where to offload the task
is an important factor, which can reduce service time.
Figure 4 depicts these two offloading models.

3. Load balancing: making the best decisions helps to
select fog nodes with low utilization levels will balance
the load between fog nodes, thereby reducing waiting
time.

4. Exploiting the data about fog nodes: making the best
decision requires many statistics to be known at IoT
nodes, e.g. processing capability, utilization level, aver-
age waiting time, etc. For making good decisions (to
offload to a fog node or the cloud), IoT nodes need some
information about fog nodes.

VI. SYSTEM MODEL
We considered one cloud computing server C, a set of
fog nodes F ={F1.F2. · · · .FM }, and a set of IoT nodes
T ={T1.T2. · · · .TN }, where M and N are the number of fog
nodes and IoT nodes in the considered area, respectively.
Each IoT node Ti periodically generates new tasks, where
each task is referred to as ωh,i, where h is the serial number
of the tasks on IoT node Ti. Each task has QoS requirements
represented by minimum acceptable delay Dh,i, and required
resources represented by Rh,i. On the other side, each fog
node Fj has a determined amount of resources. Also, we con-
sider the following assumptions:

1. Each fog node can estimate its currently available
resources and calculate the response time based on the current
tasks in the queue.

13780 VOLUME 9, 2021

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

2. The IoT nodes have limitations in processing capacity,
and most tasks need to be offloaded to the nearby fog nodes
to be executed.

3. When a new task is generated by one IoT node, this IoT
node asks the nearby fog nodes if they have enough resources
to perform the task. The fog nodes that can perform the task
send the estimated response time to the corresponding IoT
node. This coordination is done rapidly via a special channel;
therefore, the time duration of this coordination is neglected.
This special channel can be allocated as a portion of the
bandwidth, which is defined only for control packets.

Assuming that IoT nodes have choices to select the better
fog nodes to offload their new tasks, an IoT node needs
to know the states of all nearby fog nodes. On the other
hand, an IoT node needs to decide if the new task has to
be offloaded directly to cloud servers or a to fog node. This
decision depends on the processing requirements and delay
requirements of the task and the states of the fog nodes.
Besides, fog nodes can offload some tasks to each other or
to the cloud server.

Since the objective is to minimize service delay by offload-
ing a task to the cloud servers or to a good fog node,
the problem can be formulated as an optimization problem to
find the optimal decisions. However, solving an optimization
problem for each new task may take a long time, which is not
practical. Markov decision process (MDP) can be used here,
where, a reinforcement learning-based heuristic algorithm is
provided to solve the MDP model to overcome the large state
and action spaces.

The problem of selecting the best choice to offload a
task is formulated as an MDP, which is widely used to
formulate decision making in network structures as in [40]
and [41]. MDP consists of quadruple 〈S,A,P,R〉, in which
S,A,P and R define a finite set of states, a finite set of
actions, the transition probability matrix for each action in
each state, and the corresponding reward obtained from each
action in each state, respectively [42]. Since that both IoT
nodes and fog nodes can make decisions, there are two
decision-makers in this problem. Therefore, the set of state
space, the set of action space, reward, and transition proba-
bility matrix must be defined for both types of nodes. The
notations used in this paper are presented in Table 1.

VII. FORMULATION
In the following formulation, we consider IoT nodes as
decision-makers, similarly, the formulation of the fog nodes
as decision-makers can be derived in the same way.

A. STATE SPACE
The state of an IoT node Ti at time slot k is determined based
on the available resources 9 j(k) and the response time2j(k)
of each nearby fog node Fj ∈ Fni ⊂ F, and the response
time of cloud server 2C. The resources at the cloud server
C is always sufficient to handle any task. Therefore, we do
not consider it here. However, the cloud server’s response
time is important to some tasks. Therefore, regarding the
cloud server, we consider response time but not resources.

Denote by ψ
j
r,r ′ (k) to the probability that the available

resource state of the fog node Fj changes from the state r
to the state r ′ in time slot k , the transition probability of the
available resources state is defined as

ψ
j
r,r ′ (k) = Pr

{
9 j (k + 1) = r ′|9 j (k) = r

}
, ∀r, r ′ ∈ S9

(1)

where S9 is the set of the possible states of the available
resources.

Similarly, if we denote by2j(k) to the response time of the
fog node Fj in time slot k , and by θ jd,d ′ (k) to the probability
that response time of Fj changes from the state d to d ′ in time
slot k . The transition probability of the response time state is
defined as:

θ
j
d,d ′ (k) = Pr

{
2j (k + 1) = d ′|2j (k) = d

}
, ∀d, d ′ ∈ S2

(2)

where S2 is the set of the possible states of the response times.
Therefore, the state of one fog node Fj regarding available

resources and response time in the time slot k consists of a
couple of sub-states and is represented as

1j(k) =
(
9 j (k) ,2j(k)

)
(3)

When one IoT node decides to offload a task, it must select
one of the nearby fog nodes (or the cloud server). As a result,
the state of an IoT node Ti in time slot k depends on the states
of these fog nodes and the cloud server and is determined as

Si (k) =
[
11 (k) ,12 (k) , . . . ,1Ni ,2C

]
(4)

where Ni =
∣∣Fni ∣∣ is the number of the nearby node of Ti.

Therefore, the state space of all IoT nodes will be

S (k) = {S1 (k) , S2 (k) , . . . , SN (k)} (5)

On the other side, the state of one fog node depends on the
states of nearby fog nodes and is represented as

Sj (k) =
[
11 (k) ,12 (k) , . . . ,1Nj

]
(6)

where Nj =
∣∣∣Fnj ∣∣∣ is the number of nearby fog nodes of Fj.

Note that the response time of the cloud server is not
considered in the state space of the fog nodes because for
the fog node, it is important to balance the load between the
fog nodes. While for IoT nodes, it is important to minimize
response time in addition to balance the load between the fog
nodes. Similarly, the state space of all fog nodes

SF (k) = {S1 (k) , S2 (k) , . . . , SM (k)} (7)

B. ACTION STATE
The action for each IoT node Ti in time slot k can be chosen
from Ni + 1 actions represent the set of nearby fog nodes in
addition to the cloud server. Therefore, the IoT node Ti takes
the action ai (k) in time slot k , where the set of all available
actions is

Ai (k) =
{
a1 (k) , a2 (k) , . . . , aNi (k) , aC(k)

}
, (8)

VOLUME 9, 2021 13781

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

TABLE 1. Variables and functions for Q-Learning method.

Similarly, in a certain time slot k , a fog node Fj will
take action from the set of the available actions Aj (k) that
contains Nj + 1 actions represent the nearby fog nodes
and the cloud server. When a fog node selects itself as
the chosen action, this means that this fog node decides to
keep the current tasks in its queue. In other words, no task
offloading will be done. Similarly, the set of all available
actions is

Aj (k) =
{
a1 (k) , a2 (k) , . . . , aNj (k) , aC(k)

}
(9)

C. TRANSITION PROBABILITY MATRIX
In a time slot k , when an IoT node (or fog node) is in state s ∈
Si (k) and takes action a ∈ Ai (k) , the state of the node will
change to the state s

′
according to the following equation:

Pa
ss
′ = Pr

[
si(k+ 1) = s

′
|si(k) = s,ai (k) = a

]
(10a)

In the same way, the transition probability matrix for fog
nodes is defined as

Pf a
ss
′ = Pr

[
sj(k+ 1) = s

′
|sj(k) = s,aj (k) = a

]
(10b)

13782 VOLUME 9, 2021

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

D. REWARD
The reward for each fog nodeFj in time slot k is defined based
on the available resources9 j(k), and the response time2j(k)
of this fog node with related to other fog nodes. Generally,
when an IoT node Ti takes action a ∈ Ai (k) at state s ∈
Si (k) by selecting a fog node Fj in time slot k the following
reward will be obtained in time slot k + 1:

RWDas (k + 1) = ρj(k)− δj(k) (11)

where, ρj(k) =
9 j(k)∑

Fj′ ∈F
n
j \{Fj}

9j′ (k)
, and δj(k) =

2j(k)∑
Fj′ ∈F

n
j \{Fj}

2j′ (k)

are the normalized values of the available resources and
the response time, respectively. Based on this definition,
the reward for each fog node increases when more resources
are available, while it decreases by increasing the response
time. In other words, an IoT node (or a fog node) chooses
the fog node with more available resources and less response
time. Since the available resources and response time are dif-
ferent in nature, we considered the normalized values of these
parameters. The goal of the proposed algorithm is to choose
the fog node that maximizes the cumulative discounted future
reward. In other words, the aim is to select the optimal policy
π in a specific state s (k) at time k that can be represented
as π (s (k)) = a (k). Since the aim is to consider the long-
term reward, we compute the cumulative discounted future
reward for Ti andFj starting from k according to the following
formula

RWDki = Eπ
[∑T

t=0
β tRWDj(k + t + 1)

]
(12a)

RWDkj = Eπ
[∑T

t=0
β tRWDj(k + t + 1)

]
(12b)

where, β is the discount factor, and T is the future time in
which the reward is calculated. Based on Eq. (12), an IoT
node (or a fog node) calculates the cumulative discounted
future reward for all nearby fog nodes and set active the node
with maximum reward, and the optimal fog node is specified
as:

F∗j = arg max
Fj∈Fn

i

{
RWDki

}
(13)

E. Q-LEARNING-BASED TASK OFFLOADING ALGORITHM
1

With large sizes of state space and action space, solv-
ing MDP by choosing the fog node with maximum reward
becomes impractical. Therefore, we use Q-Learning in order
to solve MDP to learn the optimal policy. Q-Learning is
a model-free reinforcement learning (RL) which is used
to select the optimal policy under a specific state. In this
section, we present the Q-learning-based task offloading
method to obtain the optimal policy. The IoT node Ti acts
as an agent to interact with the environment to obtain the
best action. Accordingly, the environment will generate a

1In this subsection, we consider the IoT nodes as decision-makers. The
analysis can be then generalized for the fog nodes.

corresponding reward. In what follows, we define some func-
tions and variables regarding Q-learning. After that, these
functions are transformed into Bellman equations.

The aim for each IoT node Ti is to learn a Markov policy,
where each state is corresponded with a probability to take
any available action, that π : S×A −→ [0, 1], which max-
imize the expected discounted future reward starting from
each state s. Therefore, we need to define the state value
function V π :

V π (s) = E
[
R (k + 1)+ β.R (k + 2)+ β2.R (k + 3)

+ . . . |s (k) = s, π]

= E
[
R (k + 1)+ β.V π (s(k + 1)) |s (k) = s, π

]
=

∑
a∈A

π (s, a)
[
Ras + β

∑
s′
Pa
ss′
V π

(
s′
)]

(14)

where, Ras is calculated based on (11), and π (s, a) is the
probability that policy π takes action a in state s. The equa-
tion (14) is a Bellman equation that can be solved in different
ways, such as Q-Learning, value iteration, or policy iteration.
Therefore, we can determine the optimal policy based on the
state value function:

V ∗ (s) = max
π

V π (s)

= max
a∈A

E
[
R (k + 1)+ β.V ∗ (s(k + 1)) |s (k) = s,

a (k) = a]

=

∑
a∈A

π (s, a)
[
Ras + β

∑
s′
Pa
ss′
V ∗
(
s′
)]

(15)

According to the optimal Bellman equations given by (15),
we can obtain the optimal policy π∗:

π∗ = argπ max
a∈A

β
∑

s′
Pa
ss′
V ∗
(
s′
)

(16)

In Q-Learning, in addition to the state value function,
we need to define action-value function Qπ (s, a) for policy
π , which is used to select the best action in each state and is
defined as:

Qπ (s, a) = E
[
R (k + 1)+ β.R (k + 2)+ β2.R (k + 3)

+ . . . |s (k) = s, a (k) = a, π]

= Ras + β
∑

s′
Pa
ss′
V π

(
s′
)

= Ras + β
∑

s′
Pa
ss′
∑

a′
π (s′, a′)Qπ (s, a) (17)

Also, equation (16) is a Bellman equation that can be
solved by the methods mentioned above.
The optimal action-value function is

Q∗ (s, a) = max
π

Qπ (s, a)

= Ras + β
∑

s′
Pa
ss′

max
a′

Q∗
(
s′, a′

)
(18)

By applying the policy π , we can obtain the Q-value rep-
resented by Qπ (s, a) . Therefore, Q∗ (s, a) is the Q-value
obtained by the optimal policy π∗. As a result, the optimal
policy can be obtained by:

π∗ = argπ maxQ∗ (s, a) (19)

VOLUME 9, 2021 13783

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

Algorithm 1 The Proposed Algorithm to Select an Optimal
Policy
Initialize: S (k) , SF (k) ,A (k) ,T ,N ,M , α, β.
If a new task arrives at IoT node Ti (or a Fog node Fj)
For k = 0 to T
Select an action ai (k) ∈ Ai (k) using ε− greedy policy.
Receive 9 j(k) and2j(k) from the selected fog node F j.
Calculate the reward RWDj(k) based on (12).
Update Q(si(k), ai(k)) based on (20).
Update the V (si(k)) using (15).
Update the π (si(k), ai(k)) via (19).

End for
End if

The Q-Learning algorithm learns to choose the optimal
action in each state depending on the Q-value function. These
values determine the best policy for choosing the best fog
node to offload a task. Obtaining the values of these functions
is the main factor of this algorithm. Whereas, the equation of
updating function is defined as follows:

Qπ (s(k), a(k)) = (1− α)Q (s (k) , a (k))+ α
[
RWDki

+ β.max
a∈A

Q (s (k + 1) , a (k + 1))
]

(20)

where, α is the learning rate, Q (s (k) , a (k)) is the old value,
and max

a∈A
Q (s (k + 1) , a (k + 1)) is the estimate of optimal

future value.
To explain the overall Q-Learning operations for select-

ing the best choice, we introduce the following algorithm
(see Algorithm 1). The algorithm takes as input the state set
of IoT nodes S (k), the state set of fog nodes SF (k), and
the action set A(k). We aim to select the optimal action that
represents the best fog node or the cloud to offload a task.
Therefore, the output of the algorithm gives the best policy.

For each new task generated at one IoT node, a new packet
should be sent to the nearby fog nodes to ask about perfor-
mance metrics. Nearby fog nodes send back the current state
for the requested IoT. After that, the IoT node needs to make
a decision and inform the selected fog node with the decision.
To this end, |Fn|+2 additional control packets are exchanged.
In the same way, when a new task arrives to a fog node

Fj from an IoT node or from another fog node, the fog node
takes the role of decision maker to offload a task (or some
tasks) from the queue. Similarly, the considered fog node run
the Q-Learning algorithm, where it takes as input the state set
of fog nodes SF (k), and the action set A(k).

To describe the overall sequential decision-making process
between IoT nodes and fog nodes, we present the following
flowchart (see Figure 5). The process starts at an IoT node
when a new task is generated. Then, the IoT nodes decide
to offload the task. If it does not require a large amount
of resources, it may handle the task locally. On the other
hand, if the task requires a large amount of resources, the IoT
node may offload the task to nearby fog node or to the

FIGURE 5. Sequential decision-making process.

cloud depending on the latency requirement. When a task is
received at a fog node, the fog decides to keep the task in the
queue or to offload it to other fog nodes or to the cloud server.

VIII. PERFORMANCE EVALUATION
A. SIMULATION SETUP
The proposed algorithm is evaluated by computer simulations
and compared with other methods that were proposed in this
area. MATLAB is used to simulate network connections and
offloading scenarios.Many papers usedMATLAB to evaluate
the performance of offloading methods like [4], and [39].
Similar tools like C++/C# were also used to simulate task
offloading methods like [43].

Many topologies are considered in the evaluation process,
where the number of IoT nodes changes in the range (50,300),
and the number of fog nodes changes between 5 and 30. In the
same way, we consider the link speed of wired and wireless
links of 100Mbps and 2Mbps, respectively. The wireless
communication between the IoT nodes and the nearby fog
nodes is assumed to be through IEEE 802.11. The duration of
simulation time is set to 3600 seconds. These configurations
are used in literature to evaluate task offloading methods [4].

13784 VOLUME 9, 2021

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

FIGURE 6. A snapshot of the considered topology.

Each fog node is provided with 25 CPUs with each has
3.8GHz of speed, and 128 GB of RAM. The tasks generated
by the applications running on IoT nodes require different
requirements range between 1GHz to 10GHz of processing
speed and between 2GB to 10GB of RAM. Each task takes
between 1 second to 30 seconds to be executed if it met
the minimum requirements at the chosen fog node. The task
will take longer time if the assigned resources are lower
than the minimum requirements. Each IoT node run many
applications, where each application generates its own tasks
in random times. The response time of each fog node depends
on the tasks that are currently existed in the queue.

In the evaluation scenario, we consider ten fog nodes to
serve 100 IoT nodes (Figure 6). The fog nodes are connected
with each other by multi-hop connections, while each fog
node has a direct connection to the cloud server (shown as
lines in Figure 6).

We compared the proposed algorithm named HFCO with
F-RANpresented at [4], COGpresented at [39], FSYNC [43],
and the optimal theoretical results. These algorithms are com-
pared regarding average delay, number of non-served tasks,
load balancing, and blocking probabilities. The optimal solu-
tion is obtained by centrally solving the problem assuming
that we have a perfect prediction of the future generated tasks
and the available resources at all fog nodes during an infinite
time horizon [40]. In what follows, we briefly explain these
works for more understanding.

In [4], the authors introduced a framework tomodel service
delay in IoT-fog-cloud applications. With the aim of delay
minimizing, they tried to select the optimal offloading policy,
which considered IoT-to-cloud and fog-to-cloud interaction,
and fog-to-fog communication. Besides, they considered dif-
ferent kinds of request that have different service times.
The proposed framework was not limited to a particular
architecture but could be applied to different structures.

An allocation mechanism for fog computing resources
in IoT systems is proposed in [39]. The aim is to make
the offloading decision for each new task. Each IoT user
equipped with multi-RAT is able to offload its tasks to either
different fog nodes or to the remote cloud servers. Since
each fog node has determined resources, IoT users might
compete with each other to offload tasks to good fog nodes.
To tackle this problem, the authors first used a processor
sharing method to allocate the computing resources of fog
nodes and manage their limited resources. They then adopted

FIGURE 7. The average delay in different approaches.

a game theoretic approach to model the competition among
IoT users.

An architecture for computation and storage offloading
based on fog computing is proposed in [43]. This architec-
ture can help both end users and the cloud. The authors
designed a fog-based synchronization algorithm to minimize
the communication cost and reduce the latency from the end
users to the cloud. In addition, a new scheme with security
consideration was provided, where Reed-Solomon code was
introduced to protect the privacy of users.

B. AVERAGE DELAY
The delay includes waiting time in IoT nodes, the time needed
to offload the task towards a fog node (or directly toward the
cloud) which may execute it, forwards it to another fog node,
or towards the cloud. In other words, the delay time is the
time interval between generating the task at an IoT user and
start executing it. For delay-sensitive applications, the delay
time is critical. To evaluate it, we consider 100 IoT nodes,
and decrease the number of fog nodes from 30 down to 5 and
evaluate the average delay in eachmethod. Figure 7 shows the
results of a simulation. When sufficient fog nodes numbers
(30) is available, therefore, all methods achieve average delay
(about 0.3 sec except COG) close to each other. Because fog
nodes are available, and even if the task allocation methods
are not optimal, fog nodes are not busy and can execute
the task rapidly. However, by decreasing the number of fog
nodes, the superiority of our approach becomes clearer, espe-
cially with 15 fog nodes and less. In these cases, fog nodes
become busier, and our good task allocation approach finds a
better choice to where and when to offload the task. On the
other hand, the delay in our FHCO is close to the optimal for
different numbers of fog nodes.

C. LOAD BALANCING
Load balancing aims at distributing tasks between fog nodes
to minimize response time and to avoid bottleneck situation
that may happen in some parts of the network. Load balancing
also guarantees that most of the tasks can be processed in fog
nodes to avoid offloading them to the cloud, which increases

VOLUME 9, 2021 13785

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

FIGURE 8. Load variance with the number of fog nodes.

FIGURE 9. Load difference with the number of fog nodes.

the delay and the overhead. Similar to the previous scenario,
we evaluate the proposed approach with other offloading
methods considering 100 IoT nodes while increasing the
number of fog nodes from 5 to 30. Two criteria are evaluated
in terms of load balancing: variance and the load difference
between levels of business of fog nodes. Figure 8 shows the
load variance in each method. Considering that the load vari-
ance reflects the difference in load overall fog nodes, the large
value of variance shows that there is less load balancing. From
figure 8, we can see that all methods have a good variance
when only five fog nodes exist because all the fog nodes
are almost busy. By increasing the number of fog nodes, the
variance between fog nodes become bigger, and the proposed
approach can achieve less load variance and subsequently,
better load balancing. Only the optimal solution has some
superiority over the proposed HFCO.

Another load-balancing criterion is considered as the dif-
ference in load between the fog node with the maximum load
and the fog node with minimum load. Figure 9 shows the load
difference in different methods. This figure is similar to the
previous one showing the difference in load distribution over
different fog nodes. However, this one shows larger values
since the maximum difference is considered here instead of
variance.

FIGURE 10. Blocking probability with the number of fog nodes.

D. BLOCKING PROBABILITY
Blocking probability represents the percentage of tasks that
incorrectly completed. This can happen when the task exe-
cution time is greater than the maximum allowed time. The
maximum allowed time varies from task to task. To calculate
this probability, the ratio of tasks that are not successfully
completed to all tasks is calculated. As shown in figure 10,
increasing the number of fog nodes will reduce the block-
ing probability because it provides additional resources, that
is in turn, serve additional tasks. The blocking probabil-
ity in the proposed HFCO is close to the optimal solution
and is better than other algorithms. Differences between
the algorithms decreases with the increase in the number
of fog nodes, which means that the proposed algorithm
works better in conditions of insufficient resources in the
system.

E. NUMBER OF BENEFICIAL USERS
For IoT users, especially for delay-sensitive applications, it is
better to offload tasks towards fog nodes instead of the cloud,
which results in larger delays. In this section, we evaluated
the number of IoT users that can successfully offload their
tasks to the fog nodes. Under some conditions, such that
there are not enough resources available at nearby fog nodes
or delay requirements, IoT users have to offload tasks to
the cloud server. For this evaluation, we considered 300 IoT
users and increased the number of fog nodes from 5 to 30.
Figure 11 shows that with many fog nodes up to 10, all
methods can accept mostly the same number of IoT users
to be serviced via fog nodes. However, when the number of
fog nodes increases, the difference between methods appears
clearer. Figure 11 shows the superiority of the proposed
approach over the other ones. This is because our approach
distributes the tasks generated by IoT users fairer. On the
other side, if tasks are not distributed fairly between fog
nodes, some of the fog nodes reach the maximum limit of
acceptance. In contrast, others have lower levels of utiliza-
tion, which, in turn, reduces the number of beneficial IoT
users. The proposed HFCO is always close to the optimal
solution.

13786 VOLUME 9, 2021

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

FIGURE 11. Number of beneficial users with the number of IoT nodes.

IX. CONCLUSION
In this paper, a new task offloading approach was proposed to
determine the optimal decision on where and when to offload
a task; toward a specific fog node or to the cloud server. The
problem is studied and analyzed as a Markov decision pro-
cess. In the proposed MDP, two decision-makers have been
considered, where IoT users can decide to which fog node
they need to offload their tasks, while fog nodes may decide
to offload some tasks to other fog nodes or to the cloud servers
to balance the tasks between fog nodes. In order to handle
large-size of state space and action space, Q-learning-based
algorithm is derived to obtain the optimal policy. Simulation
results show that the proposed approach achieves better load
balancing and minimizes the delay time compared to other
works. Future works in this area can consider the problem
with no need to exchange the state of fog nodes using tools
like semi-MDP, which reduces the communication overhead
and the time needs to make the decision.

REFERENCES
[1] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, ‘‘Fog computing:

Focusing on mobile users at the edge,’’ 2015, arXiv:1502.01815. [Online].
Available: http://arxiv.org/abs/1502.01815

[2] R. Beraldi, A. Mtibaa, and H. Alnuweiri, ‘‘Cooperative load balancing
scheme for edge computing resources,’’ in Proc. 2nd Int. Conf. Fog Mobile
Edge Comput. (FMEC), May 2017, pp. 94–100.

[3] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, ‘‘Analysis of an
offloading scheme for data centres in the framework of fog computing,’’
ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 1, no. 4, pp. 1–18,
2016.

[4] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, ‘‘On reducing IoT
service delay via fog offloading,’’ IEEE Internet Things J., vol. 5, no. 2,
pp. 998–1010, Apr. 2018.

[5] Y.-J. Ku, D.-Y. Lin, C.-F. Lee, P.-J. Hsieh, H.-Y. Wei, C.-T. Chou, and
A.-C. Pang, ‘‘5G radio access network design with the fog paradigm:
Confluence of communications and computing,’’ IEEE Commun. Mag.,
vol. 55, no. 4, pp. 46–52, Apr. 2017.

[6] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, ‘‘Cost efficient
resource management in fog computing supported medical cyber-physical
system,’’ IEEE Trans. Emerg. Topics Comput., vol. 5, no. 1, pp. 108–119,
Mar. 2017.

[7] L. Wang, F. Zhang, A. V. Vasilakos, C. Hou, and Z. Liu, ‘‘Joint vir-
tual machine assignment and traffic engineering for green data cen-
ter networks,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 41, no. 3,
pp. 107–112, Jan. 2014.

[8] S. Sarkar, S. Chatterjee, and S. Misra, ‘‘Assessment of the suitability of
fog computing in the context of Internet of Things,’’ IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46–59, Jan. 2018.

[9] X. Guo, R. Singh, T. Zhao, and Z. Niu, ‘‘An index based task assignment
policy for achieving optimal power-delay tradeoff in edge cloud systems,’’
in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–7.

[10] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal work-
load allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

[11] H. Tan, Z. Han, X.-Y. Li, and F. C. M. Lau, ‘‘Online job dispatching
and scheduling in edge-clouds,’’ in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), May 2017, pp. 1–9.

[12] Y. Xiao and M. Krunz, ‘‘QoE and power efficiency tradeoff for fog com-
puting networks with fog node cooperation,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), May 2017, pp. 1–9.

[13] G. Lee, W. Saad, and M. Bennis, ‘‘An online secretary framework for
fog network formation with minimal latency,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), May 2017, pp. 1–6.

[14] M. S. Elbamby, M. Bennis, and W. Saad, ‘‘Proactive edge computing in
latency-constrained fog networks,’’ in Proc. Eur. Conf. Netw. Commun.
(EuCNC), Jun. 2017, pp. 1–6.

[15] X. Chen and J. Zhang, ‘‘When D2D meets cloud: Hybrid mobile task
offloadings in fog computing,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2017, pp. 1–6.

[16] D. Bruneo, S. Distefano, F. Longo, G. Merlino, A. Puliafito, V. D’Amico,
M. Sapienza, and G. Torrisi, ‘‘Stack4Things as a fog computing platform
for smart city applications,’’ in Proc. IEEE Conf. Comput. Commun. Work-
shops (INFOCOM WKSHPS), Apr. 2016, pp. 848–853.

[17] H. Shah-Mansouri, V. W. S. Wong, and R. Schober, ‘‘Joint optimal pricing
and task scheduling in mobile cloud computing systems,’’ IEEE Trans.
Wireless Commun., vol. 16, no. 8, pp. 5218–5232, Aug. 2017.

[18] V. W. S. Wong, Key Technologies for 5G Wireless Systems. Cambridge,
U.K.: Cambridge Univ. Press, 2017.

[19] M.-H. Chen, B. Liang, and M. Dong, ‘‘Joint offloading and resource
allocation for computation and communication in mobile cloud with com-
puting access point,’’ inProc. IEEEConf. Comput. Commun. (INFOCOM),
May 2017, pp. 1–9.

[20] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[21] C. Kai, H. Zhou, Y. Yi, and W. Huang, ‘‘Collaborative cloud-edge-end
task offloading in mobile-edge computing networks with limited commu-
nication capability,’’ IEEE Trans. Cognit. Commun. Netw., early access,
Aug. 20, 2020, doi: 10.1109/TCCN.2020.3018159.

[22] D. Rahbari and M. Nickray, ‘‘Task offloading in mobile fog computing
by classification and regression tree,’’ Peer-to-Peer Netw. Appl., vol. 13,
pp. 104–122, Feb. 2020.

[23] H. Liao, Y. Mu, Z. Zhou, M. Sun, Z. Wang, and C. Pan, ‘‘Blockchain
and learning-based secure and intelligent task offloading for vehicular fog
computing,’’ IEEE Trans. Intell. Transp. Syst., early access, Jul. 21, 2020,
doi: 10.1109/TITS.2020.3007770.

[24] M. K. Hussein and M. H. Mousa, ‘‘Efficient task offloading for IoT-
based applications in fog computing using ant colony optimization,’’ IEEE
Access, vol. 8, pp. 37191–37201, 2020.

[25] S. Maity and S. Mistry, ‘‘Partial offloading for fog computing using
P2P based file-sharing protocol,’’ in Progress in Computing, Analytics
and Networking, vol. 1119, H. Das, P. K. Pattnaik, S. S. Rautaray, and
K.-C. Li, Eds. Chicago, IL, USA: AISC, 2020, pp. 293–302.

[26] C. Huang, R. Lu, and K.-K.-R. Choo, ‘‘Vehicular fog computing: Archi-
tecture, use case, and security and forensic challenges,’’ IEEE Commun.
Mag., vol. 55, no. 11, pp. 105–111, Nov. 2017.

[27] M. Aazam, S. Zeadally, and K. A. Harras, ‘‘Offloading in fog comput-
ing for IoT: Review, enabling technologies, and research opportunities,’’
Future Gener. Comput. Syst., vol. 87, pp. 278–289, Oct. 2018.

[28] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K.-K.-R. Choo, and M. Dlodlo,
‘‘From cloud to fog computing: A review and a conceptual live VM
migration framework,’’ IEEE Access, vol. 5, pp. 8284–8300, 2017.

[29] A. Elgazar, K. Harras, M. Aazam, and A. Mtibaa, ‘‘Towards intelligent
edge storage management: Determining and predicting mobile file popu-
larity,’’ in Proc. 6th IEEE Int. Conf. Mobile Cloud Comput., Services, Eng.
(MobileCloud), Mar. 2018, pp. 23–28.

VOLUME 9, 2021 13787

http://dx.doi.org/10.1109/TCCN.2020.3018159
http://dx.doi.org/10.1109/TITS.2020.3007770

S. Aljanabi, A. Chalechale: Improving IoT Services Using an HFCO

[30] M. Aazam, E.-N. Huh, and M. St-Hilaire, ‘‘Towards media inter-cloud
standardization–evaluating impact of cloud storage heterogeneity,’’ J. Grid
Comput., vol. 16, no. 3, pp. 425–443, Sep. 2018.

[31] J. Zhou, D. Gao, and D. Zhang, ‘‘Moving vehicle detection for automatic
traffic monitoring,’’ IEEE Trans. Veh. Technol., vol. 56, no. 1, pp. 51–59,
Jan. 2007.

[32] D. Zhao, Y. Dai, and Z. Zhang, ‘‘Computational intelligence in urban traffic
signal control: A survey,’’ IEEE Trans. Syst., Man, Cybern., C, Appl. Rev.,
vol. 42, no. 4, pp. 485–494, Jul. 2012.

[33] M. Aazam and E.-N. Huh, ‘‘E-HAMC: Leveraging fog computing for
emergency alert service,’’ in Proc. IEEE Int. Conf. Pervas. Comput. Com-
mun. Workshops (PerCom Workshops), Mar. 2015, pp. 518–523.

[34] K. M. Kramer, D. S. Hedin, and D. J. Rolkosky, ‘‘Smartphone based face
recognition tool for the blind,’’ in Proc. Annu. Int. Conf. IEEE Eng. Med.
Biol., Aug. 2010, pp. 4538–4541.

[35] S. Zeadally, R. Hunt, Y.-S. Chen, A. Irwin, and A. Hassan, ‘‘Vehicular ad
hoc networks (VANETS): Status, results, and challenges,’’ Telecommun.
Syst., vol. 50, no. 4, pp. 217–241, Aug. 2012.

[36] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, ‘‘Virtual sensor
networks—A resource efficient approach for concurrent applications,’’ in
Proc. 4th Int. Conf. Inf. Technol. (ITNG), Apr. 2007, pp. 111–115.

[37] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
‘‘Wireless sensor network virtualization: A survey,’’ IEEE Commun. Sur-
veys Tuts., vol. 18, no. 1, pp. 553–576, 1st Quart., 2016.

[38] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibanez, ‘‘Internet of
vehicles: Architecture, protocols, and security,’’ IEEE Internet Things J.,
vol. 5, no. 5, pp. 3701–3709, Oct. 2018.

[39] H. Shah-Mansouri and V.W. S. Wong, ‘‘Hierarchical fog-cloud computing
for IoT systems: A computation offloading game,’’ IEEE Internet Things
J., vol. 5, no. 4, pp. 3246–3257, Aug. 2018.

[40] M. Ghanem, M. Sabaei, and M. Dehghan, ‘‘A novel model for implicit
cooperation between primary users and secondary users in cognitive radio-
cooperative communication systems,’’ Int. J. Commun. Syst., vol. 31, no. 6,
p. e3524, Apr. 2018.

[41] C. Luo, G. Min, F. R. Yu, M. Chen, L. T. Yang, and V. C. M. Leung,
‘‘Energy-efficient distributed relay and power control in cognitive radio
cooperative communications,’’ IEEE J. Sel. Areas Commun., vol. 31,
no. 11, pp. 2442–2452, Nov. 2013.

[42] K. L. Hoffman, M. Padberg, and G. Rinaldi, Encyclopedia of Opera-
tions Research and Management Science. Norwell, MA, USA: Kluwer,
2001.

[43] T. Wang, J. Zhou, A. Liu, M. Z. A. Bhuiyan, G. Wang, and W. Jia, ‘‘Fog-
based computing and storage offloading for data synchronization in IoT,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4272–4282, Jun. 2019.

SAIF ALJANABI received the B.S. degree in com-
puter and control system engineering from the
University of Technology, Baghdad, Iraq, in 2008,
and the M.Sc. degree in information technology
from Guru Gobind Singh Indraprastha University,
NewDelhi, India, in 2011. He is currently pursuing
the Ph.D. degree with Razi University, Kerman-
shah, Iran. His research interests include computer
networks and communications.

ABDOLAH CHALECHALE received the B.S.
degree in electrical engineering and the M.Sc.
degree in computer engineering from the
Sharif University of Technology, Tehran, Iran,
in 1991 and 1994, respectively, and the Ph.D.
degree from Wollongong University, NSW, Aus-
tralia, in 2005. He is currently with RAZI Uni-
versity, Kermanshah, Iran. His research interests
include multimedia processing and communica-
tion, artificial intelligence, and human–computer
interaction.

13788 VOLUME 9, 2021

