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ABSTRACT Adaptive bitrate (ABR) streaming services have spread with advances in the codec, video
streaming, and network technologies. For smooth video playback in ABR streaming services, a video
player runs an ABR algorithm, which dynamically adjusts the bitrate of video data on the basis of the
statuses of the network and player. Existing ABR algorithms calculate a suitable bitrate to maximize the
quality of experience (QoE). However, providing a high-QoE video increases network investment costs
and content delivery network (CDN) usage fees. According to a survey conducted by the Streaming Video
Alliance, mobile users prefer low-traffic videos to high-QoE videos. To reduce traffic volume, commercial
video-streaming services enable users to set an upper limit of the bitrate. However, this cannot always achieve
the required QoE because they cannot select a high bitrate even when the communication environment
improves during viewing. In this paper, we propose BANQUET, a novel ABR algorithm that can reduce the
traffic volume while maintaining QoE above the target QoE. The target QoE can be set by users or streaming
providers considering user’s preferences or CDN budget. BANQUET selects a suitable bitrate by estimating
QoE and traffic volume that will be experienced by all the bitrate patterns for the next several chunks on
the basis of future throughput and a buffer transition calculation. The trace-based simulation showed that
BANQUET reduces traffic volume 18.3%–51.2% on average in the mobile environment and 1.2%–38.3%
in the broadband environment while maintaining QoE the same as or better than existing algorithms.

INDEX TERMS Adaptive bitrate streaming, quality of experience, traffic volume reduction, video
streaming.

I. INTRODUCTION
Video traffic volume is expected to grow four-fold from
2017 to 2022 and account for 82% of all traffic in 2022 [1].
However, this increase in video traffic may cause network
congestion and thus degrade the video Quality of Experi-
ence (QoE). Studies have shown that users tend to aban-
don watching videos when the QoE degrades [2], [3]. Thus,
video-streaming providers need to provide high-QoE videos
to prevent service cancellations. On the other hand, such
high-QoE videos increase network investment costs and
Content Delivery Network (CDN) usage fees for network
providers and streaming providers. Also, a survey conducted
by the Streaming Video Alliance in North America [4]
found that mobile users prefer low-traffic videos to high-QoE
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videos because they want to watch more videos with the pay-
per-use (e.g., US $10 per 1 GB) or data capped (e.g., 1 or
3 GB per month) plans. Therefore, QoE and traffic volume
need to be balanced in video streaming.

Video-streaming technologies can be classified into
Real-time Transport Protocol (RTP)-based streaming [5] and
Adaptive Bitrate Streaming (ABR). The RTP-based stream-
ing can be used in combination with H.264/AVC [6] or
H.264/SVC [7]. RTP-based streaming with H.264/AVC is
generally used in Internet Protocol Television (IPTV) since
IPTV must satisfy the strict quality requirements. The video
data is streamed in real-time, but the video may be dis-
torted since the packets may be dropped since a User Data-
gram Protocol (UDP) is used as the transport layer. Thus,
IPTV conceals the lost packet with Forward Error Correction
(FEC). In RTP-streaming with H.264/SVC, the video stream-
ing server sends a base layer with lower quality and then sends
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an enhancement layer with higher quality. If the enhancement
layer packets are dropped, viewers perceive degraded quality
since the base layer is displayed, but if base layer packets
are dropped, quality is seriously distorted due to packet loss.
In contrast, ABR streams video data with HTTP Live Stream-
ing (HLS) [8] or Dynamic Adaptive Streaming over HTTP
(DASH) [9] on a reliable transport layer such as Transmis-
sion Control Protocol (TCP) or QUIC/UDP [10]. The ABR
system changes the bitrate of streamed video depending on
the statuses of the network and the player. Thus, the video is
not distorted, but the bitrate of the streamed videos may be
changed and rebuffering events may occur. To deal with net-
work quality degradation, ABR is more commonly used than
RTP-based streaming with H.264/SVC. In fact, commercial
video-streaming services such as Hulu [11], YouTube [12],
and Netflix [13] stream videos with the ABR system.

The simplest ABR system consists of a video-streaming
server and a client. The streaming server stores video data,
which is encoded with different bitrate settings (e.g., 200,
500, and 1000 kbps). Each video data is divided into chunks,
which are a few seconds of video data (e.g., 3 sec). When
the user plays a video, the client downloads the chunk with
a suitable bitrate selected by the ABR algorithm and plays it
sequentially. Thus, the client can switch to the chunk with
a lower bitrate when the throughput becomes low or the
remaining player buffer length becomes short. Downloading
chunks with high bitrate improves QoE but also leads to an
increase in the traffic volume. Therefore, the ABR algorithm
is the key to controlling QoE and traffic volume in video
streaming.

Because of its importance, many ABR algorithms have
been proposed that aim to achieve high-QoE. PANDA [14]
selects the bitrate on the basis of the measured throughput.
In contrast, Buffer-based Algorithm (BBA) [15] and Buffer
Occupancy-based Lyapunov Algorithm (BOLA) [16] select
the bitrate on the basis of the player’s buffer length. Model
Prediction Control (MPC) [17], Cross Session Stateful Pre-
dictor (CS2P) [18], and Pensieve [19] use both throughput
and buffer length to select the bitrate. As a meta-algorithm,
Oboe [20] tunes the parameters of these methods by solving
the optimization problem. Since such existing algorithms
only aim to achieve high-QoE, the traffic volume is not taken
into account.

On the other hand, several efforts have been made in com-
mercial video-streaming services to reduce traffic volume.
For example, DAZN [21], Abema TV [22], and Hulu [11]
have implemented a traffic volume reduction mode that
allows users to reduce the traffic volume by not requesting the
chunk with a high bitrate. Netflix [13] allows users to adjust
the data usage settings by selecting the quality level from a list
of high, medium, and low options [23]. YouTube [12] users
can set the maximum bitrate by setting the corresponding
resolution. Although the setting manners are different, all of
these methods reduce the traffic volume by not requesting
the chunk with a high bitrate. Even if we use these methods,

they do not always achieve the QoE required by users or
streaming providers. This is because these methods cannot
select a high bitrate when the communication environment
improves during the viewing. For example, if a user starts
watching a video while on a train stopping at a crowded
station, the existing methods select a low bitrate because of
the low throughput. Then, if the train leaves the station and
the throughput changes from low to high, existing methods
cannot select the high bitrate due to the maximum bitrate
limitation. Thus, the QoE may be below the required QoE
level. To achieve the required QoE level, the ABR algorithm
needs to select the bitrate higher than the upper limit in this
case. Therefore, we need to construct an ABR algorithm that
reduces the traffic volume while maintaining the required
QoE level.

We propose a BAlaNcing QUality of Experience and
Traffic volume algorithm, named BANQUET. BANQUET
is a novel ABR algorithm that enables users or stream-
ing providers to control the balance of the QoE and traf-
fic volume. Assuming a target QoE, BANQUET adaptively
selects the bitrate that minimizes the traffic volume while
maintaining the QoE above the target QoE. The target QoE
means the quality that needs to be achieved. The target QoE
can be defined as various kinds of QoE metrics such as a
Mean Opinion Score (MOS) on a 5-point Absolute Category
Rating (ACR) scale [24], [25] or utility score used in the
previous research [16]–[20]. Users or streaming providers can
preset the target QoE on the basis of the user’s contracted
mobile plan, user’s attributes (e.g., premium user or not),
the tariff setting of the CDN, and so on. Before receiving
chunks, BANQUET estimates the QoE and traffic volume of
all the possible bitrate patterns for the next several chunks by
estimating the future throughput series and the player’s buffer
transition. It then selects the bitrate of the next chunk from the
bitrate pattern with the smallest traffic data while satisfying
the target QoE.

We evaluate BANQUET through trace-based simulation
using throughput traces collected in the actual mobile and
broadband environments. In the simulation, we evaluate how
BANQUET reduces the traffic volume while maintaining the
sameQoE as existingABR algorithms. Furthermore, we eval-
uate the applicability of BANQUET to several QoE metrics,
bitrate settings, and optimized hyper-parameters and evaluate
the computational cost on an actual smartphone.

Compared with the earlier paper [26], this paper extends
the evaluation significantly. This extension includes the
evaluation results for the various network environments,
QoE metrics, bitrate settings, and the hyper-parameter
optimization.

The remainder of this paper is constructed as follows. First,
we describe related work and its limitations in Section II.
We then give details on BANQUET in Section III. We evalu-
ate BANQUET through a trace-based simulation and discuss
it in Section IV. Finally, we conclude the paper and describe
future work in Section V.
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II. RELATED WORK
A. QoE METRICS IN ABR
Many QoE-estimation methods have been proposed and stan-
dardized [24], [25], [27]–[33]. As described in Section I,
the video image streamed with the ABR system is not dis-
torted, but the bitrate of the streamed videos may change and
the rebuffering events may occur. Thus, the QoE-estimation
method for the ABR system should consider the effect of
selected bitrates, bitrate switching, and rebuffering events.

There are two main categories of the QoE-estimation
methods: utility score and MOS. The utility score is mainly
used to evaluate existing ABR algorithms [16]–[20], and the
MOS is used to monitor the service quality. The equation’s
form is different in the MOS-estimation models and utility
functions, but the input variables are the same: the audio
and bitrate series, resolution series, framerate series, and
rebuffering-related information.

The utility score is calculated as a weighted sum of the
bitrate utility, the rebuffering penalty, and the bitrate switch-
ing penalty. The form of the utility function is expressed as

Utility =
1
M

M∑
n=1

Q(Rn)−
1
M
µT −

1
M

M−1∑
n=1

|1Q(Rn)|, (1)

where Rn is the bitrate of the n-th chunk andQ(·) is the bitrate
utility function, which outputs the per-chunk quality.1Q(Rn)
is defined as Q(Rn+1) − Q(Rn), µ is the weight parameter
for the rebuffering penalty, T is the sum of the rebuffering
time, and M is the number of chunks included in the whole
video. In this function, the first term indicates the bitrate
utility, the second term indicates the rebuffering penalty, and
the third term indicates the smoothness penalty. The bitrate
utility and bitrate switching penalty are calculated through
the bitrate utility function Q(·). The utility function is widely
used to evaluate the existing ABR algorithms [16]–[20] since
we can obtain variants of this model easily by changing the
bitrate utility function and the weight for penalties.

The MOS is calculated with MOS-estimation models
constructed through subjective quality assessment tests.
Since MOS directly reflects the perceptual characteristics of
humans, many MOS-estimation models have been studied.
These models differ in inputs, estimation accuracy, and com-
putational costs. In the ABR system, the player cannot com-
pare the encoded videowith the original. Thus, a no-reference
model needs to be used that estimates MOS only from
the encoded video. No-reference models can be categorized
into metadata-based models [24], [25], [29], bitstream-based
models [29]–[31], and pixel-based models [32], [33] depend-
ing on the input information. Since the ABR algorithm runs in
the client terminal such as smartphones, the cost of collecting
the input should be low. Thus, metadata-based models are
suitable to estimate MOS in the ABR system. There are
metadata-based models such as ITU-T P.1203 mode 0 [29]
and a model proposed by Yamagishi and Hayashi [24],
Yamagishi [25]. According to Lebreton and Yamagishi [34],
there is no statistical difference in their estimation accuracy.

However, the standardized model has a higher computational
cost than the model by Yamagishi and Hayashi because the
standardized model uses a machine learning-based method.
Therefore, the model proposed by Yamagishi and Hayashi is
the most suitable to estimate the MOS in the ABR system.
This model is formulated as

MOS = 1+ (O.35− 1) · S,

S = exp
(
−
Nr
s1

)
· exp

(
−

L
s2·D

)
· exp

(
−

A
s3·D

)
,

D =
M∑
i

li

O.35 =

∑D
t=1 w1(t) · w2(t) · O.34(t)∑D

t=1 w1(t) · w2(t)
,

w1(t) = t1 + t2 · exp
(
u(t)
t3

)
,

u(t) =
t
D
,

w2(t) = t4 − t5 · O.34(t),

O.34(t) = f (av1 + av2 · O.21(t)+ av3 · O.22(t)

+ av4 · O.21(t) · O.22(t), 1, 5),

O.21(t) = f

a1 + 1− a1

1+
(
ar(t)
a2

)a3 , 1, 5
 ,

O.22(t) = X (t)+
1− X (t)

1+
(
vr(t)
Y (t)

)v1 ,
X (t) = f

(
4 ·

1− exp(−v3 · rs(t)) · fr(t)
v2 + rs(t)

+ 1, 1, 5
)
,

Y (t) =
v4 · rs(t)+ v6 · log10(v7 · fr(t)+ 1)

1− exp(v5 · rs(t))
,

f (x, a, b) =


a x < a
x a ≤ x < b
b b ≤ x,

(2)

where O.35 is the audiovisual coding quality, S is the quality
with rebuffering effect,D is the video duration, li is the length
of i-th chunk, N is the number of chunks, Nr is the number
of rebuffering events, L is the total length of the rebuffering,
A is the average rebuffering interval, T is the content length,
O.34(t) is the audiovisual quality at t , w1(t) and w2(t) are
weights dependent on t , O.21(t) is the audio quality at t ,
ar(t) is the audio bitrate at t , O.22(t) is the video quality
at t , vr(t) is the video bitrate at t , X (t) is the maximum video
quality at t , rs(t) is the number of pixels in the video at t , fr(t)
is the framerate at t , and s1 to s3, t1 to t5, av1 to av4, a1 to a3,
and v1 to v7 are coefficient values.

B. ABR ALGORITHM
Many ABR algorithms have been proposed and can be clas-
sified into three categories: rate-based, buffer-based, and
hybrid-based algorithms.
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Rate-based algorithms select the bitrate by using only the
throughput information measured during the chunk down-
load. An algorithm adopted in dash.js [35] selects the max-
imum bitrate that does not exceed the estimated throughput.
This algorithm selects a high bitrate when the throughput is
high and vice versa. Thus, if the throughput fluctuates largely,
the selected bitrate also switches frequently. Because such a
bitrate switching degrades QoE [36], rate-based algorithms
may degrade QoE.

Buffer-based algorithms select the bitrate only on the basis
of the player’s remaining buffer length. These algorithms
create a map, which represents a correspondence between the
remaining buffer length and the bitrate. Various algorithms
for making maps have been proposed. BBA [15], which was
used by Netflix [13] in the past [15], makes the map by
assuming a linear relationship between the buffer length and
the appropriate bitrate. BOLA [16], which is used as the
default algorithm for dash.js [35], makes the map by using
the Lyapunov optimization. Since these algorithms depend
on the buffer length, they are less affected by short-term
throughput fluctuations than rate-based algorithms. However,
if the buffer is long, they try to select a high bitrate even
when the throughput is low. Selecting a bitrate higher than
the throughput leads to a shorter buffer, and the algorithm
may have to select the lower bitrate at the next selection.
This behavior results in an increase in bitrate switching and
rebuffering. Thus, buffer-based algorithms may also degrade
QoE due to the bitrate switching and the rebuffering.

As a unified approach, hybrid-based algorithms select the
bitrate using both the throughput information and the remain-
ing buffer length. MPC [17] and CS2P [18] formulate the
bitrate-selection problem by using model prediction control.
Although these methods can suppress bitrate fluctuations,
they tend to select a low bitrate because they predict the
throughput series conservatively to avoid rebuffering. On the
other hand, Pensieve [19] uses deep reinforcement learning
instead of predicting the throughput series to select the bitrate.
Although Pensieve improves the QoE without the throughput
prediction, it does not select a bitrate on the basis of the traffic
volume. In addition, Oboe [20] optimizes the parameters of
these algorithms as a meta-algorithm.

As described above, these algorithms do not consider the
traffic volume aspect. Since QoE is determined by multi-
ple factors such as selected bitrates, rebuffering, and bitrate
switching [36], there may be room to reduce the traffic vol-
ume while maintaining the same QoE. In addition, existing
algorithms may provide a higher QoE than that required by
the users or streaming providers since they do not always
require the high-QoE video as described in Section I.

C. DATA SAVING IN ABR
There are several methods to reduce traffic volume in the
ABR system. They can be categorized into analysis-based
and non-analysis-based approaches.

Analysis-based approaches try to reduce the traffic volume
by analyzing the video content [37], [38]. Content-aware

encoding [37] adopted in Netflix [13] optimizes the video
encoding settings by analyzing the characteristics of the
videos. Although this method contributes to avoiding exces-
sive traffic volume, huge computational costs will be incurred
to re-encode the encoded videos. Statistically Indifferent
Quality Variation (SIQV) [38] can avoid the re-encoding
process by removing the selectable bitrates on the basis of the
statistical quality difference of each video chunk. If there is
no statistical difference in quality between adjacent selectable
bitrates, SIQV removes the higher bitrate from the candidates.
SIQV can reduce the traffic volume while maintaining the
QoE, but the computational cost is still high since SIQV
must analyze the encoded video content. Furthermore, if the
ABR algorithm chooses a higher rate when we use these
analysis-basedmethods, it may achieve a higher QoE than the
users or streaming providers need and result in an increase in
traffic volume.

Non-analysis-based approaches set the upper limit of the
selectable bitrates without analyzing the video content. These
approaches are adopted in commercial video streaming ser-
vices such as DAZN [21], Abema TV [22], Hulu [11], Net-
flix [13], and YouTube [12]. DAZN, Abema TV and Hulu
have a ‘‘data saving mode’’ or ‘‘data saver’’ to reduce the
traffic volume. Users can turn this mode on to suppress the
traffic volume. Netflix allows users to adjust the data usage
settings by selecting the quality from a list of high, medium,
and low options [23]. YouTube users can select the maximum
selectable bitrate by setting the corresponding resolution.
Although the setting manners are different, these services
reduce the traffic volume by setting the maximum bitrate that
ABR algorithms can select. However, these methods may not
always achieve the user’s required QoE. This is because they
cannot select a high bitrate even if the communication envi-
ronment improves during viewing as described in Section I.

III. BANQUET
To reduce the traffic volume while maintaining the QoE
above the target QoE, we propose BANQUET. We first
explain how BANQUET works in the video-streaming sys-
tem and explain its calculation step in Subsection III-A.
Then, we describe the details of the bitrate-selection step in
Subsection III-B.

A. OVERVIEW OF BANQUET
In this subsection, we describe how BANQUET works in the
video-streaming system.

Figure 1 shows a video-streaming system using
BANQUET. In this system, the client and the stream-
ing server communicate with the HTTP protocol on reli-
able transport, e.g., TCP or QUIC/UDP [10], the audio
is encoded by AAC-LC [39], and the videos are encoded
by H.264/AVC [40]. BANQUET is implemented inside
the video player application. When the player requests the
next chunk, the player sends a bitrate-calculation request
to BANQUET together with the selectable bitrates, buffer
information, and measured throughput information (P1).

VOLUME 9, 2021 15533



T. Kimura et al.: Balancing Quality of Experience and Traffic Volume in ABR Streaming

FIGURE 1. Overview of video-streaming system using BANQUET.

On the basis of this information, BANQUET calculates a
suitable bitrate and notifies the player (P2). Then, the player
requests the chunk with the notified bitrate (P3) and receives
the chunk (P4). This process is performed every time the
player requests a chunk. The selectable bitrates can be
obtained from the mpd file or the m3u8 file in the case of
DASH [9] or HLS [8], respectively. Since the audio bitrate
generally corresponds to the video bitrate or resolution,
BANQUET assumes that each bitrate value in the selectable
bitrates indicates the sum of the video and audio bitrate.

TABLE 1. Notations.

We next describe the calculation procedure of BANQUET
(P2). The notations are summarized in Table 1. We use t as

the index of time and i as the index of the chunk. In this
procedure, BANQUET calculates the bitrate in three steps.

First, BANQUET estimates a future throughput series
ct0 = (ct0+1, · · · , ct0+h) where t0 and h denote the
calculation start time and throughput prediction hori-
zon. If the latest Nc measured throughput values are
denoted as c̄t0−Nc+1, · · · , c̄t0−Nc+1 from the oldest to lat-
est, ct0+1 is estimated by calculating the harmonic mean of
c̄t0−Nc+1, · · · , c̄t0 . Then, ct0+2 is calculated as the harmonic
mean of c̄t0−Nc+2, · · · , c̄t0 and ct0+1. As described, the future
throughput series are estimated using the harmonic mean
of the latest Nc measured or estimated throughput values
sequentially. We use this method because it is robust against
outliers [17], [41].

Second, BANQUET calculates the suitable bitrate series
that minimizes the traffic volume while maintaining QoE
higher than the target QoE, Tq by using information from the
video player. BANQUET calculates the QoE and the buffer’s
transition considering chunks already received by using this
information. The QoE can be calculated with any mod-
els or functions such as MOS-estimation models [24], [29]
or utility functions [16]–[19] described in Subsection II-A.
The bitrate series is expressed as the vector of bitrate
(e.g., (500, 1000, 1000, 500)). If no bitrate series satisfies
the QoE constraint, BANQUET selects the bitrate series that
achieves the highest QoE. We chose this policy to ensure that
BANQUET does not select the lowest bitrate to reduce traffic
volume if no bitrate series satisfies the target QoE. The details
of this step are given in Subsection III-B.

Third, BANQUET selects the bitrate for the next chunk
from the most suitable bitrate series.

FIGURE 2. Example of the correlation between the bitrate and QoE for
each resolution and convex hull.

The target QoE Tq can be set by users or stream-
ing providers with any policies. For example, the service
providers can set the target QoE in accordance with the bud-
get available for CDN. Figure 2 shows the sample correlation
between the bitrate and QoE for each resolution and convex
hull [37], which is the maximum QoE for each bitrate. The
QoE is calculated by using the MOS-estimation model [34]
introduced in Subsection II-A with the assumption that the
ABR algorithm selects the same bitrate for all chunks from
five available bitrates (e.g., 256, 538, 1019, 1873, 3476 kbps),
and there is no rebuffering. By multiplying the estimated
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total viewing time in a month and the unit price of the CDN
cost to the bitate, we can obtain the correlation between the
CDN cost and QoE. Hence, the streaming providers can set
the target QoE Tq depending on the CDN cost budget by
transferring the budget to QoE by using the convex hull. This
policy is an example, and the streaming providers can set
the target QoE depending on other policies that consider the
user’s preferences, contracted plans (e.g., premium or not),
and so on. The appropriate setting policy of the target QoE
Tq is out of this paper’s scope.

B. DETAILS OF BANQUET
In this subsection, we describe the second step of the pro-
cedure (P2) described in Subsection III-A. To explain how
to calculate the most suitable bitrate series, we first give an
example of the calculation.

In this example, BANQUET can select the bitrate from
100, 500, and 1000 kbps, the first chunk with 500 kbps is
already received, and the chunk length is fixed as 3 seconds.
The goal of this example is to select a bitrate series that
minimizes the traffic volume while maintaining QoE higher
than 3.5 (Tq = 3.5). First, BANQUET makes a set consisting
of all the candidate bitrate series including received chunks
with the length up to Td , which is the threshold of length
of the candidate bitrate series. In this example, Td = 4 and
the first element of all the candidates is fixed as 500 kbps.
Since there are three candidate bitrates for each future chunk,
the size of this set is 34 = 81. Especially, we focus
on three sample bitrate series (500, 100, 500, 500, 1000)
(Series A), (500, 500, 500, 1000, 500) (Series B), and
(500, 100, 100, 100, 100) (Series C). For each series, BAN-
QUET calculates the QoE and the traffic volume when all
the chunks with the candidate bitrate series are received. To
calculate the QoE, BANQUET estimates the transition of the
buffer length. The buffer length for each time is calculated by
using the bitrate and estimated throughput series. By counting
the time when the buffer length reaches zero, BANQUET can
calculate the number of rebuffering events and the rebuffering
time. This rebuffering information and the selected bitrate
series are used to calculate the QoE. For example, QoE for
Series A, B, and C can be calculated as 3.6, 3.8, and 2.5,
respectively. The traffic volume can be calculated as the sum
of the products of each element of the bitrate series and chunk
length. For example, the traffic volume for Series A, B, and
C can be calculated as 975, 1125, and 337.5 kB, respectively.
After the calculation, BANQUET removes the bitrate series
that does not achieve a QoE above 3.5. In this case, Series C is
excluded from the candidates. Finally, BANQUET selects the
series that has less traffic volume. Though Series B achieves
the highest QoE, BANQUET selects Series A as the suitable
bitrate series since it has less traffic volume than Series B.
Note that the calculation time may be longer when the h or
Td is large since BANQUET searches for the suitable bitrate
series on the basis of a brute-force search. Thus, we evaluate
the calculation time and analyze the decision policy of h and
Td to reduce the calculation time in Subsection IV-D.

Algorithm 1 Bitrate-Series Calculation Algorithm
Input: c, Tq, Td , h
Output: r̂
1: Initialize r̂
2: t ← t0
3: nt0 ← M , yt0 ← 0
4: R← all the bitrate patterns up to the next Td chunks
5: for each r ∈ R do
6: while t ≤ t0 + h do
7: if bt−1 < Thigh then
8: Update bt , nt , yt
9: else
10: bt ← bt−1 − 1
11: end if
12: t ← t + 1
13: end while
14: Calculate qt
15: if (Tq ≤ qt ) ∧ (

∑
rili ≤

∑
r̂ili) then

16: r̂← r
17: end if
18: end for

Algorithm 1 is a pseudo code that calculates the suitable
bitrate series. The input of this algorithm is the estimated
throughput series ct0 , Tq, Td , and h. Threshold Td is a param-
eter to limit the length of the candidate bitrate series. Lines
1 to 4 correspond to initialization steps. In line 1, candidate
solution r̂ = (r1, · · · , ri, · · · rM+Td ) is initialized with the
bitrate series already selected for 1 ≤ i ≤ M and ri = rmax for
M+1 ≤ i ≤ M+Td . Here,M is the number of chunks already
received and rmax is the highest bitrate among the selectable
bitrates. Then, the set of candidate bitrate seriesR is set with
all the patterns of the candidate bitrate series up to the next Td
chunks. The bitrate series of these candidates for 1 < i ≤ M
is the bitrate series already selected.

In lines 6 to 13, the buffer transition for each r ∈ R is
estimated. In this procedure, BANQUET calculates buffer
length bt by updating nt and yt . nt is the number of chunks
that have already started downloading, and yt is the number
of bits downloaded at time t . We give the details on update
procedures (line 8) later. In line 14, BANQUET calculates
QoE qt on the basis of the candidate bitrate series r and the
buffer length bt . From lines 15 to 17, BANQUET updates
r̂ if r produces lower traffic volume than r̂ while achieving
the target QoE. In line 15, BANQUET calculates the traffic
volume by multiplying the selected bitrate and the chunk
length for each chunk and summing them. The traffic volume
is the sum of the products of the selected bitrate ri and the
chunk length li. If not all the chunks can be received with
the throughput series ct0 , BANQUET calculates the QoE
and the traffic volume when receiving as many chunks as
possible.

We now describe how to update bt , nt , and yt in line 8. First,
we calculate nt . By definition, if the chunk that was being
received from the previous time t − 1 was not completely
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received at time t , nt = nt−1. Otherwise, the player receives
as many chunks as possible unless the buffer length exceeds
Thigh, where Thigh is the upper limit of the buffer length. Thus,
nt is calculated as

nt =

{
nt−1 yt−1 ≥ ct
max

{
m | gm−1,t < ct , hm−1,t ≤ Thigh

}
yt−1 < ct .

(3)

where gi,t and hi,t represent the number of received bits and
buffer length if the player receives the i-th chunk in this time t ,
respectively. gi,t and hi,t can be calculated as

gi,t = yt−1 +
i∑

k=nt−1+1

rk lk (4)

hi,t = bt−1 +
i∑

k=nt−1+1

lk , (5)

where lk denotes the length of the k-th chunk. lk can be
obtained from mpd file or m3u8 file in the case of DASH [9]
and HLS [8], respectively.

Next, we calculate yt , i.e., the number of bits that cannot
be downloaded at time t . yt is calculated to estimate how bits
should be received in the next time slot. If the buffer length
reaches Thigh while receiving chunks, yt = 0. Otherwise,
yt is calculated as the difference between the received bits
in this time slot and the network bandwidth. Thus, yt is
formulated as

yt = max(gnt ,t − c̃t , 0). (6)

Note that yt = 0 if t = t0 since the calculation of BANQUET
starts only if the latest chunk is completely downloaded.

By using the hnt ,i, the buffer length bt is calculated by
consuming the buffer if the playback is started. Thus, bt is
expressed as

bt =

{
hnt ,t playback is not started
hnt ,t − 1 playback is started.

(7)

Finally, BANQUET calculates qt in line 14. Streaming
providers can use any QoE-estimation model to calculate qt .
As described in Subsection III-A, streaming providers can
use any QoE-estimation models such as the MOS-estimation
model or utility function introduced in Subsection II-A. The
MOS and utility can be calculated from the chunk informa-
tion and the rebuffering information. The chunk information
contains the video bitrate, video resolution, video framerate,
and audio bitrate for each second. This information can be
collected from the selected bitrate and mpd file for DASH [9]
or m3u8 file for HLS [8], respectively. When the stream-
ing provider streams the video with HLS, we may obtain
only the audiovisual bitrate. In that case, we can calculate
the video bitrate by subtracting the predefined audio bitrate
(e.g., 128 kbps) from the audiovisual bitrate. The rebuffer-
ing information contains the number of rebuffering events,
total rebuffering time, and the average rebuffering interval.

These are calculated from the transition of the buffer
length {bt }. The number of rebuffering events is calculated
by counting the number of times the buffer is depleted, the
total rebuffering time is calculated by counting the times the
buffer length is lower than Tstart and the playback does not
start, and the average rebuffering interval is calculated by
averaging the rebuffering interval. By using this information,
BANQUET calculates the QoE when the user views all the
chunks with candidate bitrate series. The sample formulas of
the QoE metric and the sample calculation results are given
in Subsections II-A and IV-A, respectively.

IV. EVALUATION
We evaluated BANQUET through trace-based simulation.
Since this evaluation is conducted on various combinations
of settings as described in Sec. IV-A, the real-time evaluation
takes too long (e.g., 3,888 years). Thus, BANQUET is evalu-
ated on a chunk-level simulator written in C. This simulator
does not simulate the low-level protocols such as TCP or
UDP/QUIC and relies on the traces collected in the actual
environment [42], [43]. This evaluation method is similar
to Sabre [44] or Pensieve [19] and has been demonstrated
that this approach evaluates ABR algorithms with the same
accuracy as in a real environment [44].

A. SIMULATION SETTINGS
1) NETWORK TRACES
To show that BANQUET can reduce the traffic volume while
maintaining the QoE regardless of the network environment,
we conduct an extensive simulation with various network
traces. These traces were measured by downloading sam-
ple files or accessing web sites using smartphones or PCs.
For maintaining the variety of traces, two types of actual
throughput traces were used in this simulation: one was col-
lected in mobile networks [42] and the other in broadband
networks [43].

The mobile traces were collected in Norway [42] by
two mobile operators and for different mobility patterns,
i.e., static, pedestrian, car, tram, and train. These traces
include the average throughput value per second. We con-
catenated all the traces and divided the data into short traces
lasting 300 seconds. In this simulation, traces whose aver-
age throughput is less than 0.2 Mbps were excluded, and
473 throughput traces were obtained. This preprocessing is
the same as that in previous work [19] and is done to exclude
trivial results; if the average throughput is under the lowest
bitrate, all the ABR algorithms select the lowest bitrate. The
preprocessed traces total roughly 40 hours.

The broadband traces were published by the Federal Com-
munications Commission (FCC) in the United States [43].
These traces include the hourly throughput data when mea-
surement devices accessed nine major websites. The mea-
surements were conducted from 477 locations in the United
States between February 1 and 28, 2019. After the same
preprocessing as for the mobile one, we picked the first
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473 traces, the same number of mobile traces, to equalize the
statistical error.

Figure 3 shows the Cumulative Distribution Func-
tions (CDFs) of the average and the standard deviation for
both traces. These figures show that the throughputs of broad-
band traces are relatively small and stable, whereas those of
mobile traces are relatively high and widely distributed.

FIGURE 3. Statistics distribution of throughput traces used in the
simulation.

2) ABR ALGORITHMS
As we described in Subsection II-B, there are many exist-
ing ABR algorithms, but none considers the traffic volume
aspect. To be able to analyze why BANQUET works well,
we selected representative algorithms from the rate-based and
buffer-based algorithms. In addition, the default algorithm of
dash.js [35] is selected because this algorithm is used in pro-
duction environments [44]. The following briefly describes
each algorithm.

1) Rate-based algorithm (RB): RB selects the maximum
bitrate that is no higher than 0.9 of the harmonic mean
of the throughputs of the last five chunks. In contrast to
the other algorithms, the buffer length does not affect
the bitrate selection by RB. Figure 4(a) shows the
relationship between the estimated throughput and the
bitrate selected by RB.

2) Buffer-based algorithm (BBA) [15]: BBA selects the
bitrate by using the buffer length. We used BBA-2 [15]
and set default parameters as recommended in the orig-
inal paper [15]. In contrast to RB, BBA does not use
throughput information. The relationship between the
buffer length and the bitrate selected by BBA is shown
in Fig. 4(b).

3) dash.js algorithm (BOLA) [16]: BOLA is the default
bitrate-selection algorithm adopted in dash.js [35].
BOLA is a buffer-based algorithm constructed on
the basis of Lyapunov optimization. We used default
parameters for BOLA recommended in the original
paper [16]. Similar to BBA, throughput information is
not used in BOLA. The correlation between the buffer
length and the bitrate selected by BOLA is shown
in Fig. 4(b). BOLA tends to select the intermediate
bitrate more often than BBA does.

The settings of BANQUET are summarized in Table 2.
We analyze the sensitivity of the parameters of BANQUET
Tc, h, and Td in Subsection IV-D.

FIGURE 4. Bitrate-selection policy of existing algorithms.

TABLE 2. Settings of BANQUET, chunk, and video player.

3) VIDEO BITRATE, CHUNK, AND VIDEO PLAYER SETTINGS
To evaluate the applicability for different video bitrate set-
tings, we prepared two sets of the bitrate settings: A and B.
The resolution and framerate are the same for Sets A and B,
but the bitrate settings differ. Set A is determined on the basis
of commercial video-streaming services for a realistic setting.
We measured the bitrates of approximately 100 videos on
YouTube [12] for each resolution (240p, 360p, 480p, 720p,
and 1080p). We then calculated the average bitrate for each
resolution and set the results as the video settings. Set B was
set to the same value as in a previous study [19]. The video
and audio encoding schemes are assumed to be H.264/AVC
and AAC-LC, respectively. Set B has a higher maximum
bitrate and more constant bitrate interval than Set A. The
details of the video parameters are summarized in Table 3.

TABLE 3. Set of the video encoding parameter.

The chunk length and the video duration were fixed
as 3 and 180 seconds, respectively. The audio bitrate and
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FIGURE 5. The characteristics of the QoE metrics used in the simulation.

framerate were fixed as 128 kbps and 30 fps regardless of
the video bitrate. The threshold to start the playback and
the upper limit of the buffer were set as 5 and 30 seconds,
respectively. These parameters are summarized in Table 2.

4) QoE METRICS
BANQUET can be used in combination with any QoE met-
rics. To evaluate whether BANQUET can maintain the QoE
over the target QoE for different QoE settings, four QoE
metrics were used in this simulation. The QoEmodel indicates
MOS calculatedwith theMOS-estimationmodel, andQoElin,
QoElog, and QoEhd indicate utility scores calculated with the
different settings of a utility function.
QoEmodel is calculated using the MOS-estimation model

proposed by Yamagishi and Hayashi [24], Yamagishi [25].
QoEmodel outputs the estimated MOS on a 1 to 5 quality
scale on the basis of audio and video coding quality per sec-
ond, rebuffering information (i.e., the number of rebuffering
events, the total length of rebuffering events, the average of
the interval between rebuffering events), and content length.
The exact formulation is given in Subsection II-A. The coef-
ficients in this model are set in accordance with the previous
paper [34].
QoElin, QoElog, and QoEhd are calculated with the util-

ity function. The utility function is widely used in existing
papers [17]–[20] to evaluate the performance of existing
ABR algorithms. The function used in this simulation is the
modified version of Eq. (1) expressed as

Utility =
1
N

N∑
n=1

Q(Rn)−
1
M
µT −

1
N

N−1∑
n=1

|1Q(Rn)|, (8)

where N is the number of chunks received up to the cal-
culation timing and the definition of other variables are the
same as in Eq. 1. In this function, the first, second, and
third terms indicate the bitrate utility, rebuffering penalty,
and smoothness penalty, respectively. We modified the orig-
inal function by replacing the denominator of the bitrate
utility and the smoothness penalty from N to M . This is
because dividing the rebuffering penalty by N instead of
M leads to an overestimation of the rebuffering penalty
during playback. Since N = M when the playback is

TABLE 4. Settings of a part of QoE metrics in our evaluation.

completed, this is consistent with the utility function used in
the existing research after the playback. We consider several
types of utility functions by setting different expressions of
Q(Rn) and µ. These settings are similar to those in previous
studies [16]–[20]. The following briefly describes each QoE
metric.

1) QoElin: Q(Rn) = R
This bitrate utility evaluates the image quality score
linearly with respect to the bitrate.

2) QoElog: Q(Rn) = log(R/Rmin)
This bitrate utility reflects theWeber-Fechner law [45],
which states that the subjective quality is propor-
tional to the logarithm of the intensity of the stimulus
received.

3) QoEhd : Q(Rn) is defined in accordance with Table 4.
This bitrate utility evaluates the rate of the high-
definition (HD) resolution higher and the rate of the low
resolution lower.

The exact settings of Q(Rn) and µ are shown in Table 4.
Figure 5 shows how the QoE metrics change as the bitrate

and the number of rebuffering changes in these simulation
settings on basis of Eq. (2) and (8). In these figures, the video
resolution is fixed as 480p, and each rebuffering event lasts
3 seconds. As the bitrate increases, QoE gradually increases,
but the rate of increasing differs depending on the QoE
metrics. If a rebuffering event occurs, QoEmodel is roughly
0.9 times, while the utility scores slightly decrease.

B. BANQUET VS. EXISTING ALGORITHMS
In this subsection, we demonstrate BANQUET can reduce the
traffic volume while maintaining the same QoE as the exist-
ing algorithms. Since the resulting QoE and traffic volume of
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FIGURE 6. Normalized average traffic volume when the target QoE is set to that of the existing algorithm for Set A.

FIGURE 7. QoE error ratio between BANQUET and existing algorithms for Set A. Positive ratio means the QoE metric of BANQUET is larger than
those of existing algorithms. Target QoE is set to that of existing algorithms. The dashed line means the ±1% error.

FIGURE 8. Sample QoE transitions for a specific network trace.
BANQUET_RB, BANQUET_BBA, and BANQUET_BOLA indicate the QoE
transition of BANQUET when the target QoE is the QoE of RB, BBA, and
BOLA, respectively.

ABR algorithms differ for each trace, we need to adjust the
target QoE of BANQUET for each trace to fairly compare the
performance of BANQUET and the other algorithms. To do
this, we first obtained the QoE of each existing algorithm

for each throughput trace and then set the obtained QoE
as the target QoE of BANQUET. Then, we calculated the
difference in the obtained traffic volume of each algorithm.
The following results were obtained when we set h = 30,
Td = 5, and Tc = 4, which resulted in the best performance.
The results of other settings will be given in Subsection IV-D.

1) OVERALL RESULTS
Figure 6 shows the average traffic volume of each exist-
ing algorithm normalized by that of BANQUET for each
QoE metric, and Fig. 7 shows the boxplots that represent
the distributions of the QoE error ratio between BANQUET
and existing algorithms for Set A. The QoE error ratio is
calculated by dividing the difference in the QoE of an existing
algorithm and that of BANQUET by the QoE of BANQUET.
The QoE error ratios with positive and negative values rep-
resent cases where the QoE of BANQUET was higher and
lower, respectively. Thus, the result is better if the QoE error
ratio is close to zero since it means BANQUET controlled
the QoE to the target QoE precisely. In Fig. 7, the dotted line
indicates the ±1% error, the lower and upper ends of the box
represent the first and third quartiles, respectively, and the
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FIGURE 9. Normalized average traffic volume when the target QoE is set to that of the existing algorithm for Set B.

FIGURE 10. QoE error ratio between BANQUET and existing algorithms for Set B. Positive ratio means the QoE metric of BANQUET is larger than
those of existing algorithms. Target QoE is set to that of existing algorithms. The dashed line means the ±1% error.

length of the whiskers represents a length 1.5 times the size
of the box.

From Fig. 6, the normalized traffic volume of the existing
algorithms is more than one for all the simulation settings.
In addition, Fig. 7 indicates that BANQUET maintained QoE
almost equal to or higher than those of existing algorithms
for all the simulation settings. Specifically, traffic volume
is reduced by 18.3%–51.2% in the mobile environment and
1.2%–38.3% in the broadband environment on average, while
maintaining the same or better QoE. Note that BANQUET
is outperformed in terms of QoE in some conditions by the
existing algorithms in the broadband environment as shown
in Fig. 7(b). This is because the QoE of the existing algo-
rithm is sometimes lower than that when the lowest bitrate is
always selected. In such cases, the existing algorithm selected
unnecessarily high bitrates, which resulted in undesirable
rebuffering. However, BANQUET reduces the traffic volume
in such a network environment while maintaining a higher
QoE than the existing algorithms. Figure 8 indicates QoE
transition for a specific mobile throughput trace. Broken
and solid lines indicate the QoE transitions of existing algo-
rithms and BANQUET, respectively. The target QoE is set

in accordance with the QoE of existing algorithms, but other
parameters of BANQUET are not changed. These plots show
that BANQUET precisely controls QoE for the target QoE.

Figures 9 and 10 show the same results for Set B. Traffic
volume is reduced by 16.8%–43.5% in the mobile environ-
ment and 0.4%–41.1% in the broadband environment on
average, while maintaining the same as or better QoE than
existing algorithms. In the mobile environment, the reduced
traffic volume of Set B is less than that of Set A. This is
because the maximum selectable bitrate of Set B was lower
than that of Set A. If existing algorithms select a high bitrate,
rebuffering and bitrate switching are more likely to occur,
which makes room for BANQUET to reduce traffic volume.
In the fixed environment, there was no significant difference
between Sets A and B since the throughput is too low to
select the highest bitrate. In addition, the QoE of BANQUET
is higher than those of the buffer-based algorithms (BBA,
BOLA). This is because the difference between the minimum
and second minimum bitrate is larger for Set B than for Set A.
Since buffer-based algorithms select a bitrate on the basis of
buffer length, they sometimes select a bitrate higher than the
throughput. Thus, the rebuffering risk of Set B is higher than
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FIGURE 11. Cumulative distribution function of reduced traffic volume in mobile traces.

FIGURE 12. Cumulative distribution function of reduced traffic volume in broadband traces.

that of Set A, and the QoE of the existing algorithm is lower
than that when the lowest bitrate is always selected.

Compared with RB in the broadband environment, the traf-
fic volume reduction ratio is limited, although BANQUET
can reduce the traffic volume considerably in the mobile
environment as shown in Fig. 6. This is because the broad-
band throughput traces are stable, as shown in Fig. 3(b).
In such a stable network environment, the bitrate selected
by BANQUET is almost the same as that of RB. Thus,
there is no room to decrease the rebuffering penalty and
smoothness penalty to maintain the same QoE as that of RB.
On the other hand, BANQUET can reduce the traffic volume
more than BBA and BOLA even in the broadband envi-
ronment. This is because BBA and BOLA are buffer-based
algorithms, i.e., they tend to select a high bitrate when the
buffer length increases, even if the throughput is low. Thus,
these algorithms increase traffic volume and incur a high risk
of rebuffering. BANQUET, on the other hand, selects a stable
bitrate in a stable network environment. Thus, BANQUET
can reduce the traffic volume while maintaining the same
QoE as buffer-based algorithms.

In summary, BANQUET reduced the traffic volume while
maintainingQoE the same as or better than that of the existing
algorithms, regardless of any combination of the QoE metric,
the ABR algorithm, the network environment, and the bitrate
settting. These results mean that if a user subscribes to a
mobile communication plan with a data cap, the user can
view videos up to 1.95 times more while the same QoE

as the existing algorithms is maintained. Also, this results
indicate streaming providers can reduce the streaming cost
(e.g., CDN cost) using BANQUET. For example, if 1% of
video-streaming traffic [1] shifts from BOLA to BANQUET
and the streaming provider uses Amazon CloudFront with the
most effective plan in the US [46], the CDN cost decreases by
4.3 million USD per month while the same QoE (QoEmodel)
as BOLA is maintained.

2) DETAILED RESULTS
To further understand BANQUET’s performance, we ana-
lyzed the characteristics of the reduced traffic volume dis-
tribution, the contribution of each component of the QoE
metric, and the performance in accordance with the network
condition. The following results are for Set A since the results
for Set B were almost the same.

Figures 11 and 12 show the CDFs of reduced traffic volume
for mobile and broadband environments, respectively. The
x-axis represents the traffic volume reduced by BANQUET
compared with the existing algorithms for each throughput
trace. Positive and negative values indicate the reduced and
increased traffic volume by BANQUET, respectively. The
results show that the traffic volume is almost the same as
that of the existing algorithms in the broadband environ-
ment, while the traffic volume is significantly reduced in
the mobile environment. Particularly, when BANQUET used
QoEmodel as the QoE metric in the mobile environment,
BANQUET reduced the traffic volume in more than 90% of
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FIGURE 13. Comparing BANQUET with existing ABR algorithms by analyzing their individual components for mobile traces.

FIGURE 14. Comparing BANQUET with existing ABR algorithms by analyzing their individual components for broadband traces.

the cases compared with any existing algorithm. In contrast,
BANQUET reduced the traffic volume for utility-based QoE
metrics QoElin, QoElog, and QoEhd in up to 40% of cases.
This is because the QoEmodel is more affected by rebuffering
than the utility score. More specifically, as we described
in Subsection IV-A, QoE is calculated by subtracting the
rebuffering effect from the bitrate utility in utility scores
QoElin,QoElog,QoEhd , whereas MOS in QoEmodel is calcu-
lated as a ratio (e.g., 0.9) to audiovisual score in accordance
with the rebuffering information. Therefore, when using
QoEmodel , the QoE of the existing algorithm is significantly
degraded by rebuffering and thus BANQUET can reduce the
traffic volume while maintaining the same QoE.

To analyze in detail why BANQUET reduced the traffic
volume while maintaining the QoE at the same level as the
existing algorithms, we decompose the results of QoE in the
bitrate utility, rebuffering penalty, and smoothness penalty
when we used QoElin, QoElog, or QoEhd as the QoE metric.
Figures 13 and 14 show the average of each term in the
results of the QoE of the existing algorithms and BANQUET.
In these figures, the target QoE of BANQUET differs depend-
ing on the QoE of existing algorithms. Thus, we plotted the
results of BANQUET for each existing method. For example,
BANQUET_RB is the result of BANQUET when the target
QoE is set to the QoE of RB. All the figures exhibit a
similar tendency: BANQUET decreases the bitrate utility but
suppresses the rebuffering and smoothness penalties. The low
bitrate utility indicates that BANQUET selected the lower
bitrate than existing algorithms, and the low rebuffering, and

smoothness penalties indicate that BANQUET selects a more
stable bitrate than existing algorithms. Therefore, selecting a
stable bitrate contributed to reducing the traffic volume while
maintaining the QoE.

To clarify under what network conditions BANQUET
reduces the traffic volume, we analyzed the impact of the
average throughput of each trace on the traffic volume reduc-
tion. The results are shown in Fig. 15. In this analysis,
we focused on the mobile environment because the broad-
band environment has less variability in average through-
put. The y-axis of this graph indicates the average of the
normalized traffic volume compared with BANQUET. The
results indicate that the traffic volume reduction ratio tends
to decrease as the average throughput increases for BBA and
BOLA. This is because such buffer-based algorithms select
a high bitrate when the buffer length is longer, even if the
average throughput is lower. Selecting such a high bitrate
causes rebuffering, degrades QoE, and increases the traffic
volume. Compared with RB, BANQUET reduced the traffic
volume constantly regardless of the average throughput. This
is because the bitrate selected by RB fluctuates highly if
the throughput fluctuates highly. These results indicate that
BANQUET reduces the traffic volume especially when the
average throughput is small.

C. BANQUET VS. DATA SAVING METHOD
In this subsection, we compare BANQUET with a data
saving method adopted in actual commercial video-
streaming services. As described in Section II, commercial
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FIGURE 15. Normalized traffic volume compared with BANQUET for various throughput conditions.

video-streaming providers implement a function to set the
upper limit of a selectable bitrate [11], [12], [21]–[23]. This
method reduces the traffic volume, but streaming providers
may not achieve the user’s required QoE due to the through-
put fluctuation. Thus, we assume the BOLA with the upper
limit of selectable bitrate (capped BOLA) to be the existing
data savingmethod of commercial video-streaming providers
and compare it with BANQUET. In this simulation, we set
538 kbps (corresponding to 360p) as the upper limit of capped
BOLA, 3.5 as the target QoE of BANQUET, QoEmodel as the
QoE metric, Set A as the bitrate setting, and mobile traces as
the network traces. The other settings are the same as those
in Subsection IV-A.

FIGURE 16. Scatter plot of the QoE of BANQUET and that of capped BOLA.

Figure 16 shows the QoE for each throughput trace.
The x- and y-axes indicate the QoE of capped BOLA and
BANQUET, respectively. Regardless of the QoE of capped
BOLA, the plots where the value of the y-axis is close to
3.5 are expected results since the target QoE is set as 3.5.
The other plots in the upper left region indicate BANQUET
achieved higher QoE than BOLA, and the plots on the other
side represent the opposite. There are several cases where the
QoE of BANQUET is higher than that of capped BOLA, if the
QoE of BANQUET is lower than the target QoE. To analyze

FIGURE 17. Selected bitrate when the QoE of BANQUET is larger than that
of capped BOLA.

FIGURE 18. Selected bitrate when the QoE of BANQUET is less than that
of capped BOLA.

the reason for this, we plotted the sample bitrate series when
the QoE of BANQUET is higher than that of capped BOLA
in Fig. 17. The x-axis indicates time, and the y-axis indicates
the selected bitrate or the throughput. In this case, the QoE
is 3.28 for BANQUET and 2.75 for capped BOLA. Up to
120 seconds, both algorithms selected almost the same bitrate
because the throughput is low. From 120 to 150 seconds,
BANQUET selected the highest bitrate to achieve the target
QoE whereas capped BOLA could not select a bitrate higher
than 538 kbps that corresponds to 360p because of the cap.
Therefore, BANQUET achieved a higher QoE than capped
BOLA by selecting a higher bitrate than capped BOLA when
the throughput changed from low to high during the viewing.

On the other hand, there are cases where the QoE of
BANQUET is lower than that of capped BOLA. To analyze
the reason for this, we plotted a selected bitrate series with
such a condition in Fig. 18. In this case, the QoE is 2.52 for
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FIGURE 19. Performance evaluation for various number of chunks to calculate the future throughput series Tc .

BANQUET and 2.95 for capped BOLA. This figure shows
that BANQUET selects a higher bitrate than the through-
put from 110 seconds. This is because BANQUET tried to
achieve the target QoE by incurring the risk of rebuffering.
However, selecting such a higher bitrate caused the rebuffer-
ing and decreased the QoE. The root cause of such undesired
rebuffering is the overestimation of the throughput. If the
throughput is overestimated, BANQUET tends to select a
higher bitrate to achieve the target QoE, and rebuffering
occurs. To deal with such an overestimation of throughput,
there are three approaches to improve BANQUET. The first is
to improve the accuracy of throughput estimation. The second
is to calculate the risk of rebuffering and select a conservative
bitrate. The third is to abandon the receiving chunk and
request another chunk with a lower bitrate when the receiving
chunk takes a long time to download. These improvements of
BANQUET are future works.

D. HYPER-PARAMETER OPTIMIZATION
In this subsection, we optimize the hyper-parameters of
BANQUET: the throughput prediction horizon h, the thresh-
old of the length of bitrate-series candidates Td , and the
number of chunks to calculate the future throughput series
Tc. BANQUET predicts the throughput series up to h seconds
by using the latest Tc chunks and computes the QoE for
all possible bitrate series up to the next Td chunks. If Tc is
too small or large, the throughput estimation accuracy may
decrease and the QoE error may increase. If h, Td are set
excessively large, the calculation time increases exponen-
tially. Such a long calculation time may delay the timing of
the chunk request and may cause rebuffering. In contrast,
if h, Td are set excessively low, and BANQUET may not
select an appropriate bitrate because the number of candidate
bitrate series is too limited. Thus, we need to optimize them to
reduce computation time without degrading the performance
of BANQUET. These analyses are conducted for the mobile
traces with Set A as the bitrate settings.

Figure 19 shows the QoE error ratio when Tc is changed
from 1 to 10 in the mobile environment compared with
BOLA. These results show that the QoE error ratio is min-
imized for all the QoE metrics when Tc = 4. This is

because there is a trade-off between the number of chunks
and the freshness of the measured throughput. If the number
of chunks is small, the estimation accuracy decreases because
the throughput fluctuates, especially in the mobile environ-
ment. Also, the estimation accuracy decreases if the number
of chunks is large since the old throughput values are used to
estimate the future throughput. As a result, Tc = 4 is the best
setting to control the QoE appropriately in this case.

FIGURE 20. Performance evaluation for various horizon h.

Figure 20 shows results when h is changed from 1 to
30 seconds in the mobile environment compared with
BOLA. Figure 20(a) shows the average QoE error ratio, and
Fig. 20(b) shows the normalized traffic volume compared
with BANQUET. From Fig. 20(a), all the results show the
same tendency that the average QoE error ratio gradually
increases as h increases and converges to 0 when h is equal to
10 seconds. If h is 10 seconds, the normalized traffic volume
also converges as shown in Fig. 20(b). This is because h that
is too large does not contribute to select a more appropriate
bitrate for all QoE metrics. When h is too small, BANQUET
selects a low bitrate and cannot achieve the target QoE since
BANQUET estimates that the player cannot receive a chunk
with a high bitrate within the predicted throughput horizon.
As h increases, BANQUET selects a high enough bitrate to
achieve the target QoE since the number of candidate bitrates
that can be received in the predicted horizon increases. How-
ever, if h is large enough, the selected bitrate does not change
since the first few bitrates of the candidate bitrate series do not
change. This behavior occurs regardless of the QoE metric
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setting since the QoE does not change significantly enough
to change the bitrate selection if h is large enough. Therefore,
these results show that setting h as 10 seconds is sufficient.

FIGURE 21. Performance evaluation for the threshold of the length of
bitrate-series Td .

Figure 21 shows results when Td is changed from 1 to 5 in
the mobile environment compared with BOLA. Figure 21(a)
shows the average QoE error ratio, and Fig. 21(b) shows
the normalized traffic volume. Similar to Fig. 20, Fig. 21(a)
shows that the average QoE error ratio gradually increases as
the threshold Td increases and converges to 0 if Td is 4 for
all the QoE metrics. As shown in Fig. 21(b), the normalized
traffic volume is also converged if Td is 4. This is because the
selected bitrate is not changed ifTd is sufficiently large.When
Td is small, the number of candidate bitrate series is small, but
when Td is large, BANQUET can consider the various bitrate
series and select the bitrate from the most suitable series.
However, Td that is too large does not affect the selected
bitrate since BANQUET outputs only the next bitrate of the
candidate bitrate series. This behavior occurs regardless of
the QoE metric settings. Therefore, these results show that
setting Td as 4 is sufficient.

TABLE 5. Calculation time of BANQUET for optimized and non-optimized
(h, Td ).

On the basis of the results in Figs. 20 and 21, we measured
the calculation time when (h, Td ) is set to (10, 4) (optimized)
and (30, 5) (non-optimized) on an actual smartphone, a Sony
Xperia XZ. In this evaluation, we set Tc = 4 for both
settings since Tc does not affect the calculation time unlike
other parameters. The evaluation settings are the same as
those described in Subsection IV-A except for the settings
of h and Td . We also used mobile throughput traces for this
evaluation and set BOLA as the existing ABR algorithm. The
results are summarized in Table 5, which contains the average
and standard deviation of the calculation time. Table 5 shows
that by optimizing parameters (h, Td ), BANQUET calculates

the suitable bitrate in 17.6 ms on average, which means that
BANQUET with optimized parameters reduces the calcu-
lation time by 81.9% compared with BANQUET without
non-optimized parameters. In addition, the standard deviation
of the calculation time is 10.3 ms, which is also sufficiently
lower than the chunk download time. These results clari-
fied that by optimizing the hyper-parameters, BANQUET
can work efficiently and stably even in a limited computing
environment such as smartphones.

V. CONCLUSION AND FUTURE WORK
We proposed BANQUET, a novel Adaptive Bitrate (ABR)
algorithm that aims to reduce traffic volume while main-
taining Quality of Experience (QoE) above the target QoE.
To achieve better QoE with lower traffic volume, BANQUET
estimates the buffer transition for all bitrate-selection patterns
for the next several chunks and selects a suitable bitrate.
We evaluated BANQUET through a trace-based simula-
tion using actual throughput data collected in mobile and
broadband environments. The simulation results clarified that
BANQUET reduced the traffic volume 18.3%–51.2% on
average in the mobile environment and 1.2%–38.3% in the
broadband environment while maintaining QoE the same
as or better than that of existing algorithms. Furthermore,
by optimizing a throughput prediction horizon parameter and
a search space parameter, BANQUET calculated the bitrate
on an actual smartphone in 17.6 ms on average.

For future work, we will improve the performance of
BANQUET by reducing the overestimation of throughput.
To cope with the overestimation, we plan to improve the
throughput estimation accuracy and expand BANQUET to
consider the abandonment of the receiving chunk. In addition,
evaluating BANQUET in the wild is also future work.
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