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ABSTRACT Edge computing can provide many key functions without connecting to centralized servers,
which enables remote areas to obtain real-time medical diagnoses. The combination of edge computing
and Internet of things (IoT) devices can send remote patient data to the hospital, which will help to more
effectively address long-term or chronic diseases. CT images are widely used in the diagnosis of clinical
diseases, and their characteristics are an important basis for pathological diagnosis. In the CT imaging
process, speckle noise is caused by the interference of ultrasound on human tissues, and its component
information is complex. To solve these problems, we propose a 3D reconstruction method for noisy CT
images in the IoT using edge computing. First, we propose a multi-stage feature extraction generative
adversarial network (MF-GAN) denoising algorithm. The generator of MF-GAN adopts the multi-stage
feature extraction, which can ensure the reconstruction of the image texture and edges. Second, we apply
the denoised images generated from the MF-GAN method to perform the 3D reconstruction. A marching
cube (MC) algorithm based on regional growth and trilinear interpolation (RGT-MC) is proposed. With the
idea of regional growth, all voxels containing iso-surfaces are selected and calculated, which accelerates the
reconstruction efficiency. The intersection point of the voxel and iso-surface is calculated by the trilinear
interpolation algorithm, which effectively improves the reconstruction accuracy. The experimental results
show that MF-GAN has a better denoising effect than other algorithms. Compared to other representative
3D algorithms, the RGT-MC algorithm greatly improves the efficiency and precision.

INDEX TERMS Internet of Things, edge computing, generative adversarial network, 3D reconstruction.

I. INTRODUCTION
In the past decade, Internet of Things (IoT) medical devices
have become increasingly common, such as wearable sensors
and blood glucose monitors [1]. The combination of edge
computing and IoT devices can send remote patient data to
the hospital in real time, which will help more effectively
address long-term or chronic diseases [2]. Edge computing
can help hospitals establish a remote medical network, which
can provide online and real-time doctor services for patients
in any place.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenyu Zhou .

With the increasing amount of patient diagnosis data in the
medical industry, edge computing will reduce the amount of
moving data and improve the efficiency [3]. Using the edge
computing infrastructure, doctors can obtain the data directly
without going through remote centralized servers. The edge
computing infrastructure reduces the dependence on remote
centralized servers [4], which implies that doctors will obtain
a more flexible and faster network to diagnose patients.

However, speckle noise in CT images causes severe
visual interference and obscures the image’s features [5].
Speckle noise is caused by the interference of ultrasound
on human tissues, and its component information is com-
plex. In addition, CT images cannot provide the 3D shape
of organs, which seriously affects the doctor’s diagnosis.
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Therefore, it is necessary to combine CT image denoising
technology [6] with a 3D reconstruction algorithm [7] to pro-
vide a more reliable basis for clinical diagnosis and operation
planning.

Deep learning methods have rapidly developed in IoT [8],
and many researchers have begun to design a deep learn-
ing structure for image denoising. Jain et al. [9] first used
CNN for denoising algorithms and proved that convolutional
neural networks could directly learn nonlinear mapping from
low-quality images to clean images. Chen and Pock [10]
proposed the trainable nonlinear reaction diffusion (TNRD)
method, which verified that the performance of the model
was greatly improved with an increase in number of lay-
ers. Mao et al. [11] proposed automatic deep convolutional
coding for image restoration, which proved to have a better
denoising effect. Zhang et al. [12] first introduced residual
learning and batch standardization into image denoising and
proposed a denoising convolution neural network (DnCNN),
although these methods can effectively improve the effect of
noise removal. However, these methods did not give more
consideration to the problems of image detail smoothing and
edge information loss. To solve these problems, we propose a
multi-stage feature extraction generative adversarial network
(MF-GAN) denoising algorithm for CT images. The genera-
tor of MF-GAN adopts multi-stage feature extraction, which
can ensure the reconstruction of image texture and edges.

For the 3D reconstruction of CT images, the marching
cube (MC) algorithm is a typical high-quality 3D recon-
struction method [13]. Masala’s algorithm [14] replaced
15 basic topological configurations with 21 configurations,
which improved the accuracy of 3D reconstruction of images.
Shuai’s algorithm [15] simplified the operation process of
MC and improved the efficiency of the algorithm by selecting
the golden section point. This paper proposes the MC algo-
rithm based on the regional growth and trilinear interpolation
(RGT-MC) 3D reconstruction algorithm. With the idea of
regional growth [16], all voxels containing iso-surfaces are
selected and calculated, which accelerates the reconstruction
efficiency. The intersection point of the voxel and iso-surface
is calculated by the trilinear interpolation algorithm [17],
which effectively improves the reconstruction accuracy.

The contributions of this paper are listed as follows:
a) We create a 3D reconstruction method for denoised

images in the IoT using the edge computing infrastructure.
Patients can provide CT images at any place for rapid and
effective diagnosis, which enables remote areas to obtain
real-time medical diagnosis.

b) We create a MF-GAN denoising algorithm. The gen-
erator of MF-GAN adopts multi-stage feature extraction,
including multi-scale feature extraction and high-level fea-
ture extraction, which can ensure the reconstruction of the
image texture and edges.

c) We create a RGT-MC method for the 3D reconstruc-
tion. With the idea of regional growth, all voxels containing
iso-surfaces are selected and calculated, which accelerates
the reconstruction efficiency. The intersection point of the

voxel and iso-surface is calculated by the trilinear interpola-
tion algorithm, which effectively improves the reconstruction
accuracy.

II. OUR APPROACH
A. MF-GAN DENOISING ALGORITHM OF CT IMAGES
CT images are widely used in the diagnosis of clinical
diseases in IoT [18]. Speckle noise in CT images causes
severe visual interference and obscures the image’s feature
information. To solve this problem, this paper proposes a
MF-GAN denoising algorithm, which uses the generator of
multi-stage feature extraction to ensure the reconstruction of
image texture and edges.

1) SPECKLE NOISE OF CT IMAGES
When ultrasound travels through the human body, it will
emit, scatter, refract, diffract and interfere with different tis-
sue interfaces [19]. The interference is the direct cause of
speckle noise. The speckle noise intensity is smaller when the
interference is cancellative and larger when the interference
is phase length.

The distribution of speckle noise in CT images is complex.
Most researchers think that speckle noise is a Rayleigh distri-
bution [20] under ideal conditions. The Rayleigh distribution
expression is shown in formula (1), and its probability density
is shown in formula (2).

F(x) = 1− exp(−
x2

2σ 2 ), x > 0, σ > 0 (1)

f (x) =
x
σ 2 exp(−

x2

2σ 2 ), x > 0, σ > 0 (2)

where σ is related to the mean of the speckle intensity.
Some researchers also believe that speckle noise is a

gamma distribution [21] in practice. The gamma distribution
is a continuous probability function in statistics.

f (x, α, β) =


βαxα−1

0(α)
exp(−βx), x ≥ 0

0, x < 0
(3)

where random variable x obeys the gamma distribution and
is counted as x ∼ 0(α, β).

The speckle noise information is complex, including mul-
tiplicative and additive noise [22]. Formula (4) is constructed
to represent speckle noise, where f (x, y) is a CT image
with speckle noise, g(x, y) is a real image without speckle
noise, n1(x, y) is a multiplicative noise part, and n2(x, y) is
an additive noise part. Many researchers have found that the
multiplicative part of speckle noise has a much greater impact
than the additive part.

f (x, y) = g(x, y) ∗ n1(x, y)+ n2(x, y) (4)

f (x, y) = g(x, y) ∗ n(x, y) (5)

2) NETWORK ARCHITECTURE OF MF-GAN
GeneratorG ofMF-GAN is a denoising network, whose input
is a noisy image and whose output is a denoised image. The
input of discriminatorD is a denoised image and sharp image,
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FIGURE 1. Overall structure of MF-GAN generator.

and the output value is 0-1, which represents the similarity
between denoised image and sharp image [23].

When the generator G is optimized, the parameters of the
discriminator D are kept constant. Set V(G) as the mini-
mum value and D (G(z)) close to 1, which makes the dis-
criminator unable to distinguish the real image from the
denoised image [24]. When the discriminatorD is optimized,
the parameters of the generatorG are kept constant. Set V (D)
as the maximum value, D(x) close to 1, and D(G(z)) close
to 0, which improves the performance of the discrimina-
tor. Through training of MF-GAN, the optimal solution is
obtained for generator G and discriminator D.

V (D,G) = Ex∼Pdata(x) [logD(x)]

+Ez∼Pz(z) [log(1− D(G(z)))] (6)

When the discriminatorD is optimal, the parameters of the
generator G in formula (6) remain constant,Then

V (D) =
∫
x

[pr (x) logD(x)+ pg(x) log(1− D(x))]dx (7)

where pr represents the real image, and pg represents the
result of the generator G(z). When V (D) takes the maximum
value, the D(x) value is obtained as shown:

D(x) =
pr (x)

pr (x)+ pg(x)
(8)

The loss function V (G) of the generator is expressed as:

V (G) = Ex∼pr [logD(x)]+ Ex∼pg [log(1− D(x))] (9)

¬ GENERATOR
The overall structure of the generator G is shown in Fig-
ure 1. The generator of MF-GAN is divided into four stages:
multi-scale feature extraction; feature denoising; high-level

feature extraction; and feature fusion. To avoid losing
more image details, our generator adopts multi-stage feature
extraction.

a: MULTI-SCALE FEATURE EXTRACTION
The feature extraction layer consists of convolution kernels
with different sizes: 1 × 1, 3 × 3, 5 × 5, and 7 × 7.
For convolution kernels of different sizes, which correspond
to different size perception fields in the input image, the
1 × 1 convolution kernel retains high-frequency informa-
tion, and the 7 × 7 convolution kernel can extract sufficient
useful features. The image structure can be fully extracted
by a large-scale convolution kernel [25], and the detailed
information can be saved by a small-scale convolution ker-
nel. The multi-scale features provide sufficient information
for the high-level feature extraction and fusion, which can
restore the image texture and edges.

The number of output channels of each convolution kernel
is set to 32, and all output channels are combined according to
the dimension. Therefore, 128 output channels are obtained
for the four convolution kernels. The image boundaries are
filled with zeros to keep the input and output dimensions
consistent [26].

b: FEATURE DENOISING
The denoised features are obtained by subtracting the
noisy features and extracted noises through the cross-layer
connection.

In Figure 1, a seven-layer stacked convolution layer is
used to extract noisy features. Each layer of the convolution
network uses a 3×3 convolution kernel. We take ReLU as the
activation function. A cross-layer connection structure is used
between the original multi-scale features and the extracted
noisy features, which subtracts the multi-scale features from
the extracted noise distribution.

15172 VOLUME 9, 2021



J. Zhang et al.: 3D Remote Healthcare for Noisy CT Images in the IoT Using Edge Computing

FIGURE 2. Overall structure of MF-GAN discriminator.

c: HIGH-LEVEL FEATURE EXTRACTION
First, a layer of a 3 × 3 convolution network is used to
fuse the denoised features, which is represented by a grey
box in Figure 1. Second, a stack residual network is used to
extract and fuse the high-level features. In the stack residual
network [27], the first part adopts two layers of 3×3 to extract
large-scale features and a 1 × 1 convolution kernel to fuse
the features. The second part uses a layer of 3 × 3 to extract
small-scale features and a 1×1 convolution kernel to fuse the
features.

d: FEATURE FUSION
After obtaining the high-level features of the image, the
features must be further filtered and fused to reconstruct the
denoised images. Two layers of 3× 3 convolution kernel and
three layers of 1× 1 convolution kernel are used to filter and
fuse the features. The multi-layer network is used to filter the
features, which have more noise or less information.

The filtered features are gradually fused, and a correct
denoised image is constructed by using the nonlinearity of
the multi-layer network.

­ DISCRIMINATOR
The discriminator D of MF-GAN uses four convolution lay-
ers to extract image features, as shown in Figure 2. Each
convolution layer is processed by batch normalization [28].
The 3 × 3 convolution kernel is used to extract and fuse
the texture features of the image. The number of output
channels of the convolution layers are 32, 64, 32, and 16.
In Figure 2, the down-sampling layer is represented by black
boxes. The down-sampling factor is 2, which implies that
each down-sampling changes the length and width of the
feature to half. Themaximumpooling is selected for the down
sampling operation to retain more texture features and reduce
the number of parameters [29].

In Figure 2, at the output of the four convolution, a fully
connected layer is added to weight the extracted features,
which is represented by a red box. The output value represents
the probability that the input image is a sharp image. In the
last layer, the sigmoid activation function is used to limit the
output value between 0 and 1.

B. RGT-MC 3D RECONSTRUCTION ALGORITHM
In this paper, the marching cube (MC) algorithm [30] based
on regional growth and trilinear interpolation (RGT-MC) is
proposed. First, with the idea of regional growth, all voxels
that contain an iso-surface are selected and calculated, which
accelerates the reconstruction efficiency. Second, the inter-
section point of the voxel and iso-surface is calculated by the
trilinear interpolation algorithm, and the intersection point is
calculated by the gray value of eight voxel vertices, which
effectively improves the reconstruction accuracy.

The RGT-MC algorithm includes five steps as follows:
Step 1: Select the seed voxel. For two CT images, a voxel

is created from four adjacent pixels on one CT image and four
adjacent pixels on the next CT image, as shown in Figure 3.
One seed voxel is randomly selected.
Step 2: Extract voxels that contain an iso-surface using the

regional growth method. The regional growth method is used
to address six neighborhoods of seed voxels to form a region
and determine whether the region contains an iso-surface.
If yes, skip step 3; If no, skip step 1.
Step 3: Determine the subdivision method of the iso-

surface. We use the traditional MC algorithm to determine
the subdivision of the iso-surface, which includes 15 basic
subdivisions.
Step 4: Calculate the intersection of the iso-surface and

voxel by the trilinear interpolation algorithm. The trilinear
interpolation method is used to calculate the coordinates of
each intersection point. According to the index of the vertex
and edge of the voxel, the edge of the voxel that intersects
with the iso-surface is found.
Step 5:Determine whether to traverse all voxels containing

iso-surfaces. If yes, the algorithm is completed; if no, skip
step 1.

1) REGINAL GROWTH ALGORITHM
The basic idea of the regional growth algorithm is to combine
similar voxels to form a region. In the improved algorithm,
the problem is how to determine whether the adjacent voxels
contain iso-surfaces, and each voxel contains 8 vertices and
6 faces [31]. In Figure 4, four voxels are adjacent, and AB is
the common edge. The two lower voxels are adjacent to each
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FIGURE 3. Diagram of a voxel.

FIGURE 4. Diagram of four adjacent voxels.

FIGURE 5. States of the four vertices on the surface.

other and have a common face ABCD. If these four vertices
A, B, C, andD are not simultaneously greater than or less than
the set threshold, there are iso-surfaces in the adjacent voxels.
In Figure 4, EF is the intersection line between the iso-surface
and the voxel at the lower left. However, the intersection line
EF also exists in the adjacent voxels at the lower right, so the
lower right voxel also contains the iso-surface.

To determine whether the voxels adjacent to the seed vox-
els contain the iso-surface, it is only necessary to consider
the states of four vertices on the surface. For the states of the
four vertices on the surface, there are four cases, as shown
in Figure 5: (a) one vertex is different from other states; (b),
(c) two vertices are different from other states; (d) all vertices
have the same state. In summary, the four vertices are in one
of three states (a), (b) and (c), and the adjacent voxel contains
an iso-surface.

2) TRILINEAR INTERPOLATION ALGORITHM
For any point (x, y, z) in a voxel, the trilinear interpolation
method linearly calculates the value of point (x, y, z) through

FIGURE 6. Values of each vertex of a voxel.

eight vertices on the voxel [32]. As shown in Figure 6,
the value of each vertex of a voxel is expressed as V000, V100,
V010, . . . . . . ,V111.

The point Vxyz in the voxel is expressed as:

Vxyz = V000(1− x)(1− y)(1− z)+ V100 x (1− y)(1− z)

+ V010 (1− x) y (1− z)+ V001 (1− x) (1− y) z

+ V101 x (1− y) z+ V011 (1− x) y z

+ V110 xy (1− z)+ V111 x yz (10)

By introducing the gray values of the eight vertices and iso-
surfaces into formula (10), we obtain the intersection point of
the iso-surface and voxel on this edge.

III. EXPERIMENTS
The combination of edge computing and IoT devices can send
remote patient data to the hospital in real time, whichwill help
to more effectively address long-term or chronic diseases. For
performance evaluation of denoised CT images, we selected
2000 CT images of the liver from the 3D-IRCADb-01
database [33] (https://www. ircad.fr/research/3d-ircadb-01/).
The 3D-IRCADb-01 database is composed of 3D CT scans
of 10 women and 10 men with liver tumors in 75% of cases.

A. EXPERIMENT OF MF-GAN DENOISING ALGORITHM
We consider the diagnosis results of two liver tumor patients
as examples. Figure 7 shows two CT images of a 64-year-old
male with liver cancer. Figure 8 shows two CT images of a
74-year-old female with liver cancer.

1) GENERATION OF SPECKLE NOISY IMAGES
Speckle noise in CT images is similar to multiplicative
noise. Our MF-GAN denoising algorithm adopts Rayleigh
and Gamma distribution multiplicative noise.

a: RAYLEIGH DISTRIBUTION
In Figure 9 and Figure 10, (a) shows the original CT image.
(b) shows the corresponding noisy CT images with Rayleigh
distribution multiplicative noise.
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FIGURE 7. CT images of 64 years old male with liver cancer.

FIGURE 8. CT images of 74 years old female with liver cancer.

FIGURE 9. Noisy CT images with Rayleigh distribution of 64 years old male with liver cancer.

b: GAMMA DISTRIBUTION
In Figure 11 and Figure 12, (a) shows the original CT image.
(b) shows the corresponding noisy CT images with Gamma
distribution multiplicative noise.

2) PERFORMANCE OF MF-GAN
a: QUALITATIVE EVALUATION
To verify the effectiveness of the MF-GAN denoising
algorithm, the same CT image is denoised by five different
methods. For different classic algorithms, our algorithm is
compared with Jain’s algorithm [9], Chen’s algorithm [10],
Mao’s algorithm [11] and Zhang’s algorithm [12].

In Figure 13 and Figure 14, Jain’s algorithm shows that
the edge is slightly visible compared to the original image.
Chen’s algorithm and Mao’s algorithm show that the details
of the reconstructed image are obviously fuzzy. Zhang’s algo-
rithm would get better denoised results, but these methods do
not give more consideration to the problems of image detail
smoothing and edge information loss. Our MF-GAN adopts
themulti-stage feature extraction generator, which can restore
the image texture and edge.

b: QUANTITATIVE EVALUATION
Peak Signal-to-Noise Ratio (PSNR) [34] and Structural
Similarity (SSIM) [35] are used as evaluation indicators.
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FIGURE 10. Noisy CT images with Rayleigh distribution of of 74 years old female with liver cancer.

FIGURE 11. Noisy CT images with Gamma distribution of 64 years old male with liver cancer.

FIGURE 12. Noisy CT images with Gamma distribution of of 74 years old female with liver cancer.

Table 1 shows the denoised results of various algorithms
for a 64-year-old male with liver cancer, which adopts noisy
CT images with a Rayleigh distribution. Table 2 shows
the denoised results of various algorithms for 74-year-old
females with liver cancer, which adopts noisy CT images
with a gamma distribution. It can be seen that the PSNR
value of our MF-GAN algorithm is greater than the other four
representative algorithms. The SSIM value of our MF-GAN
algorithm is close to 1, which achieves a better reconstruction
effect.

B. 3D RECONSTRUCTION EXPERIMENT
The CT image size is 512 × 512 pixels. The first liver
cancer patient had 200 CT images for 3D reconstruction and

was a 64-year-old male. The second liver cancer patient had
129 CT images for 3D reconstruction and was a 74-year-old
female. Therefore, the dimensions of the two data sets are
512× 512× 199 and 512× 512× 128.

1) PERFORMANCE OF 3D RECONSTRUCTION
In Table 3, the Masala’s algorithm [14] replaces 15 basic
topological configurationswith 21 configurations, which pro-
duces a very large time cost. The Shuai’s algorithm [15] and
RGT-MC algorithm greatly improves the efficiency of 3D
reconstruction.

2) ACCURACY OF 3D RECONSTRUCTION
The accuracy of 3D reconstruction is the proportion of
the 3D area to the real liver area. The results of the 3D
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FIGURE 13. Denoised images of various algorithms for 64 years old male with liver cancer with a Rayleigh distribution.

FIGURE 14. Denoised images of various algorithms for 74 years old female with liver cancer with a Gamma distribution.

TABLE 1. The denoised results of various algorithms for 64 years old male with liver cancer.

reconstruction are compared to those of the doctor’s manual
label.

The spatial iso-surface display generated by the tradi-
tional MC algorithm is not sufficiently smooth. Shuai’s
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TABLE 2. The denoised results of various algorithms for 74 years old female with liver cancer.

TABLE 3. Comparison results of 3D reconstruction performance.

FIGURE 15. 3D reconstruction results of various algorithms for 64 years old male with liver cancer.

FIGURE 16. 3D reconstruction results of various algorithms for 74 years old female with liver cancer.

TABLE 4. Comparison results of 3D reconstruction accuracy for 64 years old male with liver cancer.

algorithm does not improve the reconstruction accuracy
compared to the traditional MC algorithm. The reconstruc-
tion result of Masala’s algorithm is smooth because of the
extended topology. The RGT-MC algorithm uses trilinear
interpolation to calculate the intersection of the iso-surface

and voxel, which improves the smoothness of the 3D
reconstruction surface.

In Table 4 and Table 5, for the 64 years old male liver
cancer patient,the reconstruction accuracy of RGT-MC algo-
rithm is improved by 14.5%, 13.4% and 4.2% respectively.
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TABLE 5. Comparison results of 3D reconstruction accuracy for 74 years old female with liver cancer.

For the 74 years old female liver cancer patient, the recon-
struction accuracy of RGT-MC algorithm is improved by
12.7%, 11.6% and 2.7% respectively.

IV. CONCLUSION
n this paper, a 3D reconstruction method for noisy CT
images in the IoT using edge computing is proposed. First,
we propose a MF-GAN denoising algorithm. The generator
of MF-GAN adopts multi-stage feature extraction, including
multi-scale feature extraction and high-level feature extrac-
tion, which can ensure the reconstruction of image tex-
ture and edges. Second, we propose a RGT-MC algorithm.
With the idea of regional growth, all voxels containing the
iso-surface are selected and calculated, which accelerates
the reconstruction efficiency. The intersection point of the
voxel and iso-surface is calculated by the trilinear interpola-
tion algorithm, which effectively improves the reconstruction
accuracy.

Using the edge computing infrastructure, doctors can
directly obtain the data without going through remote cen-
tralized servers [36], [37]. Patients can wear IoT medical
devices at any place for rapid and effective diagnosis.With the
increasing number of IoT devices, it brings extra burden to the
network infrastructure, which makes edge computing widely
used in medical IoT scenarios. On one hand, through IoT
devices and edge computing infrastructure, we can expand
the coverage of the existing network, enabling doctors to treat
patients in areas with poor connectivity. On the other hand,
edge computing saves costs in the whole medical process,
such as the doctors’ remote diagnosis, medical equipment and
supplies.
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