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ABSTRACT Image-stitching (or) mosaicing is considered an active research-topic with numerous use-cases
in computer-vision, AR/VR, computer-graphics domains, but maintaining homogeneity among the input
image sequences during the stitching/mosaicing process is considered as a primary-limitation & major-
disadvantage. To tackle these limitations, this article has introduced a robust and reliable image stitch-
ing methodology (1,r-Stitch Unit), which considers multiple non-homogeneous image sequences as input
to generate a reliable panoramically stitched wide view as the final output. The 1r-Stitch Unit further
consists of a pre-processing, post-processing sub-modules & a 1,r-PanoED-network, where each sub-
module is a robust ensemble of several deep-learning, computer-vision & image-handling techniques.
This article has also introduced a novel convolutional-encoder-decoder deep-neural-network (1,r-PanoED-
network) with a unique split-encoding-network methodology, to stitch non-coherent input left, right stereo
image pairs. The encoder-network of the proposed Lr-PanoED extracts semantically rich deep-feature-
maps from the input to stitch/map them into a wide-panoramic domain, the feature-extraction & feature-
mapping operations are performed simultaneously in the Lr-PanoED’s encoder-network based on the
split-encoding-network methodology. The decoder-network of 1,r-PanoED adaptively reconstructs the output
panoramic-view from the encoder networks’ bottle-neck feature-maps. The proposed 1,r-Stitch Unit has
been rigorously benchmarked with alternative image-stitching methodologies on our custom-built traffic
dataset and several other public-datasets. Multiple evaluation metrics (SSIM, PSNR, MSE, L, g, , FM-rate,
Average-latency-time) & wild-Conditions (rotational/color/intensity variances, noise, etc) were considered
during the benchmarking analysis, and based on the results, our proposed method has outperformed among
other image-stitching methodologies and has proved to be effective even in wild non-homogeneous inputs.

INDEX TERMS Deep feature extraction, encoder-decoder cnn, image mosaicing, multi-image registration,

non-homogeneous image stitching.

I. INTRODUCTION

Panorama stitching is a process of combining two or more
images together to generate high-resolution panoramic
images with an extended field of view. The most important
application of an image-stitching operation is its ability to
summarize and compress the videos taken from a camera
into a meaningful image with widened field-of-view. Nor-
mally, there is a constraint on the resolution of a digital
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camera; because of physical and economic reasons, and
hence the images generated by the digital camera do not
have required field of view even with the use of super-wide
angle lenses, which are themselves prone to high lens dis-
tortions, hence panoramic stitching operations are necessary
to generate high quality panoramic(views) images econom-
ically(with no additional equipment) [1], [2]. These image-
stitching operations [1], [3]-[21] can also be termed as Image
Mosaicing operations. Mosaicing is an image-processing
operation that works by accumulating multiple input-images
from normal cameras and then stitching them together to form
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a panoramic image with a widened field of view (FOV) [21]
(refer to Fig. 10 for examples). Recently specialized forms of
image mosaicing methods based on deep feature extraction
techniques & Deep-Neural-Networks have been introduced
[19], [20]. These advanced forms of image-mosaicing
methods have played many pivotal roles in the develop-
ment of multi-spectral satellite image registrations, satel-
lite image stitching, environment modeling/localization [22]
techniques.

Image stitching(or)mosaicing operations have various
applications in the field of video compression, video stabi-
lization, video matting, video conferencing, video summa-
rization, 3D image reconstruction and applications in the
medical field. Moreover, some photographic cameras can
stitch image sequences internally with the help of a built-
in image stitching function in the computer-aided hard-
ware design of the system’s graphic-architecture [7], [23].
The Image stitching methodology was further extended to
applications like video indexing, video compression, and
genuine generalization of multi-image video stitching [24].
Panoramic videos can be used to create animated video tex-
tures, in which different elements of panoramic locations
are animated with individually moving video loops, illu-
minated video-flashlights to create a compound mosaic of
a particular scene. Image stitching in the medical domain
has many prominent applications to aid the diagonal-process
of renal, liver, tissue, abdomen, retinal, cardiac, and other
disorders [25]. Localization systems are one of the most
important applications of any panoramic image stitching
module [3]. Most familiar applications, approaches of these
image stitching operations [1], [3], [5]-[19], [21] require
indistinguishable exposure differences and specific overlaps
in between the input image sequences to produce a seamless
output.

The general objective of any image stitching method
[23], [24], [26], [27] is to create an intrinsic image-mosaics,
which are free of texture artifacts; generally image-stitching
artifacts are caused due to inefficiency of the stitching
module, optical aberrations, relative camera motion, hard-
ware/external image-noise, ill-placed camera sources, illu-
mination changes, etc. Although image stitching/mosaicing
operations have many real-time applications, their implemen-
tation during live-scenarios is still considered as a challenging
issue in many image-processing, camera-hardware-system
use-cases because of the previously stated challenges, limi-
tations & restrictions (refer to Fig. 9 for some sample chal-
lenges faced during a panoramic view acquisition process).
The observed challenges are mainly caused due to limitations
& assumptions made by a particular method during their
inference/experimentation phases.

Based on a detailed survey of implementation schematics
& working methodologies of many existing image-stitching,
panoramic-view-modeling methodologies [10], [24]-[26] we
have identified several disadvantages, feature incapacities &
some common assumptions (made by a respective author
while proposing their methodology).
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Following are some of the challenges faced and assump-
tions made, by the existing methodologies [4], [10]:

o Enough overlapping areas should be maintained

between the input image sequences.

« No objects should have large movements in the scene.

« No high distortion in input images.

« No severe exposure, intensity, color differences between
the input images.

o The resolution of stereo input image pairs should be
restricted to a certain limit(generally less than 2K) so
that the image-stitching operation can be efficiently per-
formed.

o The input stereo pairs should be homogeneously syn-
chronized(both spatially and temporally).

o The orientations & resolutions of every image in
the input image sequences/register should be synchro-
nized & identical, i.e it’s important to maintain geomet-
rical integrity among the input images.

e The input images can only have minimal noise,
rotational variances, chromatic aberrations, and arti-
facts, etc.

o The input images should have semantically rich, dense
features/patterns.

We have brainstormed for various implementation fea-
tures, and based on the analysis we propose a novel
Deep Neural Network architecture (Fig. 1) along with
several other Deep feature extraction+mapping algorithms
(Figs. 1,2 and 3) to tackle the previously discussed dis-
advantages and challenges faced by other image-stitching
methodologies [1], [3], [5]-[19], [21]. Based on the pro-
posed features, architectures & methods/algorithms, the
“lr-Stitch unit” research work(refer to section 4 for a
detailed description) is framed and presented (Fig. 1).
The contributions,novelties of the proposed research-
methodology are:

o We have proposed a novel 1,r-Stitch Unit module for

robust & reliable image stitching use-cases.

« We have proposed the 1,r-PanoED network, an Encoder-
Decoder CNN for deep feature extraction + mapping,
intuitive panoramic view re-construction purposes. Split
encoding network methodology (for l,r-PanoED net-
work) is introduced in this research work.

o The proposed image stitching methodology Lr-Stitch
unit is highly modular and can be adaptively plugged
in with other 1,r-Stitch units (Fig. 5) to stitch ultra-wide
panoramic views(FOV>2200).

e A deep feature-vector mapping algorithm (F-Mat*
(UL-87:1, UL-8r)) has been proposed in this research
work.

o The proposed method can effectively stitch panoramic
views with input field-of-view ranging from
30° < FOV < 320V (Table 6).

o We have proved & illustrated the proposed method’s
effectiveness and superiority over other methods by
performing an extensive benchmarking 4 performance
analysis (Figs. 9 and 10, Tables 1, 2, 3, 4 and 5).
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FIGURE 1. An illustrative overview of the proposed (I,r-Stitch Unit) image-stitching methodology’s working mechanism, along with the depiction of
schematic work-flow involved in the proposed novel convolutional deep-feature extractor + mapping encoder-decoder network(l,r-PanoED

network).
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FIGURE 2. Overall System architecture of the proposed Image stitching mechanism(l,r-Stitch Unit). The I,r-Stitch Unit is a sequential ensemble
of the pre-processing sub-module, I,r-PanoED network, and post-processing sub-module. The sub-modules, DNNs present in the I,r-Stitch unit
are a robust ensemble of SOTA image-processing/handling, Deep-Learning techniques. Left, right stereo images (L, R) are passed as input to
the |,r-Stitch unit to generate a panoramic view(0) with the help of |,r-PanoED network(introduced in this article).

This analysis consists of subjecting the proposed
method & other alternative image-stitching methods to
certain extreme wild + non-homogeneous test-case sce-
narios.! Sample results of the proposed method dur-
ing the performance analysis were illustrated later in
section 5.

IRefer to Section 5’s Table 1, Table 2, Table 3, Table 4, Table 5 for a
detailed explanation regarding the wild4+non-homogeneous test-case scenar-
i0s.
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e We have introduced a new custom-built live traffic

dataset [28], which will be open-sourced in the future.
Custom loss functions & system pipelines
(Figs. 1, 2 and 3) were also introduced in this research
work.

Rest of the paper is structured as follows, Section 2 details
the abbreviations & acronyms used in this research work, and
Section 3 thoroughly surveys, analyzes, and evaluates other
existing alternative image-stitching methodologies/research
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FIGURE 3. Overview of the proposed |,r-PanoED network architecture, with detailed illustrations & description of the feature maps extracted at crucial
Encoder-Decoder Network-layers. This figure schematically describes and illustrates the working of the proposed “split encoding network
methodology”. BL-1 to BL-11 layers belong to the BL-Encoder network of the I,r-PanoED, UL-1 to UL-8 layers belong to the UL-Encoder network of the
I,r-PanoED, and BL-12 to BL-23 layers belong to the decoder network of the I,r-PanoED.

works. Section 4 consists of an extensive description and
analysis of our proposed image stitching methodology along
with other supporting hypotheses. Section 5 illustrates and
analyzes our proposed method’s results & performance under
certain extremely non-homogeneous> wild input conditions;
Section 5 also consists of training and inference details of the
proposed Lr-Stitch unit along with a thorough benchmark-
ing analysis of our proposed method along with other alter-
native image-stitching methodologies(refer to section 5 &
[29], [30]). Section 6 includes the limitations & future-work
of our proposed method, and section 7 effectively concludes
our proposed research work.

Il. ACRONYMS AND ABBREVIATIONS

2D-Conv: “2-Dimensional Convolution”, 2D-De-Conv:
“2-Dimensional Deconvolution”, AED: “Auto Encoder
Decoder Network™, BL: “Bottom Layered”, CNN: “Con-
volutional Neural Network”, DNN: “Deep Neural Net-
work”, ED: “Encoder Decoder Neural Network”, FL:
“Feature Layer”, FM: “Feature Map”, FOV: “Field of
View”’, FV: “Feature Vector’”, GT: “Ground Truth”,

2The term “non-homogeneous” refers to dissimilar(any non-coherent)
properties identified between the input left, right stereo images, here dis-
similarities between the input images implies to any differences in exposure
& contrast, color content, lumination, resolution & orientation, rotations,
object-movements & pattern/texture artifacts, geometric misalignments, etc.
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GAN: “Generative Adversarial Network”, 1: “Left”, r:
“Right”, MPB: ‘“Modified Poisson Blending”, MSE:
“Mean Square Error”, NNDR: ‘“Nearest Neighbour Dis-
tance Ratio”’, Pano: “Panorama”, PReLU: “Parametric Rec-
tified linear unit”, PSNR: “Peak Signal to Noise Ratio”,
RANSAC: “Random Sample Consensus”, RGB: “Red,
Green, Blue”, SSIM: ““Structural Similarity Index Measure”’,
UL: “Upper Layered™.

Ill. RELATED WORK

In recent times [25]-[27] many static + dynamic conven-
tional feature descriptor methods & CNN/DNN based image
stitching methods have been proposed [1], [3]-[21]. Major-
ity of the previously proposed(or existing) image-stitching
mechanisms are primarily optimized to perform better in
input scenarios, where the input stereo images are homoge-
neously paired in ideal conditions with slight exceptions in
irregularities between them. Some image stitching method-
ologies [3], [5], [6], [8], [9], [11]-[16] have proposed custom
feature extraction & pre + post-processing mechanisms,
Some methodologies [17]-[20] have used DNNs to extract
deep features from input stereo images to register them
together for generating output panoramic-views, while some
methodologies [1], [4], [7], [10] have used existing con-
ventional feature extraction techniques and modified the
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matching/mapping methodologies to spike their proposed
method’s performance in stitching reliable panoramic out-
puts. For instance, Sampetoding et al. [18], Proposed a novel
framework for automatic personal photo improvement using
photo collections without any 3D regeneration process. Their
proposed method [18] consists of two steps: image retrieval
and image stitching. They have generated a specified land-
mark dictionary for every image in the dictionary with the
help of NetVLAD descriptor architecture and thresholding
operations(to remove any similar image outliers present in
the dictionary). After the creation of global feature vectors,
their proposed method [18] searches for K-nearest neigh-
bors for an input image based on the similar nature of
the global feature vector. Then the K images are subse-
quently utilized as candidate-images and used for field-of-
view expansion. This proposed research [18] work has a
narrowed use-case as the input image pair retrieval is con-
strained to the diversity of their proposed database, internet
images available(i.e this image-stitching might fail in any
custom use-cases if the input image does not share any cor-
responding information in their database/internet-gallery);
Moreover, the image-stitching operation implemented in their
proposed [18] work produced less accurate results com-
pared to other alternative conventional stitching methods,
and also their proposed method fails to work in regular wild
conditions(with orientational, noise, rotational differences).
Kang et al. [17], proposed an innovative two-step image
alignment technique based on deep-learning and iterative
optimizations. A light-weighted end-to-end trainable con-
volutional neural network (CNN) architecture called Shift-
Net was nominated to estimate the introductory shifts amid
images, which was more optimized in the subpixel refinement
process based on a described camera motion model. Both
qualitative & quantitative research results indicate that the
cylindrical panorama stitching found on their proposed image
alignment method [17] showed significant enhancements
over traditional feature-based approaches. The limitations of
their proposed work [17] are, their image-stitching module
can perform better only on multiple sequential input image-
pairs with higher matching percentage (or intersection)
in-between the input image-pair sequences. The stitch-
ing module implemented in their paper [17] does not
perform adequate fine-tuning pre/post-processing opera-
tions on inputs & outputs. Tackling Non-Homogeneity
among input image-pairs wasn’t proposed in [17] research
work.

Levin et al. [5], Introduced several traditional cost-effective
functions for the assessment of quality for image-stitching
operations. From these cost functions, the correlation
between the seam-appearance and input images were deter-
mined in the gradient domain/territory. They [5] have
described two approaches for image stitching in the gra-
dient domain. The first explains GIST1, where the mosaic
part was inferred directly from the derivatives of the input
images. The second describes GIST2, with a two-steps
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processing pipeline for stitching input images. Their [5]
proposed method majorly concentrates on implementing and
modulating post-processing techniques to deal with photo-
metric, intensity, coloring inconsistencies along with geo-
metric misalignments to an extent. So, their paper [5] majorly
misses the part of effectively proposing a robust image-
stitching, feature matching method for projecting the input
image pairs to a wide-view panoramic image(although the
non-homogeneous inconsistencies among the input stereo
pairs were also not handled in [5] paper). Gao et al. [6],
Proposed Seam driven image stitching methodology where
they have Assessed the finest transformation based on the
resultant vision quality of the seem-cut, instead of estimating
a geometric transform which depends upon the best fit of
feature correspondence. Seam-cut was used in masking mis-
alignment artifacts. Their [6] paper has used a conventional
non-robust feature detection mechanism which would easily
fail in extracting and matching keypoints/feature pairs even in
slight wild conditions; moreover, their [6] proposed seam cut
requires more latency time compared to other conventional
projective stitching mechanisms. Faridul et al. [4], Proposed
an explicit color correction operation by leveraging the
sparse correspondences on input images before performing
an image stitching operation. Their [4] approach has two
fields. First step consists of all the necessary procedures
required for finding an optimal geometric correspondence
among input images, then the color information is col-
lected & stored locally to achieve robust performance in
geometric correspondences. In the Second step, the proposed
method fits a global model that compensates for complex
color changes among the collected step-1 colors accordingly.
The experimental results stated in their [4] paper showed
that their proposed image stitching method was invariant
to changes in Exposure status, illumination conditions, and
changes in imaging devices, etc. In their [4] proposed paper,
the non-homogeneity among input image-pair sequences
were handled well, but their proposed image-stitching &
feature matching methods were conventional and non-robust.
Moreover, noise & rotational variations were not properly
handled. Xiong and Pulli [7], Proposed a fast image-stitching
methodology with smaller memory footprint consumption
for combining sets of source images into panoramic scenic
images. In their [7] proposed method, the color correction
operation minimizes color differences among source images,
while simultaneously maintaining color & luminosity bal-
ances throughout the image sequence. Their [7] proposed
Dynamic programming discovered optimal seams in imbri-
cate areas between adjacent images to merge them, and
finally, an image blending operation was applied to further
smooth the color transitions and hide visible seams, stitching
artifacts. Their [7] proposed image-stitching methodology
was primarily designed for mobile/lite-device use-cases [7],
therefore the input image-pairs should always be in ideal con-
ditions for the proposed method to work efficiently, i.e slight
non-homogeneity/noise/wild-conditions can highly affect
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the performance of the proposed stitching methodology.
Wang et al. [8], Proposed a novel fast image stitching algo-
rithm based on ORB (Oriented FAST and Rotated BRIEF)
features. Their [8] proposed algorithm initially selects an
ORB algorithm which adds the direction information to the
FAST detector for image feature extraction and matching.
Later, the RASANC (Random Sample Consensus) algorithm
was used in their [8] methodology to eliminate false matching
points. Finally, a weighted average method was used to speed
up the whole image fusion process. Their method [8] was able
to overcome the limitations of speed and accuracy compared
to other traditional methods. Wang et al. [9], Analyzed the
looping path problem which caused error accumulations
in traditional image-stitching operations, [9] introduced a
multi-image stitching method based on graph models. Their
proposed method [9] has used the Weighted Shortest Path
Algorithm, in which the input images are stitched automat-
ically. Matching Mean Square Error was introduced as the
weight of edges on the graph, which was intuitive and easy
to compute. Furthermore, an optimized Dijkstra algorithm
was applied to speed up the pathfinding algorithm. Experi-
ments have shown that their [9] proposed algorithm caused
less Matching Mean Square Error and has obtained more
stable results than other similar methods. [8], [9] research
works have proposed robust and efficient feature extrac-
tion & mapping mechanisms, but the overall latency time
required by these two proposed methods is slightly higher
when compared to other alternative conventional stitching
methods; moreover, these proposed methods [8], [9] were
not able to efficiently handle extreme wild conditions with
non-homogeneous integrity among input image sequences.
Alomran and Chai [10], proposed a feature-based image
stitching Algorithm that consists of image acquisition, image
registration, image blending, and compositing operations.
Their paper [10] has proposed two main approaches for
image-stitching operation, the first approach was based
on a direct technique, and the second approach was a
feature-based technique. A through experimentation analy-
sis(focused only on lens, focal-length & resolution changes)
was carried out on their proposed [10] image-stitching
method. Their [10] algorithm can successfully stitch input
image sequences only if they are ideally conditioned, i.e
the proposed method is restricted to perform optimal only
on input image sets that have no exposure differences,
enough overlapping areas, minimal lens distortions, no object
movements, lens/device invariance restrictions & angular-
orientations.

Based on the above extensive survey and further
analysis of other alternative image-stitching mechanisms
[1], [3]-[21], we can infer that the existing image-
stitching methods are only ideal for homogeneously paired
input stereo sequences(with little or no wild conditions
included); i.e these existing methods tend to generate non-
reliable outputs(mostly failure cases) when their respec-
tive inputs are subjected to irregularity, wild-conditions or
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non-homogeneity. So, to tackle the feature incapacities &
disadvantages faced by the existing image stitching method-
ologies we have proposed a novel stereo image-stitching
methodology named 1,r-Stitch unit (Figs. 1, 2 and 3),
which can robustly generate reliable wide + ultra-wide
panoramic view images (30° < FOV < 330°) even from non-
homogeneously synchronized input image sequences. The
proposed 1,r-Stitch unit consists of a novel Encoder-Decoder
CNN named l,r-PanoED network, which implements a
unique split encoding network methodology to extract, detect
and map the feature patterns present in input image pairs. The
L,r-Stitch unit also consists of several highly efficient & robust
post-processing techniques to perfectly fine-tune the output
panoramic images generated by the 1,r-PanoED network. Our
proposed method can also generate ultra-wide panoramic
outputs by intuitively ensembling multiple modular Lr-Stitch
units. The features and modules(which will be discussed
exhaustively in the following section 4) are built based on
the proposed research’s contributions and novel architec-
tures/methods(mentioned in section 1).

IV. IMPLEMENTATION AND METHODOLOGY

The proposed L,r stitch Unit consists of 3 major subcompo-
nents, 1) Pre-Processing module, 2) 1,r-PanoED net- work
and 3) Post-processing module (Fig. 2). A single Lr-Stitch
unit takes left, right stereo images(either with homogeneous
or nonhomogeneous synchronization) as input and generates
a robustly mapped panoramic image with low processing
latency. The proposed L,r stitch Units are designed as plug-
in modules(designed with high modularity), where a single
unit can be heuristically plugged-in to other Lr-Stitch units,
to form a recursive tree consisting of multiple 1,r-Stitch units,
now the tree of multiple 1,r-Stitch units inputs a series of mul-
tiple left, right stereo images(>2) to generate a much wider
~320° panoramic view (Figs. 5 and 10). The steps involved in
the proposed pipeline starts with a simple lateral stereo image
concatenation operation [24], [31] (pre-processing) to gener-
ate I’, the concatenated image(I’’) is then sent to 1,r-PanoED
network to generate a raw panoramically stitched wide view
image(O”’), and the O” panoramic image is sent to the post-
processing module to minimize illumination, exposure dif-
ferences [24], [27] across the image, and multi-scale image
blending, texture correction operations are further performed
on O” to remove all the occluded edges, blurred, ghosting
artifacts [24], [31]. Image generated from the post-processing
module is the final output panoramic image(O) of a specific
Lr-Stitch unit for respective input Lr stereo images(refer to
Figs. 1, 2 and 3 for a working illustration of the proposed
method).

A. PRE-PROCESSING (STEREO LATERAL
CONCATENATION)

The proposed pipeline pre-process the raw input using a sim-
ple stereo image lateral concatenation operation [24], where
the individual left, right stereo images (Fig. 4 (a),(b)) are
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FIGURE 4. (a), (b) are the input non-homogenous stereo images. (c) is the
pre-processed input image(l”), i.e output of Lr-Stitch Unit's
pre-processing sub-module. (d) is a working illustration of deep-feature
stitching/mapping algorithm(F-mat*(UL-8)); red lines indicate the
identical feature maps among the input (a), (b) images. (e) is the
un-processed raw output(0”) of the I,r-PanoED network, (f) is the final
panoramic image(O) generated by the I,r-Stitch Unit by post-processing
the output of |,r-PanoED’s 0”(e).

laterally concatenated into one(I”’) (Fig. 4 (c)) by per-forming
a lateral matrix concatenation operation ( |).

1" = [Ly1ixm1 IRN2xm2) (V148 2) Xm (H

In, | is matrix lateral concatenation operation [24]; N*, M* are
image dimensions. Here L, R are the input stereo images with
N1xM1 and N2xM2 dimensions, and after performing the
lateral concatenation operation( |) the resulting pre-processed
image(I”’) has a dimension of (N1+4+N2) x m(generally
m is the minimum of {M1, M2}). The steps involved
in the lateral concatenation operation are: 1) making a
copy of (N14+N2)*min(M1, M2)*3 dimensional Zero-matrix.
2) Resizing the M1, M2 height of either left or right stereo
input images to a value of min(M1, M2), so that the height
values of intermediate, output panoramic-views remain
homogeneous throughout the stitching process, the pre-
processing module performs bi-cubic interpolation [32] of
input patterns/features during the resizing operation. After the
creation of a zero matrix, and adaptively resizing the dimen-
sions of L, R stereo inputs, 3) we iteratively fill the zero values
in zero-matrix with [R, G, B] values present in the resized L,
R image,s this iterative filling of [zero matrix]N*xm is per-
formed according to the matrix concate- nation operation (|)
[24], [31]. The pre-processed image(I”’) is then passed to the
L,r-PanoED network to generate a panoramic stitch(O”’) based
on deep feature mapping.

B. PROPOSED NETWORK'S ARCHITECTURE

L,r-PanoED network is a deep convolutional encoder-decoder
architecture [33] with split encoding network methodol-
ogy with parallel lateral connections between the 2 encoder
network architectures. Main operations performed in the
Lr-PanoED network are 2D-Convolution (2D-Conv) [34],
2D-Deconvolution (2D-Deconv)/2D-Transposed convolu-
tion [35], Batch-Normalization (BN) [36], Parametric Rec-
tified linear unit (PReLU) [37], Max-pooling [38], lateral
connections + Feature-Concatenations, Feature similarity
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[241], [39], [40], loss and optimization operations [41].
BN (x;) = £®
m
- Ea
- = @)
L8 1
szl(xi =Gy _lei ) +e
i= =

BN [36] is used for feature normalization and to mini-
mize covariance-shifts between the extracted feature units.
Generally feature normalization is done by recalculating the
extracted feature layer units Y(; according to BN, g (x\K))
function where y, B are learnable-parameters, X; is ith input
batch iteration. y*' = BN, 5 (xK)) = y®x® 4 g®) where k
[1,d],1[1,m] and d is the dimension of feature-space/vector,
m = epoch’s batch-size. ¢ is a stability constant. 2D-Conv,
2D-Deconv [34], [35] (H' = WiyyH = Z [W@OxH®®])
operations are used for the feature extractions(H'!) by 2D
convolving W(kernel or filter) on input FMs(H). Generally,
during the 2D Conv operation, H layer’s input units(xf.‘)
present in N (neighborhood of W kernel) are mapped to
a single yf.‘ output-unit in H’ layer (down-sampling); and
during a 2D-Deconv operation a single input unit(xﬁ.‘) in
H layer is mapped to multiple feature units belonging to
N neighborhood of H’ layer. 2D-Conv operation extracts
concentrated valued semantic feature maps, these 2D-Conv
operations are generally implemented in CNNs & AED’s
encoder networks. Similarly, 2D-Deconv operations extract
higher spatial-resolution categorical features from respective
input FMs, and 2D-Deconv operations are used in GANs &
AED’s Decoder networks.

o @pt=o0
aG¥) (Ht <0)

In “a” is a learnable parameter [37]. Parametric-ReLU
(PReLU) [37] is an activation function used to tackle Van-
ishing gradient & dying ReLU problems. PReL.U introduces
non-linearity among the extracted feature maps at respec-
tive convolutional layers. Non-linearity in FMs helps to
improve robustness and generalization of extracted feature
maps. Max-pooling operation [38] is a sample-discretization
method, which extracts sharp and distinctive features and
also reduces the dimensions of the input FMs for the
next layer thereby reducing the chances of overfitting.
Max-pooling chooses the max({yf }) value available in N
neighbourhood(i N) [38] for every n-stride non- overlapping
regions(n = dim (n*n-max-pooling) operating kernel) cov-
ered by a max-pooling kernel. Feature concatenation oper-
ation is used for introducing lateral connections between
2 different feature layers. Generally, to maintain dimen-
sional integrity among FLs/FMs while concatenating, we per-
form cropping & 2D-1*1-Conv operations on input FMs
to alter their depths/dimensions to make them suitable for
feature-concatenation operation. Feature-similarity functions
are used for mapping deep features that are extracted by
the CNNs, in this article we use the correlation distance

PReLU = 3)
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function [40] as a similarity metric for the N.N.D.R algorithm
[24], [39] to map the encoder network’s extracted features.
Loss functions [41] are used to estimate loss/cost incurred
during training & validation, simply the loss value calculated
by a loss function is used to estimate gradients for optimizing
the entire neural network. Optimization functions [41] are
used to optimize and adjust the weights of activation/feature
units accordingly so that the calculated loss value is mini-
mized during back-propagation. These previously discussed
primary DNN operations are used in the architecture of the
L,r-PanoED network.

Fig. 3 represents the overall Convolutional encoder-
decoder architecture of the proposed 1,r-PanoED network,
where 1" is the Ly xmi1, Ry xmo-lateral concatenated
image(with (N1 + N2)xm dimension) and O" is 1,r-PanoED
output unprocessed raw panoramic stitched image(with
W’xH’ dimension). 1,r-PanoED network consists of a total
31 Feature Layers with lateral connections between some
FLs. Out of those 31FLs, 19 feature layers belong to
encoder networks and the rest of the 12 feature layers
belong to the decoder network. In the encoder network
part of 1,r-PanoED architecture we implement “‘split encod-
ing network methodology” (BL-encoder(Bottom_Layered-
Encoder) and UL-encoder(Upper_Layered-Encoder)) with
lateral connections between these 2 separately split BL &
UL encoder networks. BL-encoder network mainly focuses
on extracting features from the input images, and the
UL-encoder network fine-tunes BL-encoder’s Feature Maps
by performing additional feature extractions in UL layers, and
these fine-tuned Feature maps are mapped at the end of the
UL-network encoder using F-Mat*(UL) function, and UL-8*-
feature registration is performed based on these matched fea-
ture Maps (Fig. 3). Now the decoder network of 1,r-PanoED
inputs these UL-8*-registered FMs for recreating final robust
panoramic view outputs. Lateral connections(C;; j [1, 5])
between BL and UL encoders helps in the transfer of feature
maps during the fine-tuning process. For a detailed explana-
tion of the 1,r-PanoED network, and its execution, we split the
entire architecture into the Encoder network(Section4.B.1) &
decoder network(Section 4.B.2) during the description.

C. DESCRIPTION OF L,R-PanoED NETWORK's

ENCODER ARCHITECTURE

The encoder network of I,r-PanoED consists of 2 subnetworks
as discussed above, which are the BL-encoder network and
the UL-encoder network. The encoder network consists of
a total 19 feature layers (Fig. 3). 11 FLs (BL- 1 to BL-11)
belong to the BL-encoder network and 8 FLs (UL-1 to UL-8)
belong to the UL-encoder network. Each convolutional fea-
ture layer (except UL-8) in the encoder network is generated
by applying either one of EL'N,M or EL>N,M sequences of
operations

Li = ELy y (Li-1) = PReLU(BN(N*M>p

—Conv(L;-1)))
Li = ELY y (L1, Gj) = PReLU(BN(1*1_2D
—Conv(C; ® N*Map — Conv (Li—1)))) “
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In, N, M are filter/kernel(W) dimensions, L; (i”-encoder
layer) BL;| UL;, C; is a Lateral connection established
between the UL & BL encoders, and is a feature concate-
nation operation. In the encoder network depths of feature
layers(of both BL & UL encoders) increase and the resolution
of FLs decreases as we go deep into the encoder network
from BL-1 to BL-11 and UL-1 to UL-7(exception for UL-8).
In the encoder network, extracted features become seman-
tically concentrated and pattern rich as we go down the
network. As discussed previously the encoder network
has 19 convolutional FLs (the BL encoder has 1lencod-
ing layers, and the UL encoder has 8 encoding layers)
where each convolutional FL is generated by apply-
ing 2D-Conv(L;) [34], BN [36], PReLU [37], 2*2-Max
Pool-8 layers have 2098 FMs and are generated by apply-
ing EL!'3X3 (BL-5), EL'3X3 (BL-6), EL!3X3 (BL-7).
BL-9, BL-10, BL-11 are deep-bottleneck features maps
of the 1,r-PanoED network, and BL-9 has 4196 FMs
and both BL-10, BL-11 have 8392 feature-map layers,
where they are generated by applying EL?3,3(BL-8, C3),
EL?3,3(BL-9, C4), EL'3X3 (BL-7) sequence of opera-
tion respectively. In EL2XX sequence operations, we apply
1*1_2D-Conv() operation to the resulting feature concatena-
tion because, when 2 feature layers are concatenated via C;
lateral connection the number of feature maps at that partic-
ular layer doubles in-depth, so to maintain spatial integrity
among the peer feature layers we apply 1*1_2D-Conv() oper-
ation to reduceing [38] (only to some layers) sequence of
operations. Inputs the depth of feature concatenated FMs
to its ! (i.e 1*1-to 1,r-PanoED can be any N*M*3 dimen-
sional L, R stereo images. BL-1 (of BL-encoder) has a
depth of 128 Feature maps and is generated by apply-
ing EL'11X11(I") sequence of operations. Both BL-2,
BL-3 layers have 384 FMs and are generated by applying
EL!7X7 (BL-1), EL'5X5 (BL-2) sequence of operations.
BL-4, BL-5 encoder layers have 768 FMs(depth) and are
generated by applying EL'5X 5(BL- 3), EL!5X 5(BL-4) oper-
ations. Similarly, BL-6, BL-7, BL-Conv() operations alter the
depth of FMs adaptively so that entropy among them doesn’t
rise in this case). Generally in the Lr-PanoED network, C;
represents lateral connections between the encoder networks,
C; connects BL-5 & UL-1, C; joins BL-8 & UL-3, C3
connects UL-6 & BL-9, C4 joins UL-7 & BL-10, Cs joins
C-44BL-11 & UL-8 and finally Cg concatenates UL-8" &
BL-12(of decoder network). Now coming to the UL-encoder
network, UL-1 has 768 FMs and is generated by apply-
ing EL23,3 (BL-5, Cy). UL-2, UL-3 layers have 2098 FMs
respectively and are generated by applying EL!'3,3 (UL-1),
EL23,3 (UL-2, Cy). UL-4, UL-5, UL-6, UL-7 layers have
4196, 4196, 4196, 8392 feature-map layers respectively and
they are generated by applying EL!3X3 (UL-3), EL!3X3
(UL-4), EL'3X3 (UL-5), EL!3X 3 (UL-6) operations respec-
tively. UL-8 layer of UL-encoder performs several operations
besides extracting fine-tuned feature extraction, where UL-8
extracts fine-tuned features by applying UL-8p7r (C4,C5) =
PReLUBN(1*1_2D-Conv(1*1_2D-Conv(Cs 3*3_2D-Conv
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(Cy))))) sequence of operations. We apply 1*1_2D-Conv()
operation consecutively 3 times at a single layer(UL-8)
because, during the feature concatenation of C4, Cs the
overall depth of resulting feature maps increase to 16792,
now these 16K FMs(depth) should be adapted to the depth
of BL-12 in the decoder network, therefore we perform
3x(1*1_2D-Conv) operations to reduce the depth of FMs to
1/8 (i.e 2098 FMs) of its current depth. This depth reduction
can boost the overall speed and latency time of the feature
mapping and registration process of UL-8* function, more-
over modulating the depth while concatenation can increase
the stability & helps to maintain homogeneity during progres-
sive feature extraction or feature-reconstruction.
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After the completion of finely tuned feature extrac-
tion, the UL-8 layer performs other operations such as
Feature mapping and F-Mat*(UL-8) Feature-registration.
Feature mapping at UL-8 is done on UL-87r (Cy4, Cs) fea-
ture maps using complete N*xM*-iterative N.N.D.R algo-
rithm [39], [42] with Correlation(p09g, q2098) [40] function
as p,q-feature similarity method(), where Correlation(p,q)
represents feature correlative similarity score between 2
P2098.q2098 feature vectors. Now the N*xM*x2098 dimen-
sional UL-8f7 (C4, Cs) feature maps are split into 2 equal 1,
r-sub-feature maps where each sub-feature map has a dimen-
sion of (N*/2 x M*/2 x 2098). Now [1 x 2098] dimensional
feature vectors(FVs) belonging to both 1, r-sub-features maps
are iteratively compared with each other to find the matches
using NNDR [39], [42] feature matching method [39].
Generally p'2098 represents a set of {FV/1x2098(I-sub-
FM)} feature vectors where i [0, N*/2xM*/2], similarly q
72098 is a set of {FV /1x2098 (r-sub-FM)} FVs where j
[N*/2xM*/2, N*XM*] range. Here in our proposed stitching
method, we have implemented a complete N*xM* iterative
feature search during 1, r-sub-feature mapping in the NNDR-
match function, to make our p, g-feature vector match-
ing function in UL-8%, () unit more robust and invariant
(to input I, r-stereo image orientations and resolutions).
During the iterative feature matching, FVs present in the
p'2098 set are Correlatively compared with every feature vec-
tor present in the q/2098 set. During this Correlation(px, qx)
similarity analysis, if any 2 vectors have a similarity score less
than the Sim-Th(a similarity threshold, Sim-Th = 0.45) then
those 2 Vectors (Fig. 4 (d)) are categorized as matched FVs
(this process is repeated until vectors present in p,q set are
completely analyzed). Finally, the complete set of matched
UL-81;’;1 = {pi» qj} FV pairs are passed to the F-Mat*
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(UL-8Fr P4, UL-8F7) feature registration function for stitch-
ing fine-tuned UL-8 FMs to generate a raw initial panoramic
mapped FMS. These panoramically mapped UL-8z7 FMs
along with BL-11 FMs are together passed to the Decoder
network for generating O” panoramic images. In the F-Mat()
function, Feature registration [43] of {p;,q;} FV paris is per-
formed based on a H-homography matrix calculated using the
N-iterative RANSAC algorithm [44].

Algorithm 1 Feature-Map Registration in UL-8x

1. F-Mat«(UL- SFT,UL-Sft) ;
Input: UL-8ft fine tuned feature maps and matched
{p,q} UL-8ft™ FV pairs
Output:
e H homography matrix parameters calculated
using the RANSAC algo.
e Panoramically stitched UL-Sjq- FMs using H
matrix Feature-registration.
2. fori=0to N do

3. randomly select a subset(R*) of 10 {p,q}FVs pairs
from UL-Sp/’P4 super set

4. compute homography H parameters using S.V.D and
Direct linear transformation on R*{p,q}

5. fix K = specific range constant and FV,,q are feature
vectors belong to respective {pi} {qi} R*{p, q} set

. if S.8.D(FVy) HFV,)<K then
calculate plausible FV-inliers

6
7.
8. else
9
0
1

. continue
10. end if
11. Structure a key-value map with “i” as key and plausi-
ble FVA-inliers as value
12. end for

13. Compute least-squared H-params error value for all
values present in N-iteration keys using FVp ||

14. H = min ({|H*FV, —FV,|},); where ie[0O.N] i.e
fix the final homography parameters based on ix
H-parameter’s least squared error value calculated in
above step-9

15. Perform feature-registration using step-10’s H homog-
raphy matrix

16. for j =0 to (N*/2xM/2) do

17. UL-STpr are panoramically stitched/ registered
Feature maps

18. UL-8% /]

19. end for

20. return (UL-8'FT, H)

21. end

= H.UL-8r[j]

Based on the above-discussed F-Mat*() Algorithm,
UL-8pr feature maps along with the matched pairs of
UL-87] feature vectors are all-together passed to the
F-Mat*() function, internally in this function/algo an opti-
mal H-Homography matrix [44] is estimated for performing
UL-8Fr feature registration. The final output of this F-Mat()
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function is a feature-registered initial raw panoramic feature-
maps (UL-87 FT). These UL-87 FT FMs are transferred to
the decoder network via Cg lateral connection. The UL-87 FT
FMs along with BL-11 FMs(of encoder network) are passed
to the decoder network for panoramic reconstruction. Addi-
tionally, under some rare scenarios(if the extracted or raw
features/FMs between input 1, r-stereo images are extremely
noisy, highly non-homogeneous/non-continuous) where none
of the feature vectors in present in the 1, r-sub-feature maps
are matched to each other, then in these cases we just simply
concatenate the 1, r-sub-feature maps laterally and then pass
these appended FMs to the decoder network via C6 lateral
connection.

1) DESCRIPTION OF L,R-PanoED NETWORK's

DECODER ARCHITECTURE

The decoder network of lr-PanoED architecture (Fig. 3)
has 12 decoding layers(BL-12 to BL-23). The decoder net-
work increases the spatial resolution of the feature maps
while simultaneously decreasing its no. of FMs(depth), i.e
the 2D-Deconv operations adaptively distributes the feature
units among i layer’s FMs by increasing its resolution
and simultaneously decreasing its depth with minute spatial
and temporal pattern occlusions and losses. Our proposed
decoder network follows a single stream decoding method-
ology by applying 2D-Deconv [35], 1*1_2D-Conv [34],
BN [36], PReLU [37] operations. In this article, we apply
2D-Deconv operations to FMs similar to U-net [45] and FPN
networks [46], but we do not crop any features in the resulting
FMs, and instead keep the FM resolutions 4 spatial features
as it is, so that the borders and extreme features present in the
input 1,r-stereo feed remain intact during the reconstruction
process, and the overall feature co-occurrence isn’t disturbed.
Moreover, we do not store any pooling indices to apply
up-sampling(un-pooling) + De- Conv operations (like in
De-Convnet [47] & Segnet [48]) because we need to maintain
our 1,r-PanoED to be storage efficient and responsive during
live-inferences(less-latency). The BL-12 of the decoder net-
work has 2098 FMs and are generated by applying sequences
of operations.

PReLU(BN(1*1_2D — Conv(1*1_2D
—Conv(1*1_2D — Conv(3*35p

—DeConv(Co|UL — 8%,))) @ (1*1_2D
—Conv(3*3,p — DeConv (BL — 11)))))) (6)

In the BL-12 decoding layer (Fig. 3), feature maps from
UL-SITFT via Cg are Deconvolved to increase their resolu-
tion, and then a 1*1_2D-Conv() is applied to modulate the
depth of Cg de-convolved FMs, parallelly final FMs from the
BL-encoder(BL-11) are also Deconvolved+1*1_2D-Conv
(BL-11); now these 2 FMs from BL(BL-11) and UL(UL-8)-
encoders are feature concatenated(), and the resulting con-
catenated features are reduced to % in depth by applying
1*1_2D-Conv operation, now these extracted feature units

are batch normalized(BN) [36] and then passed through the
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PReLU activation function [37] to get final BL-12 FMs.
For the decoder network of L,r-PanoED we pass FMs from
both UL, BL-encoder networks because, FMs from the
UL-encoder contain panoramically stitched raw FMs, and
FMs from the BL-encoder contain fine-tuned extracted bot-
tleneck features, these bottleneck FMs contain latent rep-
resentations of every object present in the input image,
So by concatenating these both UL, BL FMs we can encode
input pattern’s latent co-occurrences while maintaining its
Spatio-temporal coherence throughout the O’ -reconstruction
process. Rest of the convolutional feature layers in the
decoder network are generated by applying either one of these
DL!N,M or DL2N,.M sequences of operations(refer to ).

L = DL,IVYM (Li—1) = PReLU(BN(N*M _2D
—DeConv(Li_1)))

L = DLIZV,M (Li—1) = PReLU(BN(N*M _2D
—Conv(Li-1))) (N

The BL-13 convolutional decoder layer has a total
of 2098 FMs and they are generated by applying
DL23,3(BL—12) sequence of operations. Each of the BL-14,
BL-15, BL-16 Feature layers have 768 FMs individually and
are generated by applying DL!3,3(BL-13), DL?3,3(BL-14),
DL?3,3(BL-15) operation sets respectively. Similarly, BL-17,
BL-18, BL-19 FLs have depths of 384FMs and are gener-
ated by applying DL!3,3(BL-16), DL?3,3(BL-17), DL?3,3
(BL-18) sets of operational sequences respectively. BL-20,
BL-21, BL-22 are the primary feature reconstruction layers,
where the feature maps present in these layers contain fea-
tures & patterns which are almost relatable to the features &
patterns present in stereo input Lr images. BL-23 decoder
network layer closely interpolates objects/patterns present in
the extracted feature maps correlative to the GT panoramic
images present in the training dataset. BL-20, 21, 22, 23 and
O" have identical width and height(W’xH’) dimensions,
here W’xH’ < (N14+N2)xmin(M1,M2); where N1xM1 is
the input L-stereo image dimension, N2xM2 is the input
R-stereo image dimension and m = min(M1,M2). At the start
of BL-20 Feature layer, we interpolate the BL-19 FMs to
W’XH’ dimension using the bi-cubic interpolation method
and later perform a fine-tuned feature extraction process.
BL-20, BL- 21, BL-22 layers have 256, 128, 128 FMs
respectively, and the decoder network’s BL-23 feature layer
has 64FMs, each of these BL-20-23 feature layers are gen-
erated by applying DL'5,5(BL-19), DL?3,3(BL-20), DL?3,3
(BL-21), DL?3,3(BL-22) respective sequence of operations;
and O” is the final panoramically stitched output generated
by the proposed 1,r-PanoED network. O ** has 3 [R, G, B]
feature layers and are generated by applying DL?33
(BL-23) sequence of operations. As discussed above 2-stride
2*2-Max-pooling() operation [38] is used for FM dimen-
sionality reduction to efficiently optimize the 1,r-PanoED
params(primarily to BL, UL-encoder layers). BL-1, BL-3,
BL-5, BL-8, UL-1, UL-3 layers in the 1,r-PanoED network

are dimensionally reduced to % using 2-stride 2*2-Max
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Pooling operation. Generally, the Max-pooling operation is
only applied after performing fine-tuned feature extraction
at respective layers. For UL-5 layer in the UL-encoder,
a 2*2-max pooling with stride-1 and padding =2 is applied
to refine its previously extracted FMs for optimal generation
of semantically dense feature-units in the UL-8rr FVs,
for robust Feature matching & F-Mat*() feature registra-
tion operations [24], [25], [31], [39], [40], [43], [44]. The
L,r-PanoED network’s final output (i.e panoramically stitched
raw image, Fig. 4 (e)) O” is sent to the post-processing
module to yield a final fully processed panoramic image O
(Fig. 4 (f)) with minimal reconstruction loss, occlusion &
pattern distortions even on non-homogenous stereo input.
We have optimized our L,r-PanoED network using a custom-
built loss function(Ly,g,,), which dynamically considers
the reconstruction + panoramic-stitching loss of both Lr-
PanoED’s raw panoramic image(O’’) and the post-processed
final panoramic image(O) to penalize the entire Lr-Stitch unit
& Lr-PanoED network to yield robust and optimal results.

D. POST-PROCESSING MODULE

The Post-processing module involves 3 primary substeps
which are 1) applying gain compensation [11] operation on
O” image, 2) performing Modified-poisson-blending oper-
ation [24], [49]-[51] on the gain-compensated O’ image,
3) finally applying texture correction operations for edge
refinement & image fine-tuning [24], [31]. The 1,r-PanoED
network’s output O” image contains irregular illumination
patches near the stitched areas(generally in the center of
the stitched image) (Fig. 4 (e)). These irregular illumination
patches are due to the differences in lumination intensities
between the 1,r-stereo input image feed. To tackle these non-
coherent illumination flows and lighting artifacts in O”.
We apply gain compensation [11], [24], [31] operation on
the O’ panoramic stitched image, to introduce a homogenous
intensify function throughout the O’ image(where the center

1 n n
e=32.2 N

i=1 j=1

> L) > L)\’
u; €R(i.j) ujeR(/,y)
8i- ST gj- T
u; €R(.J) uj€R (i)
10
(1—g)?
e ®)

Gain compensation operation is necessary to eliminate image
artifacts in the stitched mosaic O, these artifacts are gen

erated during the FVs matching phase in F-Mat*(UL-8/:7 o
UL-8Fr) operation, and also during the recon- struction of
panoramic mosaic from BL-12 FMs in the decoder network
of Lr-PanoED. In the gain compensation operation, we min-
imize the normalized total gain error(‘‘e”) with the help of

gain-vectors “g;” & g;”’ () This “e” error minimization is
applied on the overlapping region(R) of the O ” panoramic
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stitched mosaic i.e R(i,j); here n = 1 and i, j represents the
stereo image segments(I;, Ip) which are stitched together
to form a mosiac; we restrict the n value to 1 because the
proposed Lr-Stitch Unit can only processes pair of 1,r-stereo
images in a single instance/iteration. Ny > (i.e N; ; is the count
of the total number of pixels belonging to an overlapped
R region in O”’). Now the normalized ‘““¢” error function
is minimized by equalizing its respective derivative (d(e))
to 0. After minimizing the “‘e” function, we get a set of gy,
g>-gain-vectors for adjustmg the brightness/intensities of
overall pixels present in O”. This intensity adjustment is
done by multiplying the current intensity value of a pixel at
respective i, j” location with the corresponding g;, g» gain
vectors. After performing gain compensation to O”” we again
apply a robust blending operation [49]-[51] to minimize
ghosting artifacts, registration occlusions and edge/pattern
distortions(primarily in the 1, r-intersection area of O’’). The
objective of applying a blending operation is to implement
a seamless image cloning operation to make the final O
panoramic image close to ground truths.

\ldivv—Af|[3dt |P—£113dt
E= / e / ©)
T T

In this proposed article we have chosen Modified-Poisson-
Blending(MPB) method [49] in the post-processing module
for performing seamless image cloning based on a bench-
marking analysis concerning other alternative blend- ing
methods. In the Modified Poisson Blending(E) the original
poisson energy function [51] is tweaked by adding an extra
color-preserving parameter(e)(Equation (9)). Div v is the
divergence operator for v vector field and Af is the laplacian
of constructed image and P, f are the vector-representations
of the composed and constructed images respectively; and
finally T represents the continuous dt segments ranging from
0 to dim(O) of the whole image. The color-preserving param-
eter controls the color adaptation level during the blending
operation. The backdrop of implementing a normal poisson
blending is that the colors in the source image will be com-
pletely adapted with respect to the target image. To overcome
this disadvantage MPB method is proposed in which the rate
of seamless color gradient-field cloning can be controlled by
£ parameter.

FPu,v]
_ pper _ Lol Dl — e.12sT (10)
Coowvy o yLDT _ g
u,v

FDCT

N—1M-1

— Ve L L ADAG.
i=0 j=0

cos[E —(21+1)] cos [%.%(Zj—i—l)] f£G. ) D

Here A(x) = 1/1.41, if (x = 0) otherwise x = 1. Moreover,
the MPB method [49] is computationally effective and per-
forms robust image cloning in majority of the cases with
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optimal PSNR,SSIM values [24], [31], [52]. In the pro-
posed paper we perform seamless image cloning/blending in
the intensity-frequency domain where the image vector and
laplacian kernel are converted into a frequency domain using
() discrete-cosine-transformation(FT i, v). The E function in
the original MPB operation is converted into PP7 4,y in the
frequency domain. In FP< 4,y DCT function, f(i,j) represent
the original intensity value present in the Iy 3/ image at i,
j’h location and i, j values range from O to N, M; where N,
M are the dimensions of the DCT function’s input image I.
FP is the final blended panoramic image which is generated
by computing the inverse transformation of PP7 y,y. LoIP¢T
is the DcT transformation of the laplacian of O’ image. ¢ is
the color-preserving parameter and we have set this parame-
ter’s value to 102 during our implementation/inference. I°T
is the DcT of raw O intensity image, and LP¢7 is the DcT
transformation of a laplacian operator used in PPT operation.
As discussed above, after calculating the inverse of poeT
vector we get the final poisson blended image O with minimal
ghosting artifacts, edge/pattern/color distortions, occlusions,
and the resulting post-processed image O has high PSNR,
SSIM [52] values when compared to its respective ground
truth 0T images. The MPB blended O image is further
fine-tuned in the post-processing module’s texture process-
ing method to remove noise,blurring artifacts, and make the
final fine- tuned O panoramic image look more natural and
similar to OY7 . In the texture processing methods [24], [31]
O is convoluted with a median filter to remove higher-level
noise, and then we apply wiener filtering to minimize motion
blurring artifacts, and finally we apply a image sharpening
operation using robustly computed high pass filters. The tex-
ture processing method’s fine-tuned O panoramic view image
(Fig. 4 (f)) is the final robust output generated by the l,r-
Stitch Unit by consuming homogeneous or nonhomogeneous
synchronized stereo 1,r input images. Panoramic images(O)
generated by a single 1,r-Stitch Unit using 1,r-PanoED net-
work has best performing benchmarking scores (SSIM,PSNR
values wrt O°7T) in both wild and non-wild conditions when
compared to other panoramic-stitching methods (Fig. 9,
Tables 1, 2, 3, 4 and 5). The Inference time/ latency time
consumed by our proposed 1,r-Stitch Unit for processing 2
720P-left,right images is ~920ms, inference time required
for stitching 2 1080P images is ~1450ms, and to stitch 2 2K
images is ~ 2310m:s.

E. ULTRA-WIDE PANORAMIC VIEW STITCHING STRATEGY

Based on the above-discussed methodology and techniques a
complete 1,r-Stitch Unit can be constructed, in which Lr stereo
images are passed as input to the L,r-Stitch Unit to generate a
robust and reliable panoramic stitched image. The proposed
Lr-Stitch Unit runs on-live with low latency time for HD
inputs(720p,1080p) videos. Our proposed methodology can
also perform Ultra-wide view panoramic stitching(>180°) on
continuous sequences of input images via camera arrays [12].
Refer to [12], Figs. 2 and 5 for the proposed pipeline followed
during the continuous stitching of multiple 1,r-stereo input
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image pairs. Generally, this sequential panoramic stitching is
used in mobile phones [7], 3D surroundings recreation, etc
where the user has to capture an entire ~360° view of external
surroundings. The proposed Lr-Stitch Unit is highly modular
and can be instantaneously plugged-in with other units based
on-live sequential images requirement(i.e based on amount
field of view(®?) to be covered). We can roughly estimate
the number (“N’*) of independent Lr-Stitch Units required for
covering ©° using.

K
N = Z i; where K
i=1
Y {no.of sequential camera frames}| X63.5
N 116

Generally, ®° = (|{no. Of sequential camera frames}|-
2)*63.5; here 63.5 is the average approximate field of view
range covered by a normal single lens smartphone; N value
may change when aperture, focal length values of a particu-
lar smartphone drastically differ from general smartphone’s
values(i.e phone-cameras with dual, triple, wide, macro view
camera lens), but the end-user can manually append the
N Lr-Stitch units to the inference pipeline dynamically
based on the (®°) requirement. During the PSNR, SSIM-
benchmarking [52], and experimentation hypothesis we have
observed that our proposed Ultra-wide view panoramic stitch
methodology(with N modular 1,r-Stitch Units) yields reli-
able results with optimal PSNR, SSIM [52] values when the
required input ®° is in between [00, 2750] range, i.e when the
input sequential camera frame count in the memory buffer is
of [2], [6] range. Fig. 5 represents an inference pipeline sce-
nario where the proposed Ultra-wide view panoramic stitch-
ing module covers ~250° FOV range. So in Fig. 5 (top) case,
6 sequential camera frames (or 3 pairs of 1,r-stereo inputs) are
passed to the proposed image-stitching module for process-
ing, and to stitch these 6 input camera sequences the proposed
method require N Lr-Stitch units to generate an ultra wide
view (Here N = 6 based on). These 6 L,r-Stitch units are inde-
pendently pooled according to the proposed Fig. 5 pipeline.
Finally, these are the steps, methods, techniques involved in
the proposed module for generating reliable panoramic views
from given input image sequences. Next section details about
Lr-Stitch unit’s proposed loss function.

)](12)

F. LOSS FUNCTION

Lop.y
n 1 N M
— GT
=2 (g 22 2 107 (nm)
=1 n=1 m=1

1 N M
—0{ (. m) + B> Y (07T (n, m)
NM n=1 m=1

—0y(n, m)*) + y.(1 = SSIM(OFT, 0)))  (13)

To optimize the above-discussed Lr-Stitch Unit (specifically
L,r-PanoED network, Fig. 3), we have introduced an Ly g,
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FIGURE 5. Architectural overview of the ensemble-tree created by effectively grouping “N" several
modular |,r-Stitch Units together for performing Ultra-Wide panoramic stitching operations, this

figure also illustrates a live inference on a sample test-case which consists of 3 input image sequences.
Refer to Figs. 1 and 10. For more examples(generated by the proposed method) on ultra-wide

panoramic stitching operation.
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FIGURE 6. A brief performance comparison between the
results(respective panoramic stitched) generated by the proposed
Lr-Stitch unit & SIFT method. Where (a), (b) are the sample input |,r-stereo
image sequences(taken from the test-dataset). (c), (d) are the final
panoramic stitches generated by the SIFT method. (e), (f) are the final
panoramic stitches generated by the proposed method.

loss function (Equation (13), (14), (15) and (16)) which
cumulatively sums MSE, SSIM [24], [31], [52] loss values
of both raw(O*), proposed(O) 1,r-PanoED outputs compared
to the ground truth panoramic images (O®T) belonging to
both training, validation datasets. In Ly g, loss function
the cumulative summing of MSE(O”, O¢T), MSE(O, O¢T),
SSIM(O”, OST) loss values is based on adaptively tweak-
able {«, B, y} weights, these weight values can be adjusted
dynamically to adapt the penalizing rate of Ly g, for better
performance during the validation test & on-live inference.
Performance(i.e MSE, PSNR, SSIM, Ly g ,) plots of the
proposed method during the training and validation phases
are illustrated in Fig. 7.

2.0¢T.0] +K,
(0F7) + (07) + K,
2.CoVr (0¢T, 0)) + K>

2GT
o’

ssm (07, 0f) =

; where
2/
(o}

+0°", + K>
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220G ))
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NM
N M )
>3 (01 ) — O
0?.2 _ (!:lj:l ) (14)

NM

We calculate the Mean Squared Error of both raw and post-
processed 1,r-PanoED network’s result, and additionally we
also measure the Structural Similarity Index between O¢T
and O (raw-1,r-PanoED output), and then the error, similarity
scores are normalized to make them suitable for including
in the Ly g, loss function. “n” in Ly g, loss function
represents the total no of training and validation samples
considered during the training and evaluation phase of the
Lr-PanoED network. N, M are the dimensions of respective
0¢T, 0”, O panoramic images. In SSIM(O®T, 0”) func-
tion CoVr(O%T, 0”) represents [40] the covariance estimate
between 0T, O panoramic images, 0 represents the mean
value of Oy p» image and 0°? measures the variance value
of Oy » panoramic image. «, 8, y weight values are deter-
mined using the Bayesian optimization function [53] (for
hyper-parameter optimization) with a set of constraints, i.e
where 0 > o < 1,0 > 8 < 1,0 > ¥y < 1 and
o+ B+ y = 1. The «, B, y value’s Bayesian optimization
operation is performed on a sample test-dataset which is a
subset of our custom-built dataset (details about our custom-
built dataset are detailed in the next section). Next section
details about 1,r-Stitch unit’s training details, benchmarking
analysis, experimentation, and results of our proposed wide
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FIGURE 7. (a)-(f) are the MSE, PSNR, L, 8, y, SSIM plots of the proposed I,r-PanoED network during training,
Validation phases. Where (a) is the MSE, PSNR values plot of |,r-PanoED’s {0”, OGT} during the 15,000 epochs
training phase. (b) is the MSE, PSNR values plot of I,r-PanoED’s {0",067 } during the 15,000 epochs validation
phase. (c), (d) are the MSE, PSNR values plots of I,r-PanoED’s {0,067} during the 15,000 epochs training,
validation phases respectively. (e) is the Lo, 8, y value plot of |,r-PanoED network during the 15,000 epochs
training, validation phases. Similarly, (f) is the SSIM plot of I,r-PanoED during the 15,000 epochs training,

validation phases.

view panoramic stitching module.
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(15)

V. TRAINING & EXPERIMENTATION DETAILS
Based on the previous discussions about l,r-PanoED net-
work’s architecture and custom loss function (Lgyg, )
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(Equation (16) we train the entire Lr-Stitch Unit accordingly
with corre- sponding hyper-parameters to generate realistic
and reliable output panoramic images(O) with high PSNR,
SSIM[52] values compared to other panoramic/image stitch-
ing methods. This proposed image stitching method is trained
to generate optimal results even on non-homogeneous, wild
Lr-input stereo images. In 1,r-Stitch Unit, the stereo lateral
concatenation module acts as a fixed pre-processing unit
for generating I” inputs for the Lr-PanoED network, and
the Post-processing module performs fixed fine-tuning oper-
ations for further refinement(using image processing tech-
niques) of the L,r-PanoED’s raw generated output(O’’). For
training and optimizing the 1,r-Pano-ED network present in
the 1,r-Stitch Unit, we have used an ensemble of multiple
public datasets & our custom-built dataset.> Adobe Panora-
mas Dataset,* Sun360 [54], Pano-RSOD [55] are the public

3The custom-built-dataset “left-right synchronously stereo-paired Indian
on-road-traffic” dataset is liscenced, and is subjected to no-objections(under
govt. permission and regulatory) during capturing.

4Open Sourced at “https://inst.eecs.berkeley.edu/~cs194-26/fal8/upload
/files/proj6B/cs194-26-aeh/website/”
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datasets used for training; and IITA Panorama’ [22], Casual-
stereoscopic-panorama stitching [56] are the public-datasets
which are used only for testing and validation purposes.
In addition to the public datasets used, we also train and
validate our proposed 1,r-PanoED on our inhouse built custom
dataset, which is a collection of raw left, right stereo images,
and ground-truth wide view panoramic images which were
captured outdoors. Our custom-built dataset consists of out-
door recordings at 10 different geographical locations(total
recordings/video-dataset duration is 200" mins). The dataset
repository consists of 4 main directories:

o raw-left video frames(extracted from videos captured
through left-camera),

o raw-right video frames,

« raw-left, right video recordings,

o ground-truth Panoramic/wide view images(extracted
from video captured through a camera with 150° wide
lens

The extracted-left, right video frames/images have
1920 x 1080 resolution with a total count of 267,300"
images. 135,000" GT Panoramic view video frames are
present in our custom-built dataset with a resolution of
~2150 x 900 px. To increase the reliability and diversity
of the proposed method. We have sampled over 10,000 raw
panoramic images present in our custom-built dataset, and
these sampled 10,000 panorama images are now manually
stitched using the ORB image stitching [8] mechanism to
further create ultra-wide panoramic views with resolutions
of ~3920 x 850px. Now, the public datasets along with
our-custom built dataset(along with sampled ultra-wide vide
panoramic images) are ensembled together and fed to the
proposed L,r-PanoED to train rigorously for generating robust
panoramic images(O”’).

2552
PSNR = 10Xlog,| —— (17)
393 [0G,j)—05T (i,j)I?
i=0 j=

m.n

During training the left, right stereo images inputs are manu-
ally paired with the corresponding ground-truth panoramic
view image, and in such manner, an over-all 95,000 sam-
ples are paired(including custom-built and public datasets)
to train the 1,r-PanoED network. Similarly, 7,500 samples
are paired for testing and validating purposes. Based on
the above-curated data we train the 1,r-PanoED network for
15,000 epochs with a batch-size of 64. Ly g, is the loss
function used to estimate cost/error value during each epoch,
and we optimize the estimated loss/error value using the
Adam optimizer(with a momentum of 0.9 & weight-decay
of 0.0005). We have initialized the a; learnable parameter
in PReLLU activation functions [37] to 0.2 value for faster
loss function convergence. Learning-Rate is fixed to a value

5Open Sourced at “https://www.iiia.csic.es/~aramisa/datasets/iiiapanos.h
tml”
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of 0.0002, and all the initial-weights of the 1,r-PanoED net-
work are randomly assigned based on a zero-mean-centered
gaussian distribution [24] with ¢ = 0.015. The above-
mentioned training hyper-parameters are determined &
optimized using the bayesian hyperparameter optimization
technique [53]. The hardware configuration used in this arti-
cle during training, validation, testing, and benchmarking
phases is an Intel i7-9" gen processor coupled with NVIDIA-
GTX-1070 GPU. We have employed a single-phase training
strategy for the proposed method. The following figures detail
about L,r-PanoED network’s performance during the training
and validation phases.

I,r-PanoED network's validation "L_aBy" loss value comparision when
other alternative feature similarity functions are used in p,q-UL-8*FT()

a0 Validation L_apy loss value plot with
o CORRELATION dist as feature similarity function
£ a0 Validation L_apy loss value plot with
29 EUCLIDEAN dist as feature similarity function
©
s Validation L_apy loss value plot with
% 30 MINKOWSKI dist as feature similarity function
>3 Validation L_apy loss value plot with
5 3 50 COSINE dist as feature similarity function
-
&>
i
- 10

B
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FIGURE 8. Performance comparison of |,r-PanoED network with other
alternative similarity functions being used in the F-Mat* (UL-*) algorithm.
The alternative similarity functions used in this analysis are CORRELATION
distance(preferred in this article), EUCLIDEAN distance, MINKOWSKI
distance, COSINE distance. The above performance analysis is based on
L,r-PanoED’s L,g, loss values during the 15,000 epochs validation phase.

Fig. 7 (a) details about {O”, 06T} MSE, PSNR [52]
values plot against 15,000 epochs in the training phase, i.e
this plot illustrates the error difference between l,r-PanoED’s
raw output(O”) and the ground-truth O¢7 images for every
training epoch(0-15,000). Similarly, Fig. 7 (a) details about
{O”,OGT} MSE, PSNR values plot against 15,000 epochs
during the validation phase. Fig. 7 (c), (d) illustrates the
mean-square-error, PSNR between 1,r-Stitch Unit’s post-
processed output(O) and ground-truth(O®T) image pairs for
every epoch(1-15,000) in both training, validation phases
respectively. Fig. 7 (e) details about lr-Stitch unit’s loss
value plot for 0-15,000 epochs in both training, validation
phases. Similarly, Fig. 7 (f) details about structural simi-
larity index(SSIM) between {O, O¢T }& {O”, 0T} pairs
for 0-15,000 epochs in both training, validation phases.
Finally, Fig. 8 shows the performance comparison of 1,r-Stitch
units when different similarity functions are used in the
feature stitching operation (p,q-UL-877*()) in the 8”-FL of
L,r-PanoED’s UL encoder network. Different similarity func-
tions considered during the benchmarking analysis are Cor-
relation distance(implemented in this article) [40], Euclidean
distance [57], Minkowski distance [58], Cosine distance [59]
functions.

As our proposed method primarily focuses on perform-
ing robust image stitching operation on non-homogeneous
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FIGURE 9. (a)-(n) are sample input image sequence sets along with their corresponding
panoramic views stitched. These sample images are randomly chosen from the test dataset
(the test dataset is a fragment of our custom-built traffic dataset). (a), (c), (d), (g). (h), (k), (I)
are the input image-sequence sets, and (b), (e), (), (i). (), (m), (n) are their respective
corresponding generated panoramic views. Each of these input image sets has at-least one
non-homogeneous variance property among them. Refer to Tables 1, 2, 3, 4 and 5 for a
detailed benchmarking analysis of our proposed method under these test wild conditions.

wild input stereo images, therefore we have mainly focused
on discussing the performance and results of our proposed
method on wild non-homogeneous inputs. Tables 1, 2, 3,
4 and 5, Fig. 9 discussion will primarily focus on the perfor-
mance evaluation of our proposed method in multiple wild
conditions and some sample results. Here in this section
we compare and benchmark our proposed method along
with other image-stitching mechanisms(SIFT [13], ORB
[8], KAZE [14], BRISK [15] & SURF [16]) with 4 main
evaluation criterias, i.e PSNR, SSIM, Avg. Latency Time
[52], Feature-Matching rate.® All the above-stated image-
stitching modules [8], [13]-[16] along with ours are sub-
jected to multiple wild conditions, and the performance
of each method is recorded in these wild conditions and
evaluated. Five different wild conditions are considered for
this benchmarking analysis, namely 1) Rotational Variation,
2) Resolution & Orientational(portrait & landscape) Vari-
ation, 3) Salt & Pepper Noise, 4) Manipulating % of
common/matching area between input stereo images and

6Feature—Matching rate = Average((total no. of matched features/no. of
features detected in left input-image), (total no. of matched features/no. of
features detected in right input-image))
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5) Color & Lumination/Intensity variation. Each table below
(Tables 1, 2, 3, 4 and 5) details the performance eval- uation of
all image-stitching modules(including 1,r-Stitch Unit) under
a specific wild-nonhomogeneous condition. All these wild
conditions are modeled at multiple scales or levels for bet-
ter performance analysis, and also to measure the sensitiv-
ity of each method under each wild condition at different
levels/scales.

We have benchmarked Tables 1, 2, 3, 4 and 5 methods
on our custom-built dataset, where we have manually sam-
pled 2,500 pairs(left, right & GT panoramic images) for
this benchmarking test dataset. These 2,500 samples from
the test dataset are further divided into 5 sub-categories
(~500 images for each), where each sub-category con-
sists of test images modeled according to their respective
wild condition(i.e rotation, noise, lumination variance, etc.).
Now the 500 samples of each wild conditions are even
further split into groups of various scales (according to
Tables 1, 2, 3, 4 and 5); for example, scales present in
rotational angle variation wild condition (Table 1) are “Q0,
10°, 20°, 302, 459 and now the 500 categorized samples
of this respective wild condition are split into 5 different
groups, where each group contains ~100 test-image pairs
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TABLE 1. Details about Benchmarking analysis-1. In the benchmarking
analysis-1, we thoroughly benchmark the proposed method (l,r-Stitch
Unit) along with other alternative image-stitching methods (SIFT [13],
ORB [8], SURF [16], KAZE [14], BRISK [15] (refer to Column 1)) on a
“rotational-variance-wild-condition” dataset. In this benchmarking
analysis, we evaluate the performance of each image-stitching method
based on PSNR, Mean SSIM, FM-Rate evaluation-metrics (Column 2).
Images present in this rotational-variance-wild-condition dataset are
skew rotated to either of (0, 10, 20, 30, 45) rotational scales/degrees
(Column 3 to Column 7); an even distribution of data is maintained for
each rotation-scale during the benchmarking analysis-1.

Methods Evaluation Metric Y 109 200 300 450
Rotational Variance
PSNR 4553 3774 3315 2831 2412
SIFT Mean SSIM 73.62
FM Rate(%) 89.68 7551 66.99 57.92 50.04
PSNR 48775 4358 40.02 3507 3048
ORB Mean SSIM 86.55
FM Rate(%) 95.68 86.71 79.98 70.05 61.38
PSNR 46775 4046 3534 306 28.68
SURF Mean SSIM 78.72
FM Rate(%) 91.81 80.07 71.09 6237 58.12
PSNR 41.58 3496 2896 24.6 21.58
KAZE Mean SSIM 71.13
FM Rate(%) 87.27 7416 6199 5373  47.69
PSNR 4502 3971 365 3226 28.05
BRISK Mean SSIM 83.85
FM Rate(%) 93.9 82.87 77.14 68.79 60.03
PSNR 46.68 44.02 40.73 3717 3281
Ours Mean SSIM 88.82
FM Rate(%) 9745 9131 84.72 78.14 69.89
Processing Latency
SIFT 1.1402
ORB 1.1619
ilil;}]; Avg. Latency Time (1)2:(3);
BRISK 1.1742
Ours 1.1685

which are rotated according to their reactive i’ scale’s §°
rotational angle. Similarly, the 500 samples of each wild
condition are grouped and modeled accordingly. Now the
157 test-condition(Table 1) “Rotation angle variation” con-
tains test-samples in which either of the input left, right
stereo images are rotated in 69 clockwise or anticlockwise
direction respectively accord- ing to 0°, 10°, 20°, 30°, 45°
scales. The average latency values mentioned in Table 1 are
the global average values of processing-latencies taken by
a specific method in all of the wild-test conditions(i.e on
all 2,500 test samples) during the benchmarking analysis.
21d test-condition(Table 2) “ resolution-scale variation”
and “‘variations in Orientational difference” contains test-
samples in which input left, right stereo images are either up-
scaled or down-scaled w.r.ti”* scale’s (0.25x,0.5x,0.75x,1.0x)
scaling-factor, and this test-condition also consists of test-
samples in which the orientations of input stereo images
are altered(either to portrait or landscape and vice-versa).
37 test-condition(Table 3) “Applying Salt & Pepper Noise”
[24], [31] contains test-samples, where salt and pepper
noise has been manually added to input stereo images
based on i scale’s(5%, 15%, 30%, 45%) noise concen-
tration. 4" test-condition(Table 4) “Manipulating % of
common/matching area”, contains test-samples which
are manually analyzed for categorization into respective
groups((0-5)%, (5-10)%, (10-20)%, >20%), in which each
specific group contains input left, right stereo images with
similar common/matching area between them. The final test
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TABLE 2. Details about Benchmarking analysis-2. This benchmarking
analysis is divided into two parts (1:variations in resolution-scale & 2:
variations in orientational differences). Here, we thoroughly benchmark
the proposed method (I,r-Stitch Unit) along with other alternative
image-stitching methods (SIFT [13], ORB [8], SURF [16], KAZE [14],

BRISK [15] (refer to Column 1)) on a “resolution-scale/Orientational
variance wild-condition” dataset. In this benchmarking analysis,

we evaluate the performance of each image-stitching method based on
PSNR, Mean-SSIM [52], FM-Rate evaluation-metrics (Column 2). Images
present in the resolution-scale variance wild-condition dataset are either
up/down -ampled based on the resize-interpolation scale (0.25x, 0.5x,
0.75x, 1.0x) (Column 3 to Column 6); and every image in the Orientational
variance wild-condition dataset is randomly flipped to

landscape or portrait orientation; an even distribution of data is
maintained for each resolution-scale & orientation during the
benchmarking analysis-2.

Methods Evaluation Metric  0.25x  0.5x 0.75x  1.0x
Variations in resolution
scale
PSNR 2495 2995 3395 41.67
SIFT Mean SSIM 71.68
FM Rate(%) 54.84 6381 7223 86.67
PSNR 31.55 3643 39.58 44381
ORB Mean SSIM 85.59
FM Rate(%) 67.06 77.01 83.6 92.54
PSNR 27.58 3234 364 42.51
SURF Mean SSIM 76.68
FM Rate(%) 59.19 6832 77.09 88.55
PSNR 23.13  27.15 3335 40.18
KAZE Mean SSIM 68.38
FM Rate(%) 50.55 5885 71.08 84.02
PSNR 3056 35.15 3794 4372
BRISK Mean SSIM 80.58
FM Rate(%) 65.62 74.09 7993  90.77
PSNR 3548 38.69 4225 4554
Ours Mean SSIM 90.97
FM Rate(%) 75.1 81.62 88.6 94.33
Variations among Orientational Differences (portrait,
landscape)
PSNR 39.73
SIFT Mean SSIM 74.71
FM Rate(%) 83.84
PSNR 43.86
ORB Mean SSIM 86.81
FM Rate(%) 92.2604
PSNR 40.85
SURF Mean SSIM 78.03
FM Rate(%) 87.216
PSNR 37.01
KAZE Mean SSIM 68.28
FM Rate(%) 78.162
PSNR 42.06
BRISK Mean SSIM 83.69
FM Rate(%) 89.973
PSNR 44.98
Ours Mean SSIM 92.38
FM Rate(%) 96.0186

condition (Table 5) “color/intensity variation” contains test
samples in which hue, saturation co-variations & lumination/
intensity differences are manually induced in between the
input stereo images, the variations applied among these
input images are modeled according to low, medium, high
factors(i.e low factor refers to lower intensity variations
among input test-cases, and high factor refers to higher
intensity, color variations among the stereo inputs). Based on
a detailed analysis of observations and results illustrated in
Tables 1, 2, 3, 4 and 5 and Fig. 9, the order of perfor-
mance in terms of image-stitching quality & feature mapping
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TABLE 3. Details about Benchmarking analysis-3. Here we thoroughly
benchmark the proposed method (1,r-Stitch Unit) along with other
alternative image-stitching methods (SIFT [13], ORB [8], SURF [16],
KAZE [14], BRISK [15] (refer to Column 1)) on a
“Noise-variance-wild-condition” dataset. In this benchmarking analysis,
we evaluate the performance of each image-stitching method based on
PSNR, Mean SSIM [52], FM-Rate evaluation-metrics (Column 2). Images
present in this noise-variance-wild-condition dataset are subjected to a
manual addition of salt & pepper noise with 5%, 10%, 20%, 30%
concentrations (Column 3 to Column 6); an even distribution of data is
maintained for each noise concentration category during the
benchmarking analysis-3.

TABLE 5. Details about Benchmarking analysis-5. Here we thoroughly
benchmark the proposed method (1,r-Stitch Unit) along with other
alternative image-stitching methods (SIFT [13], ORB [8], SURF [16],
KAZE [14], BRISK [15] (refer to Column 1)) on a “Color/intensity
variance-wild-condition” dataset. In this benchmarking analysis,

we evaluate the performance of each image-stitching method based on
PSNR, Mean SSIM [52], FM-Rate evaluation-metrics (Column 2). Images
present in this Color/intensity variance-wild-condition dataset are
subjected to color/intensity manipulations on different levels (low,
medium, high) (Column 3 to Column 5); an even distribution of data is
maintained for each manipulation level during the benchmarking
analysis-5.

Methods Evaluation Metric 5% 10% 20% 30%
Variations in amount of
Salt & Pepper Noise in the
input images sequence

PSNR 39.58 3342 252 19.59
SIFT Mean SSIM 69.06

FM Rate(%) 82.62 70.66 54.88 43.86

PSNR 43.05 3737 2951 2528
ORB Mean SSIM 78.42

FM Rate(%) 89.46 78.37 6348 54.89

PSNR 4031 35.09 2834 22.84
SURF Mean SSIM 75.16

FM Rate(%) 84.34 7399 6092 50.52

PSNR 38.58 31.64 2523 18.61
KAZE Mean SSIM 66.92

FM Rate(%) 80.39 67.21 5511 41.78

PSNR 40.06 36.16 2922 24.03
BRISK Mean SSIM 75.41

FM Rate(%) 86.97 76.17 62.58 52.77

PSNR 43.86 4046 33.57 29.52
Ours Mean SSIM 80.36

FM Rate(%) 91.32 84.76 71.48 63.08

Methods Evaluation Metric  Low Medium  High
Variations in colors &
intensities among the

input stereo pairs

PSNR 38.62 29.12 20.35
SIFT Mean SSIM 75.87

FM Rate(%) 87.17 70.08 52.82

PSNR 42.49 35.12 27.74
ORB Mean SSIM 86.29

FM Rate(%) 95.11 80.3 66.15

PSNR 40.81 31.81 23.21
SURF Mean SSIM 79.63

FM Rate(%) 92.071  73.64 58.4

PSNR 3791 28.44 18.62
KAZE Mean SSIM 70.55

FM Rate(%) 86.3 68.25 48.74

PSNR 41.33 33.04 26.05
BRISK Mean SSIM 82.88

FM Rate(%) 92.78 77.03 62.83

PSNR 43.89 38.26 30.05)
Ours Mean SSIM 92.16

FM Rate(%) 98.418 87.82 71.93

TABLE 4. Details about Benchmarking analysis-4. Here, we thoroughly
benchmark the proposed method (1,r-Stitch Unit) along with other
alternative image-stitching methods (SIFT [13], ORB [8], SURF [16],

KAZE [14], BRISK [15] (refer to Column 1)) on a “variable Stereo
match-area wild-condition” dataset. In this benchmarking analysis we
evaluate the performance of each image-stitching method based on
PSNR, Mean SSIM [52], FM-Rate evaluation-metrics(Column 2). Input
stereo Images with different matching/common areas are present in this
variable Stereo match-area wild-condition dataset, and these images are
categorized into either of these ((0-5)%, (5-10)%, (10-20)%, (>20)%)
categories based on matching/common areas in between them(Column
3 to Column 6); an even distribution of data is maintained among each
category for the benchmarking analysis-4.

Methods Evaluation Metric  (0-5)% (5-10)% (10-200% >20%
Variations in % of
matching/common area in-between
the input stereo pairs

PSNR 17.51 22.88 32.95 41.92
SIFT Mean SSIM 61.64

FM Rate(%) 40.33 50.45 70.08 87.81

PSNR 23.64 30.36 39.02 46.11
ORB Mean SSIM 76.82

FM Rate(%) 51.81 65.33 82.12 95.16

PSNR 21.93 25.83 36.23 43.82
SURF Mean SSIM 70.58

FM Rate(%) 48.46 55.66 77.05 91.48

PSNR 16.93 25.32 33.16 40.62
KAZE Mean SSIM 62.53

FM Rate(%) 39.26 54.72 70.26 84.54

PSNR 22.83 28.01 37.98 44.53
BRISK Mean SSIM 73.99

FM Rate(%) 49.8 60.46 79.33 92.48

PSNR 27.64 34.05 41.32 46.81
Ours Mean SSIM 83.07

FM Rate(%) 59.99 71.61 86.82 96.98

capability is “Ours(l,r-PanoED)> ORB [8] > BRISK
[15] > SURF [16] > SIFT [13] > KAZE [14]” and;
“KAZE [14] > SURF [16] > SIFT [13] > ORB [8] >
Ours(L,r-PanoED)> BRISK [15]” is the performance order
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in terms of Avg. Latency speed metric (KAZE [14] requires
the least processing latency, and BRISK [15] requires the
highest processing latency).

Fig. 9 illustrates the final post-processed results of our pro-
posed method on some random input samples taken from the
above discussed benchmarking (Tables 1, 2, 3, 4 and 5) Test-
Dataset. Fig. 9 (a) represents the input left, right stereo images
set with orientational variations between them(portrait &
landscape), and Fig. 9 (b) is the final post-processed out-
put generated by our proposed method for Fig. 9 (a) input.
Fig. 9 (c) contains input stereo images with luminous/
intensity variations(on high factor), along with 10%-noise
induced among them(left & right images have lower and
higher intensities); Fig. 9 (e) is the respective output for
Fig. 9 (c) input. Fig. 9 (d) contains input stereo-images
with low availability of features/patterns and also 10% of
common-area in between the stereo pairs(i.e low availability
of features in input images makes it difficult for the feature
extractor in a specific method to extract relevant features
for mapping & image registration operations); Fig. 9 (f) is
the corresponding output for Fig. 9 (d) input. Fig. 9 (g) left
input image has lower lumination/intensity level compared to
Fig. 9 (g) right image, and Fig. 9 (g) right image is rotated 10°
wrt ground truth horizontal level. Some test samples with an
ensemble of multiple wild-conditions our proposed method
has outperformed other image-stitching methods and gener-
ates phenomenal outputs(refer to Fig. 9 (i); with lesser error
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FIGURE 10. (a)-(n) consists of sample multi-input image sequence sets along with their corresponding ultra-wide panoramic views stitched (using an
adaptive ensemble of “N” modular |r-Stitch Units). These sample images are randomly chosen from the test dataset (the test dataset is a fragment of our
custom-built traffic dataset & other panoramic public datasets). (a), (c), (e), (g). (i), (k), (m) are the input image-sequence sets, and (b), (d), (f), (h). (j).

(I), (n) are their corresponding ultra-wide panoramic views generated {(a), (c), (e), (g). (i) belong to our custom-built dataset and (k), (m) belong to adobe
panoramic dataset}. The multi-image sequences present in the test-dataset cover all possible FOV ranges mentioned in Table 6.

TABLE 6. Performance analysis of the proposed method with multiple FOV (0<0<330) ranged input image sequences as evaluation criteria (refer to
column 1); The performance analysis is performed on the test dataset, where the test datasets is a fragment of our custom-built traffic datasets and other
publicly available panoramic datasets. Column 2 refers to the average resolution of the final stitched panoramic view. Column 3 refers to the average
latency time required by our proposed method for stitching a panoramic view for a respective input FOV ranged image sequence. Column 4 lists the
number of individual modular Lr-Stitch units required to stitch a particular column 1 FOV ranged panoramic view. Column 5 details the minimum and

maximum PSNR, SSIM values scored by our proposed method for a particular column 1 FOV range input image

e. Column 4 details about the
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approximate number of “N"-I,r-Stitch Units required for stitching Column 1 input FOV range.

FOV Range Avg. O’ Resolution  Avg. Latency Time Approx. “N”  {Min, Max} PSNR, SSIM.
00%< 600 ~ 1184x829 1.108 1 {45.18, 45.902}, {89.43, 90.90}
60°< ©%< 1200 ~ 2251 x 968 1.142 1 {46.87, 47.21}, {92.68, 93.35}
120°< ©%< 180°  ~ 3907 x 973 1.726 3 {42.63, 43.22}, {84.27, 85.52}
180%< ©%< 2500  ~ 6498 x 982 1.901 6 {39.27, 40.83}, {77.727, 80.74}
250°< ©%< 3000  ~ 9386 x 985 2.297 9 {35.15, 37.76}, {69.59, 74.77}
69> 3000 ~ 11463 x 979 2.461 11 {30.02, 32.65}, {59.34, 64.57}

deviation & high similarity index w.r.t GT output images).
Similarly, Fig. 9 (k) is also an ensemble of multiple test-
conditions, Fig. 9 (k) right input image is induced with 30%
salt and pepper noise along with lumination/intensity vari-
ations involved, Fig. 9 (m) is the final output generated by
Lr-Stitch Unit for Fig. 9 (k) input. Fig. 9 (h) test sample con-
sists of multiple input images with an ensemble of “‘resolution
scale variation” & ”’(0-5)% manipulating matching/common
areas’ test-conditions, Fig. 9 (j) is the corresponding output
for Fig. 9 (h) input. In Fig. 9 (1) test case, the right input
image is rotated 30° from the ground-truth horizontal level
and Fig. 9 (n) is its corresponding generated output.

It’s evident from the above discussed benchmarking anal-
ysis and sample results, that our proposed image-stitching
methodology can generate robust and reliable results even
under multiple possible wild conditions (non-homogeneous
input). The above-illustrated results in Fig. 9 are primarily
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raw results generated by a single L,r-Stitch unit. To support
some use-cases which require ultra wide-view panoramic
stitching(with FOV>180°), we have proposed an adaptive
ensemble pipeline which consists of N independent 1,r-Stitch
Units(detailed in section 4.D). For stitching ultra- wide
panoramic views, we have proposed a pipeline that intu-
itively assembles modular 1,r-Stitch units in a tree struc-
ture [12] based on “{N, K} factors. Fig. 10 illustrates
some sample results of our ultra-wide view stitching module.
Fig. 10 (b), (d), (h), (n) ultra-wide panoramic views cover
a field of view greater than 2300, Fig. 10 (e)’s ultra-wide
output Fig. 10 (f) covers a field of view in between 180°-220°,
Fig. 10 (i) consists of input panoramic stereo wide- view
images, and Fig. 10 (j) is its corresponding ultra-wide view
panoramic stitch. Fig. 10 (1) ultra-wide panoramic stitch cov-
ers <300V field of view (Fig. 10 (k) as input). Table 6 details
the performance analysis of our proposed method under
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multiple input FOV ranges (0° < ®° < 330° with normal
and ultra-wide views), in Table 6 we have evaluated the
proposed pipeline’s performance using {MSE, PSNR, Avg
latency time [52] } metrics. Refer to Figs. 9 and 10 for
sample results, and refer to Tables 1, 2, 3, 4, 5 and 6 for a
detailed performance analysis of our proposed module. Based
on these benchmarking results, it’s evident that our proposed
image-stitching method has outperformed other methods
[1], [3]-[21] with a minimum margin of 2 in every evalua-
tion metric in all wild/non-homogeneous test-conditions, and
input FOV ranges.

VI. LIMITATIONS & FUTURE-SCOPE

Although the proposed method is reliable and robust enough
to handle most of the real-life & wild scenarios, there are
some limitations and scope for future work. Observed limita-
tions of our proposed method are, higher processing latency
compared to other conventional image-stitching methods;
higher space/memory footprint is required for an effective
inference. Latency time (or) inference time of our proposed
method makes it infeasible for integrating to other 3% party
applications that require live processing and analysis. Our
proposed method runs efficiently on higher hardware config-
urations, and is not suitable for inferencing on IoT and general
mobile devices. To train the L,r-PanoED network we require
a large diversified training data(chances of applying transfer-
learning are low in this particular usecase). We follow a super-
vised learning approach, so the data generation, pairing &
labeling of the training data is a hectic and time-consuming
task, in the future we would like to introduce an unsuper-
vised learning approach to tackle this problem. To handle a
particular(new) real life wild condition while performing the
image stitching operation, our proposed method requires at
least 50-100 training samples of that particular wild condition
to efficiently overcome the situation.

VIl. CONCLUSION

This article has introduced a robust & reliable image-
stitching/mosaicing methodology named Lr-Stitch Unit
(Figs. 1, 2 and 3), which operates efficiently in-between
30%< field of view <320 range. The proposed 1,r-Stitch unit
is a novel system-pipeline that consists of several modules,
i.e a pre-processing module, 1,r-PanoED network (Fig. 3)
(an encoder-decoder CNN proposed in this article), and
a post-processing module. We have introduced a unique
split encoding network methodology in the L,r-PanoED for
simultaneous deep-feature extraction & mapping op- era-
tions. The split encoder network of the proposed 1,r-PanoED
network was used for extraction + fine-tuning of relevant
deep-features, while simultaneously performing mapping &
matching(using F-Mat*(UL-8F T p,q, UL-8F T) algorithm)
of the corresponding extracted fine-tuned deep-feature maps.
The decoder network of the 1,r-PanoED was used for intu-
itive reconstruction of raw-panoramic views (Fig. 4 (e)) from
corresponding UL-8 feature-maps belonging to a respective
Lr-stereo input image. Custom loss-functions were used
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during the training phase to optimize the proposed net-
work. The proposed Lr-PanoED network plays a key role
in stitching efficient and reliable raw-panoramic views,
and based on these raw-panoramic views the proposed L,r-
Stitch generates (by performing post-processing) accurate
and realistic final panoramic views. An effective ensemble
of multiple datasets (which includes our custom-built stereo-
traffic dataset) was used to train the 1,r-PanoED network. The
Lr-Stitch Unit’s post-processing module consists of an
ensemble of powerful & effective image processing tech-
niques [11], [24], [31], [32], [49]-[51] to minimize expo-
sure differences, distortion artifacts & matching + texture
errors present in the outputs of lLr-PanoED. Section 5’s
extensive benchmarking analysisTables 2, 3, 4, 5 and 6 has
proved that our proposed image-stitching mechanism has
stitched panoramic views with greater accuracy and reliabil-
ity compared to other existing image-stitching methodologies
[1], [3]-[21]. Lr-Stitch unit has outperformed other
imagestitching methods( [1], [3]-[21]) by a span of 2+
in PSNR, SSIM, FM-Rate [29], [52] metrics Tables 1, 2,
3, 5 and 4 within optimal latency time for both homo-
geneous and nonhomogeneous input sequences. Although
significant limitations & challenges were handled in this
article, there will be a never-ending quest for improvements
in any technical research domain, therefore some of the
future enhancements we plan to include are prior mentioned
in Section 6.
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