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ABSTRACT Aero-turbines usually work in various non-stationary and harsh operating environments. Its
blades easily appear early crack faults in long-time operation, and it is difficult to dig out discriminant
features of early crack. To solve these problems, in the paper, a novel intelligent approach for early crack
diagnosis of turbine blades using three-dimensional blade tip clearance is presented. In order to improve
feature learning ability to obtain better generalization ability, the paper firstly develops a novel deep learning
method based on deep belief networks (DBNs). Considering the fact that the feature degradation easily
occurs in deeper layers because of the change of the distribution in each layer’s outputs with the increase of
the layers, it is hard to decide which layer to learn features is useful for fault diagnosis. Accordingly, in the
pre-training process, the global back-reconstruction (GBR) mechanism is introduced into DBNs to optimize
the feature learning ability. The GBR mechanism can be realized between the input layer and hidden layers
by ‘‘shortcut connection’’, and the layer to learn more discriminant features can be determined automatically
without prior knowledge. Moreover, due to three-dimensional blade tip clearance (3-DBTC) acquired from
three different directions of turbine blades contains much more useful crack failure multiscale information,
it is suitable to be used as an input from which to extract multiscale discriminant features. Eventually,
in the supervised training, the softmax regression model is employed to classify the health conditions of
turbine blades using these sensitive features learned from 3-DBTC. The experimental results show that the
proposed method can effectively identify the crack of turbine blades with fairly high diagnostic accuracies
and significantly outperform other methods considered in the paper.

INDEX TERMS Turbine blade, three-dimensional blade tip clearance, deep belief networks, feature
extraction, fault diagnosis.

I. INTRODUCTION
Turbines are widely used in aero-engines as the key energy
transformation component, and their health conditions are
highly concerned with the regular operation of the aero-
engine. Since turbines usually work in the harsh operating
environment caused by high temperature, high stress, and
high speeds during operation [1], they are easily prone to
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machinery failures, like blade fatigue cracks, in long-time
operation. As cited by Meher-Homji and Cyrus [2], 42%
of the total failures in turbines caused by blade cracks.
A crack defect, if not be detected in time, may cause
catastrophic damage with huge economic losses and human
casualties. Therefore, fault diagnosis for turbine blades is
essential for operational reliability and timely-maintenance
of aero-engine.

The essential parts of fault diagnosis include feature
extraction and pattern recognition. Conventional intelligent
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fault diagnosis methods mainly depend on manual feature
extraction based on signal processing (e.g., spectral analy-
sis or envelop analysis) and shallow learning algorithm, such
as support vector machine (SVM) [3], decision tree [4], arti-
ficial neural networks (ANNs) [5]. Manual feature extraction
based on statistical features (e.g., root-mean-square (RMS),
kurtosis, and energy), which often needs enough domain
knowledge and human intensive labors, is key step. Then,
these manual features are fed into shallow learning algo-
rithm. Whether the representative ability of those statistical
features is good or not directly affects the performance of
the fault diagnosis models. However, it is difficult and time-
consuming to select as much discriminant features as possible
for fault diagnosis, because a good set of features varies from
case to case in practical application. Therefore, the feature
extraction and selection have been an obstacle to further
improve diagnostic accuracies.

To address aforementioned those problems, deep learn-
ing methods that can automatically extract features from
the input data for fault diagnosis has been the effective
way in recent years. To be specific, deep learning, which
refers to representative learning that has multiple layers of
nonlinear transformation, can enable a hierarchical nonlin-
ear learning of high-level features by layer-wise training to
discriminate different health conditions (e.g., healthy and
faulty). The high-level features usually are better than those
statistical features in both representative and generaliza-
tion ability, and can be further applied to fault diagnosis.
By now, deep learning has shown its great potential power
in various fields including speech recognition, computer
vision, natural language processing, etc. In the field of
fault diagnosis and monitoring, convolution neural networks
(CNNs) [6], deep belief networks (DBNs) [7], staked auto-
encoders (SAEs) [8] are usually popular deep learning mod-
els used for fault diagnosis and prognostic application in
recent years. Feng et al. [9] used deep auto-encoder network
to fault diagnosis, which achieved higher accuracy than tradi-
tional BPNN. Ince et al. [10] applied 1-D CNN to motor fault
detection, and yielded higher accuracy than other traditional
shallow algorithms. Chen et al. [11] utilized SAEs and DBNs
to fuse features, and effectively identified the bearing fault.
Shen et al. [12] presented a newmodel based onDBNs, which
was validated by bearing fault diagnosis. These methods out-
perform the traditional shallow intelligent algorithm-based
fault diagnosis.

But many Deep learning methods, like CNN, often need
large-scale data to fit with the increasing complexity of the
model and its performance on small-scale data tasks is not
excellent. Meanwhile, DBNs has found successful applicat-
ions applied in fault diagnosis by virtue of two stages: greedy
layer-wise unsupervised training and fine-tuning supervised
training. An unsupervised way is utilized to effectively pre-
train the model in regardless of the amount of training data.
Compared with SAEs, DBNs is a generative model that
can generate samples based on the features learned during
training, so it’s suitable for small-scale data task. However,

in unsupervised training, the feature degradation usually
occurs in deeper layers and becomes severe with the depth
of DBNs increasing due to change of the distribution of each
layer’s outputs during training. As a consequence, it will
make hard to decide which layer to learn features in DBNs is
useful for fault diagnosis by determining the depth of DBNs
manually. Once the insensitive features in certain layer are
selected to fault diagnosis, it is difficult to guarantee to obtain
desired diagnostical accuracies. Currently, some researches
have been conducted on the problem, such as Shao et al. [13]
proposed a method based on particle swarm algorithm to
optimize the structure of the trained DBNs, and was applied
to classify the ten health states of motor bearings with high
accuracy. In [14], ACO was introduced to determine the
structure of DBNs automatically and achieved good results
on fault diagnosis of bearing life cycle prediction. In paper,
to solve the problem to an extent, the GBR mechanism is
introduced to directly build ‘‘short connection’’ between the
layer inputs and each hidden layer outputs, and these parame-
ters in ‘‘short connection’’ block can be optimized to improve
the correlation of the layer inputs and the layer outputs,
reducing reconstruction error. Thus, the depth of the DBNs
can be determined based on the corresponding correlation-
based criterion and the suitable representative features from
signal can be extracted automatically. In supervised training,
the softmax classifier is used to classify the health condi-
tions (i.e., class) based on the learned discriminant features.
The study explores a novel diagnosis approach based on the
improved DBNs to early crack failure of turbine blades.

Vibration signals collected from turbine blades using non-
contact measurement technologies, such as tip clearan-ce
measurement, tip-timing measurement, contain importa-nt
health condition information of turbine blades. Tip clearance
is an important monitoring parameter to on-line operational
conditions monitoring for turbines, which has been studied
by [15]–[17]. Tip timing is also an important parameter,
which has been studied from 1970 [18]. Blade Tip Timing
(BTT) is widely applied to acquire blades vibration signal
by non-contact ways. Some examples of these works can
be found in References [19]–[21]. However, considering the
blades usually show three-dimensional vibration behaviors
under various working loads, the two methods mentioned
above are difficult to reflect the complex dynamical behaviors
of blades. Thus, a new non-contact measurement technique
has been studied in recent years, called three-dimensional
blade tip clearance (3-DBTC) [22]–[26], which are essen-
tially multi-dimensional vibration signals. Teng et al. [25]
studied the change regulation of 3-DBTC under several typ-
ical types of loads by simulation experiments and proved
that 3-DBTC is effective, offering a theoretical foreshadow to
monitor conditions feasible. Zhang et al. [26] has developed
a 3-DBTCmeasuring system, which can acquire the 3-DBTC
signals in real-time. In the paper, 3-DBTC signals will be used
from which to extract discriminant early crack features.

The key contribution of this study is the development of
an improved DBNs, the so-called deep belief networks with
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FIGURE 1. The schematic architecture of DBNs.

FIGURE 2. Architecture of a Restricted Boltzmann Machines.

global back-reconstruction (DBNs+GBR) and applied it for
crack fault diagnosis using 3-DBTC signals. The efficacy of
the developed DBNs+GBR was verified for turbine blade
crack fault diagnosis in this study. the reminder of the paper
is organized as follows. Section II introduces the theoretical
background of DBNs, and a detailed elaboration on the devel-
oped DBNs+GBR based on conventional DBNs. Section III
then delineates an intelligent diagnosis approach for turbine
blade crack fault using the 3-DBTC signal. Section IV the
efficacy of the proposed method is verified by comparing
with other considered methods used for fault diagnosis. Some
conclusions are addressed in Section V.

II. THEORETICAL CONTEXT OF THE DEVELOPED
DBNs+GBR
A. DEEP BELIEF NETWORK(DBNs)
Deep belief networks (DBNs) was first proposed by
Hinton et al. [27] in 2006, which is essentially comprised of
several RBMs stacked with each other and a multi-classifier
(softmax regression model used as a classifier in the paper) as
the output layer. In DBNs, as depicted in Fig.1, a plurality of
RBMs blocks works together to effectively dig out discrimi-
nant information of the input data layer by layer through two
stages: layer-wise unsupervised pre-training and fine-tuning
supervised training.

In DBNs, each RBMs [28], as shown in Fig.2, is composed
of two layers: visible layer containing visual neurons denoted

as v = (v1, v2, · · · , vn) and hidden layer containing hidden
neurons denoted as h = (h1, h2, · · · , hn). It aims to fit the
input data with maximum probability and its hidden layer can
learn the high-order correlation information with the input
data. The energy function [29] of a joint configuration (v, h)
can be defined as:

Eθ (v, h) =
∑n

i

∑m

j
viwijhj −

∑n

i
bivi −

∑m

j
ajhj (1)

where θ = {W , b, a} is the parameter of RBMs, W is the
symmetric weight matrix, andwij ∈ W represents the connec-
tion weights between the ith visible neuron and the jth hidden
neuron, vi, hj represents the state of the ith visible neuron and
the jth hidden neuron, respectively. bi, aj represents their bias,
respectively.

Based on the energy function, the joint probability distri-
bution of both hidden neurons and visible neurons is defined
as:

Pθ (v, h) =
1

Z (θ )
exp(−Eθ (v, h)) (2)

Z (θ ) =
∑
v

∑
h

exp(−Eθ (v, h)) (3)

where Z (θ ) is a normalization factor, and the sum of the joint
probabilities is guaranteed to be 1.

Given the state of the hidden neurons, the conditional
probability and edge probability of the visible neurons are as
follows:

Pθ (v|h) =
exp(−Eθ (v, h))∑
v
exp(−Eθ (v, h))

(4)

Pθ (v) =

∑
h
exp(−Eθ (v, h))∑

v

∑
h
exp(−Eθ (v, h))

(5)

Analogously, the conditional probability and edge proba-
bility of the hidden neurons are as follows:

Pθ (h|v) =
exp(−Eθ (v, h))∑
h
exp(−Eθ (v, h))

(6)

Pθ (h) =

∑
v
exp(−Eθ (v, h))∑

v

∑
h
exp(−Eθ (v, h))

(7)

According to the equations (4) and (6), The activation
functions [30] of the ith visible neuron and the jth hidden
neuron can be obtained, respectively, as follow:

Pθ (vi = 1|h) = sigmoid(
∑m

j
wijhj + aj) (8)

Pθ (hj = 1|v) = sigmoid(
∑n

i
wijvi + bi) (9)

where the sigmoid function is defined as:

fs(x) = sigmoid(x) =
1

1+ e−x
(10)

In the training process of RBMs, the edge probability of the
visual neurons in the Gibbs distribution should be as close as

VOLUME 9, 2021 13041



X. Huang et al.: Novel Intelligent Fault Diagnosis Approach for Early Cracks of Turbine Blades

FIGURE 3. Training procedure of DBNs.

possible to the input data distribution. Then, the logarithmic
likelihood function L(θ ), objective optimization function, can
be defined as follows:

L(θ ) =
1
M

∑M

i=1
max
θ

(log(Pθ (v(i)))) (11)

whereM is the size of the training sets.
To find optimal parameters θ = {W , b, a}, the maxi-

mize log-likelihood function L(θ ) can be optimized by the
sto-chastic gradient descent (SGD) algorithm, so the partial
d-erivative of L(θ ) with respect to the parameters should be
calculated as follows:

∂L(θ )
∂θ
=

1
M

∑M

i=1

∂ logPθ (v)
∂θ

=
1
M

∑M

i=1
(
〈
∂Eθ (v, h)(i)

∂θ

〉
data
−

〈
∂Eθ (v, h)(i)

∂θ

〉
model

)

(12)

where 〈·〉data and 〈·〉model model represents the expectations
with regard to the distribution of the input data and the
distribution learned by the model, respectively.

Then the update for parameterW should be expressed as

W = W + α
∂L(θ )
∂θ

(13)

where α refers to learning rate.
Note that the sample of 〈·〉data is easily acquired, whereas

the unbiased sample of 〈·〉model cannot. In fact, 〈·〉model gen-
erally is obtained using the Gibbs sampling method [31], but
a large number of sampling steps will intractably cause low
training efficiency, particularly for a great number of samples.
Thus, Hinton et al. [27] proposed a contrastive divergence
(CD) algorithm to fast approximate the gradient.

The mentioned above is the pre-training process in DBNs,
and this greedy learning process is unsupervisedwithout label
information, as demonstrated in Fig.3. In the pre-training pro-
cedure, several RBMs blocks are trained bottom-up individ-
ually. Each RBMs block (consists of two adjacent layers) in
DBNs is used to fit its input data by updating the connection
weights W. Once an RBMs block is trained well, another
RBMs block is stacked atop it. Thus, the abstract high-level

features can be obtained by a series of nonlinear transfor-
mation through different-level RBMs blocks. The number of
neurons in visible layer are determined by the size of the input
data.

When applied to classification tasks, the fine-tuning pro-
cedure is implemented to fine-tune the parameter space.
As shown in Fig.3, to get good discriminative performance
in classification, the labeled data need to be utilized to refine
the parameter space W. Likewise, a multi-classifier, which
can be used to predict the desired label samples, is carried
out with this discriminative fine-tune in the training data set.
More specifically, the weights of all layers, initialized by
the unsupervised pre-training, are further adjusted top-down
by error back-propagation using the labeled data. The high-
level features learned by the final RBMs block are further
fed into a softmax regression model to get probability pre-
diction results. Then, the prediction error can be estimated by
comparisonwith the target labels. According to themaximum
likelihood function, the error back-propagation algorithm
based on SGD is applied to fine-tune the weights and biases
of each layer simultaneously.

B. GLOBAL BACK-RECONSTRUCTION (GBR)
In the developedDBNs+GBR, the global back-reconstruction
(GBR) mechanism is employed in each RBMs block in
DBNs, as illustrated in Fig.4. The role of the GBRmechanism
is to restrict the accumulation of the reconstruction error to a
range. More specifically, the GBR is achieved by building a
‘‘short connection’’ between the input layer and each hidden
layer output. Then, the output data of each hidden layer is
directly used to reversely reconstruct the input data to the
most extent, which can be expressed by:

pθn (v) =

∑
h1,h2,··· ,hn exp(−Eθn (v, h

1, h2, · · · , hn))∑
v
∑

h1,h2,··· ,hn exp(−Eθn (v, h1, h2, · · · , hn))
(14)

where θn represents parameters in the nth hidden layer, v
represents the reconstruction status of the visible neurons in
input layer. It should be noticed that the parameters of the
current RBMs block are only updated, other RBMs blocks
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FIGURE 4. The GBR mechanism of the developed DBNs+GBR.

ahead are fixed. To be specific, the GBRn ∼ {θn’} shown
in Fig.4 indicates the parameters θn of the nth RBMs block
are required to be optimized in the GBR phase, but θ1, θ2,
· · · , θn−1 all remain unchanged.

Aiming to reconstruct the input data to the maximum
extent, the parameters θ1, θ2, · · · , θn should be further opti-
mized bymaximizing the edge probability Pθn(v). The related
logarithmic likelihood function is shown as:

L(θn) =
1
M

∑M

i=1
max
θn

∑
v
log(Pθn (v)) (15)

whereM is the number of the training dataset.
Then the reconstruction error is further estimated based

on the two-order norm, taking the origin input data as the
benchmark, mathematically expressed as follows:

Rerr =

∑M
i=1

∑P
j=1 (vi,j − yi,j)

2

MPG
(16)

where P is the data point of single sample, Y is the input data,
and G is the number of sampling points.
In addition, for the sake of effectively restricting the accu-

mulation of the reconstruction error, it’s necessary to preset
threshold, so the following criterion is defined as follows:{

Nrbms = Nrbms + 1, Rerr < ε

L = Nrbms, Rerr ≥ ε
(17)

where ε is the preset threshold of the accumulation of the
reconstruction error, and L is the number of stacked RBMs
blocks in DBNs.

C. THE DEVELOPED DBNs+GBR
In this subsection, the motivations for developing
DBNs+GBR are introduced, and the theory background of
the developed DBNs+GBR is elaborated in detail.

1) THE REASONS FOR DEVELOPING DBNs+GBR
As above mentioned, the multiple RBMs blocks are bottom-
up trained one by one during the pre-training phase in
DBNs, which means each RBMs block only probabilisti-
cally reconstruct its own inputs (the process is called local
back-reconstruction (LBR) mechanism in this paper). In the
LBR mechanism, the distribution of each layer’s outputs
will change with the increase of layers during pre-training
because of reconstruction error existence, leading to feature
degradation in deeper layers. As a consequence, it is difficult
to decide which layer to learn features in DBNs is useful for
fault diagnosis by constructing the depth of DBNs artificially.

Hence, it is necessary to explore effective way to adaptively
determine the depth of layers, avoiding the reconstruction
error accumulation reaches a certain level and improving
classification accuracy.

On the basis of CD algorithm and Gibbs sampling theory,
the minimum reconstruction error between the input data
distribution and the distribution in visual neurons learned by
the first RBMs block can be quantified given by:

1E1 =
〈
v1h1

〉
data
−

〈
v1h1

〉
recon

(18)

where 〈·〉data stands for the input data distribution, and 〈·〉recon
stands for the distribution learned by the first RBMs block
after Gibbs sampling.

Then, based on the pre-training rule, the minimum recon-
struction error between different-level RBMs blocks can be
quantitatively estimated by:

1E2 =
〈
h1h2

〉
data −

〈
h1h2

〉
recon

1E3 =
〈
h2h3

〉
data −

〈
h2h3

〉
recon

...

1En =
〈
hn−1hn

〉
data −

〈
hn−1hn

〉
recon

(19)

where1En indicates the minimum reconstruction error of the
nth RBMs block, hn can be regarded as the high-level features
learned by the nth RBMs block.

It is obvious that the probabilistic distribution of each
hidden layer’s output will gradually change to some extent as
the depth of the DBNs increases during the unsupervised pre-
training phase owing to the accumulation of reconstruction
error. When reaching a certain threshold, the accumulation
will pose an effect on the probabilistic distribution of the final
hidden layer’s outputs that will significantly deviate from the
distribution of the input data. Thus, the representative ability
of the high-level features also becomes inferior which can’t
reflect essential information of the input data, or in other
words, the correlation between high-level features and the
input data is weak. It is notable that the weight optimization in
the fine-tuning training process will be affected unavoidably,
and the performance of DBNs (e.g., generalization ability and
robust ability) will begin to degrade eventually.

To solve the problem above mentioned, in the developed
DBNs + GBR, the GBR mechanism is employed in each
RBMs block to construct the novel DBNs architecture [see
Fig.4]. and the GBR mechanism has many characteristics,
which will be beneficial to improve the expression ability of
high-level features extracted from 3-DBTC, such as:

(1) The weights to be further optimized by the GBR in each
RBMs block in the unsupervised process and accelerate the
speed of the fine-tuning training.

(2) The GBR has the ability to determine the depth of
DBNs automatically by way of limiting the reconstruction
error, avoiding the feature degradation in deep layers.

2) THE THEORY OF DBNs+GBR
As shown in Fig.5, the developed DBNs+GBR is a variant
of DBNs that uses GBR mechanism to improve the ability
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FIGURE 5. Computation schematic of the developed DBNs+GBR.

of feature learning. The GBR mechanism is inserted into the
architecture of the conventional DBNs to improve the rep-
resentative ability for input data. Moreover, the GBR mech-
anism can be beneficial to optimize the weights in DBNs
and adaptively determine the depth of the DBNs, making less
dependent on prior human labor and knowledge.

In Fig.5, the developed DBNs+GBR will probabilistical-
ly reconstruct the input data to a maximum extent using
each hidden layer’ output through GBR mechanism, opti-
mizing weights in several RBMs blocks to learn high-quality
features. In the GBR mechanism, the reconstruction error
will be further calculated in each hidden layer according to
equation (16). If the accumulation of reconstruction error
exceeds the preset threshold ε, the developed DBNs+GBR
will globally optimizes these trainable parameters in the
supervised training. Otherwise, the RBMs block will be con-
tinuously stacked atop the RBMs block located ahead until
the condition is satisfied.

Note that those parameters of all hidden layer will get
optimized in the LBR and GBR phase, respectively, and it
is useful to extract high-quality high-level features in the
unsupervised pre-training. After the supervised fine-tuning,
the high-level features can be employed to classify different
conditions.

III. INTELLIGENT DIAGNOSIS APPROACH FOR THE
CRACK FAULT OF TURBINE BLADES USING
3-DBTC SIGNALS
A. DESCRIPTION OF 3-DBTC SIGNALS
In the operating environment, turbine blades have to bear
multiple dynamic loads, such as high temperature, mechan-
ical stress, strong centrifugal force, or strong aerodynamic
loading, etc. Thus, the turbine blades are prone to fatigue
cracks. When the crack faults occur, the blades appear

FIGURE 6. The definition of 3-DBTC and its parameters.

complex dynamic behaviors resulting in the change of
three-dimension parameters. Hence, in the paper, the three-
dimension parameters are simply called three-dimensional
blade tip-clearance [22], abbreviated to 3-DBTC. In fact,
the 3-DBTC refers to three geometric parameters (i.e., radial
direction, axial direction, and circumferential direction.) of
the whole space between the surface of the cross-section
of the optical probe installed on the casing and the sur-
face of the turbine blades, which can effectively reveal the
evolution process of dynamical behaviors of turbine blades.
It then follows that we can diagnose the crack fault of turbine
blades by detecting the changes of 3-DBTC. Its diagrammatic
description as illustrated in Fig.6.

In order to facilitate monitoring three geometric param-
eters, space coordinate system [see Fig.6] is built through
setting axial direction, circumferential direction, and radial
direction as the x-axis, y-axis, and z-axis, respectively, and
the original point is set as the projective point O’ of the fixed
point O in which installs the optical probe on the casing. when
the fatigue cracks occur on turbine blades, the deformation
of the surface of the blades will appear, resulting in the
projective point O’ displaces along three-dimensional direc-
tions. To be specific, the description of the three-dimensional
parameters as follows: 1) The radial tip clearance (RTC) Z0,
which refers to the radial distance between the midpoint O of
the optical probe and its corresponding projective pointO’ on
the surface of the blades; 2) The axial deviation angle (ADA)
α, which refers to the intersection angle along axial direction;
3) The circumferential deviation angle (CDA) β, which refers
to the angle slippage along the circumferential direction.

As shown in Fig.7 and Fig.8, the 3-DBTC change tendency
of turbine blades in different health conditions (i.e., healthy
and crack) under loads was simulated using Ansys software.
For comparison between the 3-DBTC signals acquired in
different locations, we chose nine sets of measurement points
shown in Fig.7. As depicted in Fig.8, we can observe that the
tendency change is consistent with each other among differ-
ent health conditions, but the values are different in different
measurement points, especially for the ninth point located in
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FIGURE 7. Distribution of measurement points.

the blade trailing edge, which indicates that the difference
among different health conditions. In 8(c), we can observe
that the distinguished difference in CDA between healthy and
crack blades. Thus, we can dig out valuable information to
identify health conditions of turbine blades from 3-DBTC.
It is notable that the 3-DBTC signals can provide more rich
information about health conditions from several aspects than
single-dimensional monitoring signals like vibration signals.

B. SOFTMAX REGRESSION MODEL FOR CLASSIFICATION
In neural network, the softmax regression model is usu-
ally used at the final layer to establish the perfect mapping
between the learned features and the health conditions to
complete the model building. The softmax regression model
can provide probabilistic classification and is often applied to
process the multi-classification tasks. It is computed fast and
is easy to be implemented [33]. Suppose that there is a tra-
ining set

{
x i
}R
i=1 with its labels

{
yi
}R
i=1 where x

i
∈ RP×1 an-d

yi ∈ {1, 2, · · · , S}. For each input sample, the model attempts
to estimate the probability for each label belonging to

{
yi
}R
i=1.

Then, the model will output a probability vector that includes
S estimated probabilities of the input sample x i to each label,
in which the label having maximum probability is the real
label for the input sample x i. To be specific, the model can be
defined as follows:

O(x i) =


P(yi = 1|x i; θT1 )
P(yi = 2|x i; θT2 )

...

P(yi = K |x i; θTK )

 = 1∑k
j=1 e

θTj x
i


eθ

T
1 x

i

eθ
T
2 x

i

...

eθ
T
K x

i


(20)

where θ = [θ1, θ2, · · · , θk ]T is the parameter vector of softm-
ax regression model. the term

∑k
j=1 e

θTj x
i
is normalization

f-actor, and the sum of all estimated results is guaranteed to
equal 1.

Based on the estimated output, the model can be trained by
error back-propagation (BP) algorithm to minimize the loss
function J (θ ).

J (θ ) = −
1
R

∑R

j=1

∑S

s=1
1
{
yi = s

}
log

eθ
T
k x

j∑k
j=1 e

θTj x
j


+
λ

2

∑S

s=1

∑P

p=1
θ2sp (21)

where 1{·} is an indicator function returning 1 when the
estimated result is correct, and 0 otherwise. λ is the weight
decay coefficient that force some parameters to take small
absolute values, while other parameters to retain relatively
large values. Thus, the generalization ability of the softmax
regression model can be improved obviously [34].

C. INTELLIGENT FAULT DIAGNOSIS APPROACH FOR
TURBINE BLADES’CRACK
As mentioned above, 3-DBTC signals can represent the
dynamical behaviors of turbine blades from several aspects,
which contains abundant information of turbine blades’-rack.
Hence, the sensitive features extracted from the 3-DBTC
signals can reflect the health conditions of turbine blades.
Moreover, it is difficult to construct a set of suitable statistical
features for blades’ crack, and if the distributions of the
features extracted are not separable enough for differentiat-
ing the health conditions (i.e., healthy and crack considered
in paper), it can be challenging to achieve high diagnostic
accuracy. Thus, in the paper, A novel intelligent approach
based on improved DBNs for early crack of turbine blades
using 3-DBTC signals is proposed to achieve high diagnostic
accuracy for blade cracks, as illustrated in Fig.9.

The main procedures of the proposed method as follows:
(1) the 3-DBTC signals of turbine blade are acquired by sen-
sor and collected by data acquisition system under different
running speeds. Further, the signals are split into two groups
directly, constructing training dataset and testing dataset both
involving different health states; (2) according to our exper-
iments and experiences shared in other papers, the hyper-
parameters (e.g., weight decay, learning rate, mini-batch,
momentum coefficient, preset threshold), which are used to
define the detailed structure of the neural network, are deter-
mined. It is elaborated in detail in the next section; (3) the
training samples are fed into the developed DBNs+GBR,
and the high-level features are gradually extracted by several
hidden layers in pre-training process. Then, those features are
further input into softmax regression model concatenated in
the final layer to get prediction results; (4) the error back-
propagation algorithm is used to update all weights of hidden
layers by top-down using the prediction errors, reducing the
prediction mistakes. Finally, the fault diagnosis model trained
is completed; (5) the testing samples are used to validate the
efficacy of the proposed method in diagnosing crack fault of
turbine blade.

IV. EXPERIMENTAL STUDY
A. DESCRIPTION OF EXPERIMENTAL PLATFORM AND
DATA COLLECTION
The developed DBNs+GBR was used to pinpoint the health
conditions (i.e., healthy and crack fault) in turbine blades.
The experiments in the study used a turbine blade simula-
tion test platform, which mainly consisted of a two-circle
coaxial optical fiber probe, simulated rotor, driving motor,
3 DOF calibration device, measuring system etc., as shown
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FIGURE 8. The 3-DBTC change tendency of turbine blades in different measurement points.

FIGURE 9. Approach for intelligent fault diagnosis for turbine blades’ crack.

FIGURE 10. Turbine blade simulation test platform used for experiments.

in Fig.10 and Fig.11. The optical fiber probe mounted on
the casing of the simulation turbine was used to acquire
the 3-DBTC signals, then the feature extraction and fault
diagnosis can be performed using the proposed method.

For the sake of verifying the efficacy of the developed
DBNs+GBR, two health states in turbine blade were used

FIGURE 11. Diagrammatic description of the measuring system used for
the simulation test platform.

for diagnosis, as described in Table 1. A crack fault of 6mm
in depth is firstly set artificially on turbine blade. Then,
3-DBTC signals sampled at 10kHz were collected via the
optical fiber probe and measuring system [See Fig.11] under
different rotational speeds (1000rpm/1500rpm) generated by
driving motor. More specifically, each dimension component
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TABLE 1. Summary of health conditions of the turbine blades considered in the study.

FIGURE 12. The preprocessing scheme for 3-DBTC signal.

in 3-DBTC signals was further divided into 210 samples
by overlapped way, containing 1024 data points per sample.
Hence, the total number of samples for each health condi-
tion considered in the study is 630. As shown in Fig.12,
the procedure of sample construction for the DBNs+GBR is
introduced.

B. HYPERPARAMETER SETUP
The hyperparameter selection greatly influences the perfor-
mance of the developed DBNs+GBR, and therefore it is
necessary to set these hyperparameters properly, includi-
ng learning rate, mini-batch, momentum coefficient, weight
decay coefficient, iteration epochs, and so forth, as well as
preset threshold defined in this paper. Moreover, because no
consensus has been reached as to how to set these common
hyperparameters, many empirical suggestions for the hyper-
parameters selection are adopted according to [35], [36],
and [37].

To be specific, the training rate is set to 0.001 at 60 epochs,
so that the trainable parameters can be updated smoothly in
training process. Momentum is a weight-updating strategy to
accelerate the training process and avoid local optima using
the updates of previous iterations. In general, the momentum
coefficient is recommended to be 0.9. L2 regularization tech-
nology is adopted in the paper to increase the generalization
ability and yield higher test accuracy. In L2 regularization,

a penalty term known as weight decay is applied in the objec-
tive function to push the weights towards to small absolute
value, and the weight decay coefficient is set to 0.0001. The
mini-batch refers to a group of arbitrarily selected samples
that are fed into the networks at the same time, and the size
of mini-batch is set to 20. In the paper, the initial number
of RBMs blocks was to set to 1, and the number of hidden
neurons in each hidden layer is set to 70% of that in its former
layer accord-ing to [35]. In the training process, 60% of the
total of dataset were used to train the developedDBNs+GBR,
others were used to test.

Besides, it is important to select a proper preset threshold
ε given those hyperparameters above. Hence, it is a need to
explore how to set the threshold in order to achieve higher
accuracy. In the paper, the setups for setting the preset thresh-
old ε are detailed as follows:
Setup 1: Select randomly a part of training samples to build

and train a conventional DBNs and calculates the reconstruc-
tion error of each RBMs block in the pre-training process
according to equation (19).

Setup 2: Roughly estimate a proper range
[
εlower , εupper

]
of the preset threshold ε based on the Setup 1.

Setup 3: Optimize the preset threshold ε by step-
wise refinement. In general, as the preset threshold
increases, the classification accuracy of the developed
DBNs+GBR will increase, then decrease. In order to
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TABLE 2. The diagnostic results using different methods.

narrow the researching range
[
εlower , εupper

]
, it is can

be divided into N subintervals
[
εloweri, εupperj

]
, i, j =

1, · · · ,N . Then the εloweri and the εupperj both with
highest accuracies constitute the new searching range[
εloweri_new, εupperj_new

]
. If the

∣∣εloweri_new − εupperj_new∣∣ is
definitely small, then the preset threshold can be obtained
from two endpoints εloweri_new, εupperj_new and the midpoint(
εloweri_new + εupperj_new

)/
2 by comparing accuracy. In the

process, the test accuracy is the main selection criterion.

C. EXPERIMENTAL RESULTS AND DISCUSSIONS
In the section, some samples were applied to find an optimal
preset threshold ε given other hyperparameters. With the
method proposed in section 4.2, the optimal threshold ε was
set to 7e−4 according to the previous experiment. Then, to fur-
ther demonstrate the superiority of the proposed method,
it was compared with three different methods including the
improved DBNs in [35], two kinds of standard DBNswith the
different numbers of RBMs blocks (i.e., the number of RBMs
blocks in standard DBNs are 5 and 6, respectively), SAE used
in [38] and back- propagation neural network (BPNN) with
different inputs. The experimental results are shown below
and further discussions are as follows.

1) PERFORMANCE COMPARISON
To evaluate the efficiency of the proposed method in diag-
nosing crack faults, different methods with feature learning
ability were conducted. Considering the impact of stochastic
factors, 14 repeated experiments were performed, and the
average accuracies of the results are as displayed in Table 2.
As indicated in Table 2, the proposed method obviously
outperforms other considered different methods in this paper,
yielding an average accuracy of 98.43%.

More specifically, the proposed method yields improve-
ment of 4.34%, 10.32%, 14.96%, 9.86%, 40.33%, and 0.35%
in terms of average testing accuracy, compared to other
methods, respectively. Besides, the proposed method also

FIGURE 13. F 1-score using different methods in 14 repeated experiments.

FIGURE 14. Confusion matrix of the training set and test set using the
proposed method.

has better performance in generalization and stability capa-
bility than those in other methods by reducing 1.638%,
2.139%, 2.419%, 3.774%, 1.024%, and 0.244% in terms
of the standard deviation (SD) of accuracies, respectively,
in repeated 14 experiments. Moreover, it worth noting that the
BPNN+statistical features has as good diagnostical accuracy
as the proposed method, but the BPNN and SAE are inferior,
particularly for BPNN which is used to learn features from
3-DBTC. It mainly due to those statistical features retain
discriminant information of blade crack, but the BPNN is
hard to learn valuable features from 3-DBTC resulting in
poor diagnostical effects. In fact, it is labor-consuming and
hard to find a reliable set of hand-crafted features in real
operating environments. Our analysis demonstrated that the
proposed method in our paper could learn discriminant infor-
mation from 3-DBTC to recognize health conditions of tur-
bine blades. Compared with [35] and other two conventional
DBNs, the proposed method also has significant advantages
in diagnosing blade cracks with higher average accuracy and
lower SD. The reason is that the parameter initialization is
optimized well in the pre-training phase, avoiding the influ-
ence of the reconstruction error in deep layers, so that the
high-level features are more discriminant than other methods.

To further compare the performances of different meth-
ods, a comprehensive evaluation criterion, so-calledF1-score
(also called F1-measure) [39], was adopted. The F-score
considers both the precision P and the recall R of the diagnos-
tic results, where the precisionP is the function of the positive
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FIGURE 15. Testing accuracy using different methods.

FIGURE 16. 2D visualizations of high-dimensional features at the final layer.

samples correctly classified (true positive, TP) and negative
samples misclassified as positive (false positive, FP), and the
recall R is the function of TP and its misclassified samples
(false negative, FN ). The F1-score reaches its best value at 1
(P and R both are perfect) and worst at 0.

p =
TP

TP+ FP
and R =

TP
TP+ FN

(22)

F1-score = 2×
P× R
P+ R

(23)

As depicted in Fig.13, the F1-scores using different meth-
ods in 14 repeated experiments are shown. Fig.14 presents
confusion matrix of classification results in training and
testing samples using the proposed method (label A and B
present healthy and crack, respectively). In Fig.13, It can be
seen that the F1-scores using the proposed method range
from 0.9940 to 1 with the SD of 0.0019, and its average
value is 0.997 in 14 experiments, which are higher than those
obtained by other different methods considered in paper.
Besides, the F1-scores using the improved DBNs in [35]
ranges from 0.9025 to 0.9677 with the SD of 0.0194, and its
average value is 0.941. Additionally, we can observe that the
F1-scores using the BPNN+statistical features range from
0.9823 to 0.9950 with the SD of 0.3556 as good as the pro-
posed method. However, other methods considered in paper
were inferior, especially for BPNN. Otherwise, in contrast
to the proposed method and [35], the F1-scores obtained by
the two conventional DBNs were bad with more fluctuation
than other methods in 14 repeated experiments, because the
feature learning ability is easily influenced by feature degra-
dation occurred in deeper layers.

As shown in Fig.14, It can be observed that the proposed
method can recognize the crack and healthy samples cor-
rectly in training and testing datasets. Particularly for crack,
the proposed method yields 97.6% and 97.6% in terms of
recall R as well as 99.2% and 98.4% in terms of precision
P in training and testing datasets, respectively. It indicated
that the proposed method had the ability to identify the health
conditions of turbine blade.

2) USEFULNESS OF FEATURE LEARNING
IN FAULT DIAGNOSIS
For the sake of further demonstrating the validation of the
proposed method, as shown in Fig.15, the training accura-
cies change tendency obtained from the proposed method
and [35] as well as the two conventional DBNs were pre-
sented. It can be observed that all accuracy curves consist
of two stages: the first one is a rapid learning phase, and
the second one is the slow learning phasewith almost constant
accuracy. The proposed method has a steep learning curve
at the first stage, but other methods have almost the same
learning curve with a slow learning process. Besides, the pro-
posed method moves into the second stage at the epochs of
around 10, which is earlier than other methods obviously.
It is noting that the accuracy curve of the proposed method
is less fluctuation than other methods in the entire training
process and converges to a final diagnostic accuracy of nearly
98.40% at the end of the training process, which is better
than other methods. Our analysis indicated that the use of
the GBR mechanism to dynamically adjust the weights and
adaptively determine the depth of DBNs can effectively avoid
feature degradation and improve the capability of learning
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sensitive features for identifying crack faults in the turbine
blade.

In addition, the t-distributed stochastic neighbor embed-
ding (t-SNE) [40] was utilized to visualize the high-
level features at the final layer in two-dimension space.
The mapped features of different methods are shown in
Fig.16(a)-(b), respectively. In Fig.16(a)-(b), the features of
the two health states are mixed together and don’t be separa-
ble well in the two standard DBNs. In Fig.14(c), the features
learned by the improved DBNs [35] cluster better than those
by the two standard DBNs, but still have a certain level
of overlapping. In contrast, in Fig.14(d), it is seen that the
features of the same health state are mostly gathered in the
same region and are also basically separable from each other
in the proposed method.

V. CONCLUSION
Finding a good set of features has been a long-standing
problem in the fault diagnosis of turbine blades of the aero-
engine. To solve this problem, a DBNs + GBR method was
developed to learn a set of features from 3-DBTC signals that
could discriminate diverse health conditions in the turbine
blades—one health state and crack state. More specifically,
the global-back-reconstruction (GBR) mechan-ism in the
developed deep learning architecture was used to optimize
weights applied to 3-DBTC signals contributed to discrimi-
nating the turbine blades’ health states.

The efficacy of feature learning was verified through a
set of comparisons between the developed DBNs + GBR
method and three kinds of DBNs and SAEs as well as
back-propagation neural network (BPNN). The developed
method can automatically learn more sensitive features from
the training data. Experimental results indicated that this
method outperformed other three kinds of DBNs and SAE
by yielding 4.34%, 10.32%, 14.96%, and 9.86% performance
improvement in terms of average testing accuracy. That is,
the inclusion of the GBR mechanism to learn a good set of
features is significant for fault diagnosis of the turbine blades.
Likewise, comparedwith BPNNwith different input (original
signal and the good statistical features), this method yielded
40.33% and 0.35% performance improvement in terms of
average testing accuracy. it demonstrated that this method
actually learned a good set of discriminant features from
3-DBTC signals.

In this study, the validation of the developed DBNs +
GBR that learns a good set of features was verified by
fault diagnosis of the turbine blades. However, there are still
some shortcomings in this study. This paper only focused on
the single crack fault on turbine blades, and in the coming
research, the developed method will be further extended on
the multiple crack fault diagnosis.
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