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ABSTRACT This paper presents a state-of-the-art analysis on the methods suitable for vehicle indoor
localization and exploiting the RFID (Radio Frequency IDentification) technology. The survey describes
three main categories of vehicle localization systems: (i) solutions exploiting only the RFID technology, (ii)
sensor-fusion techniques combining data from RFID systems and proprioceptive sensors, and (iii) sensor-
fusion techniques combing RFID data with those of other exteroceptive sensors in addition to the RFID
system itself. For each method, implementation and methodological details are discussed, by highlighting
the applied RFID technology, namely passive HF-RFID, passive UHF-RFID, or any other RFID system.
Also, the employed RFID parameters, i.e., tag EPC, RSSI or backscattered phase, are discussed. The survey
focuses on the achievable localization performance, also accounting for infrastructure-deployment costs
together with complexity and maintenance overhead. Positioning, tracking, navigation and simultaneous
localization and mapping (SLAM) issues are here considered. The analysis highlights pros and cons of each
method, together with the main challenges and perspectives of RFID-based solutions for vehicle localization.

INDEX TERMS Autonomous vehicle, data fusion, exteroceptive sensors, localization, navigation, proprio-
ceptive sensors, RFID, robot, tracking, sensor fusion, SLAM, UGV.

I. INTRODUCTION

In recent years, indoor localization has received an increasing
attention as a key element to develop autonomous robots
and cars, or any other unmanned vehicles [1]. Indeed, the
self-localization is the first requirement to build an agent
capable to guide itself through a known or unknown indoor
environment [2], where the actual satellite positioning sys-
tems suffer from signal attenuation related to through-wall
electromagnetic wave propagation.

In the present Industry 4.0 era, many commercial wheeled
robots exist in different form factors to cover a huge vari-
ety of applications, such as retails or warehouse manage-
ment, logistics, and so on. They can easily carry out sensors,
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cameras or grasping systems. Typically, wheeled robots are
equipped with proprioceptive sensors to measure kinematic
quantities that are helpful to retrieve the robot trajectory, e.g.,
Inertial Measurement Units (IMUs), encoders or optical flow
sensors. In the ideal case, if the vehicle initial position is
known, such sensors may enable the vehicle self-localization
through a dead-reckoning approach [3]. However, due to
the limited sensor accuracy, the measurement errors pile
up, bringing to an increasing drift on the vehicle estimated
trajectory.

As an alternative, exteroceptive sensors, such as cameras
[4], sonars [5], laser range finders (LRFs) [6], or Radio-
Frequency (RF) systems [7] can be adopted to circum-
vent the drift of the estimated trajectory, which is typical
of the dead-reckoning approach. To increase the localiza-
tion accuracy, widespread solutions foresee to combine data
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from both proprioceptive sensors and exteroceptive ones [8],
[9] through sensor-fusion approaches, also known as multi-
sensor data fusion, by means of several different estimation
algorithms.

Undoubtedly, vehicles equipped with LRFs or cameras
represent widespread commercial solutions, due to their ease
of installation and high number of different implementa-
tion techniques [10], [11]. However, the presence of moving
obstacles or people may degrade the localization performance
of LRF-equipped vehicles, while privacy issues occur in
camera-based systems, which also require for complex and
time-consuming image processing. Besides, Wi-Fi, ZigBee,
Bluetooth, Ultra-Wide-Band (UWB), and Radio Frequency
Identification (RFID) technologies are largely employed for
indoor localization purposes [12]-[17], thanks to the use of
commercial-off-the-shelf (COTS) hardware. Wi-Fi, ZigBee
and Bluetooth operate in the 2.4 GHz Industrial-Scientifical-
Medical (ISM) band and typically guarantee a localization
error of the metre order, which may not be satisfactory for
vehicle localization. On the contrary, UWB and RFID sys-
tems, can allow to get centimetre order localization. In par-
ticular, UWB devices allow to cover larger areas with few
reference anchors, thanks to a reading range of tens of metres,
despite of a relatively high cost and the power supply need.
Instead, passive RFID tags are cheap and battery free, and
they can be easily installed in the scenario with almost no
worries about the number of tags required for an assigned
localization accuracy. In the Ultra-High-Frequency (UHF)
band, tags are detectable up to 10 m with an Effective Radi-
ated Power (ERP) of 2 W, making RFID systems classifiable
as low-power consumption systems.

More recently, 5% Generation of cellular networks (5G),
millimetre-Waves (mmWaves) or Terahertz technologies
have been also suggested [18]-[20], even if they are at an
early-stage implementation. 5G and mmWave systems at
26 GHz guarantee a centimetre order localization error but
require for an ad-hoc system infrastructure that is not cur-
rently easily available on the market. Terahertz technology
provides dozens of GHz bandwidth which enables high spa-
tial resolution; on the other hand, THz devices are complex
and expensive, and the propagation range is limited by the rel-
atively high atmospheric absorption. In all RF systems oper-
ating at high frequency bands, e.g., UWB, 5G and mmWaves,
the multipath propagation, typical of the indoor scenario, may
deeply affect the localization performance especially in pres-
ence of multiple obstacles. Such an effect can be mitigated
with RFID systems working at lower frequencies.

In authors’ opinion, besides all the aforesaid features of
the RFID systems, their increasing presence in logistics and
retails represent another advantage. In particular, commer-
cial RFID robots are already available in the market with
embedded RFID hardware to perform inventory operations
[21]-[23]. Thus, the latter can be employed to develop the
vehicle self-localization system by exploiting the hardware
installed for inventory purpose. Such considerations lead to
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an increasing interest in RFID-based solutions for vehicle
indoor localization, in the upcoming years.

For above reasons, in this paper we present a state-of-
the-art analysis on RFID-based solutions focused on vehicle
localization for indoor scenarios. In detail, we propose a
classification based on solutions exploiting only the RFID
technology, sensor-fusion techniques combining data from
RFID systems and proprioceptive sensors, and sensor-fusion
techniques combining RFID data with those of other exte-
roceptive sensors in addition to the RFID system itself. The
pros and cons of each category are discussed together with
their typical localization performance.

It is noteworthy that through the paper the term vehicle
refers to a ground vehicle. Thus, the survey describes the
state-of-the-art solutions addressing a 2D localization issue.
Even if most of the solutions have been suggested for and
tested with robots, they can be applied, or extended, to face
with the localization of almost any ground vehicle, e.g., fork-
lift, unmanned ground vehicle, and so on, once some specific
requirements on vehicle size and speed are met. Aerial vehi-
cles, e.g., drones and unmanned aerial vehicles [24], represent
a different category which deserves for a separate discussion,
which is outside the purpose of this paper.

Finally, we would like to highlight that chipless RFID sys-
tems could also be used for localization purposes; however,
they have not been considered in the present survey since
they are still at an early development stage and commercial
hardware is not yet available.

The paper is organized as follows: Section II gives a brief
introduction to the RFID localization fundamentals, by show-
ing the right nomenclature needed to present the available
solutions. Section III provides the main features of the above
indoor vehicle localization systems, which are deeply inves-
tigated in the following sections: solutions exploiting only
the RFID technology are presented in Section IV; sensor-
fusion techniques combining data from RFID systems and
proprioceptive sensors are described in Section V; sensor-
fusion techniques combing RFID data with those of other
exteroceptive sensors in addition to the RFID system itself
are depicted in Section VI. Then, Section VII discusses the
performance analysis and the research trends of the RFID-
technology adoption for vehicle localization. Finally, con-
cluding remarks are given in Section VIIIL.

Il. RFID LOCALIZATION FUNDAMENTALS

A. NOMENCLATURE

When addressing RFID localization techniques, differ-
ent tasks can be solved: positioning, tracking, naviga-
tion, or Simultaneous Localization and Mapping (SLAM)
(Fig. 1). We refer to positioning when the method estimates
the punctual position of the vehicle at a given time, being
static or moving. Tracking is performed when the method
estimates the vehicle trajectory, namely a sequence of consec-
utive positions assumed by the moving vehicle over the time.
Such locations can be estimated independently (memory-less
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FIGURE 1. Sketch of positioning, tracking, navigation and SLAM principles.

localization), or by accounting for the previous history of the
mobile unit locations, as well as of its velocity and acceler-
ation. Navigation concerns the programming of the vehicle
trajectory to follow a pre-determined path or to reach a target
location through the shortest path. SLAM consists in the
vehicle tracking together with the acquisition of the environ-
ment map [21]-[26]. When employing the RFID technology,
SLAM solutions determine the vehicle trajectory together
with the location of reference RFID tags contextually, without
any a priori knowledge of the environment [27]. Through the
manuscript, we will use the more general term “localization”
to refer to any of the four abovementioned issues.

B. LF AND HF RFID SYSTEMS

Currently, many types of RFID systems are available on the
market. The first developed solutions were the Low Fre-
quency (LF) systems at 125 kHz and the High Frequency
(HF) systems at 13.56 MHz (Fig. 2).

LF systems are usually adopted for smart cards and tickets.
They exploit inductive coupling and usually require for a
quasi-direct physical contact between the reader and the tag
itself, so they cannot be profitably employed for localization
tasks.

HF systems exploit the inductive coupling, too, but
they exhibit a few-centimetres reading range which is
enough to deploy localization systems based on a proximity
approach. Indeed, earliest RFID-based solutions for vehi-
cle localization were based on the read/no-read approach
[28]. A binary detection information is derived from the
reading or missed-reading information of the tag Electronic
Product Code (EPC). The vehicle position is associated to the
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FIGURE 2. Operating frequency and battery requirements of RFID
systems.

position of the detected reference tag at the reading times-
tamp.

C. UHF RFID SYSTEMS
More recently, Ultra High Frequency (UHF) systems at
433 MHz, 860-960 MHz, and 2.4 GHz have been imple-
mented. Some custom RFID systems in the Super High Fre-
quency (SHF) band working at 5.8 GHz also exist (Fig. 2).
UHF tags can be detected through a microwave signal
transmission, so they rely with the electromagnetic wave
propagation. The detection distance depends on several fac-
tors and mainly on the presence or absence of a tag battery.
Active tags can achieve a reading range of tens of metres and
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they usually work at 433 MHz by reaching a reading range
up to 100 m.

The first well-known solutions, such as LANDMARC [29]
and SpotON [30], exploit the active RFID technology to
perform tag localization. Passive RFID tags do not have any
power supply, and they communicate through the modulated
backscattering principle. So, they self-power through the
impinging electromagnetic wave transmitted by the reader
and reflect it back by modulating the signal to communicate
their EPC, without using an internal local oscillator.

Current UHF passive tags (860-960 MHz) can reach up to
10 m of reading range [31] and they are receiving increasing
attention for localization purposes, due to their low-cost, easy
installation and maintenance. Semi-passive tags carry on a
battery which is only used to power up the microchip or aux-
iliary devices such as sensors, but not to feed the transmitter.
Thus, they communicate through the modulated backscatter-
ing as for passive tags.

Other than the tag identification data, COTS UHF-RFID
readers usually provide a useful information about the signal
amplitude, named as the Received Signal Strength Indicator
(RSSI), which can be profitably employed for localization
purposes [32]. In fact, it is theoretically possible to infer the
reader-tag distance from RSSI measurements, so using them
for ranging operations.

By referring to [33], the received signal power at the reader
side can be expressed as:

4
A
Preceived=PmG%XG§XMx2(m) \H|* 4))

where A is the signal carrier wavelength, d is the distance
between the reader antenna and the tag at the reading times-
tamp, Prx is the power transmitted by the reader, Gry and
GRry are the gains of the reader and tag antennas, respectively,
X 1is the polarization matching coefficient, M is the modula-
tion backscattering coefficient and H represents the complex
factor which describes the channel response. For a line-of-
sight scenario, H = 1.

The RSSI, measured in dBm and available in all commer-
cial RFID readers, is a parameter proportional to the above-
mentioned received signal power level (1). Consequently, it is
affected by many factors such as tag model, chip sensitivity,
tag orientation, tag antenna, and material properties of the
tagged object. Besides, other external factors such as multi-
path propagation, interference and occlusion phenomena can
affect the RSSI behaviour, too. It is apparent that a reliable
path-loss model that may consider the effects of all above
phenomena is difficult to define, and ad hoc modifications of
(1) should be properly designed according to the application
scenario. The latter represents a very difficult task especially
in indoor scenarios with rich multipath propagation, by lead-
ing to an intrinsic unreliability of the RSSI-based methods,
especially when localization of a moving target is pursued.

Modern readers can also provide the phase of the tag
backscattered signal as an additional output information.
In fact, IQ demodulators are employed in all commercial
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FIGURE 3. Scheme of a UHF-RFID system.

readers, and a coherent demodulation is a mandatory step
for the correct signal reception (Fig. 3). Such parameter is
exploitable only for passive or semi-passive RFID tags which
communicate through the modulated backscattering, without
employing internal local oscillators for data transmission. As
demonstrated by Nikitin et al. in [34], phase-based localiza-
tion methods allow for a better localization accuracy, since
they are more robust to the multipath propagation than the
RSSI-based approaches [35].

The measured phase of the tag backscattered signal can be
written as:

4
¢ = mod (%d + ¢o + wy, 271) 2)

where wy is the phase noise and ¢ is the phase offset
including the effect of cables and other reader components
(Fig. 3). The latter also depends on reader antenna and tag
typologies, the tag chip, the tag orientation with respect to
the reader antenna and the material of the tagged item, as all
of them may affect the tag backscattering.

It is apparent that, for localization purposes, the first issue
to be solved is the 2w phase-ambiguity. To this aim, phase
unwrapping techniques can be adopted to restore the physical
continuity of the phase delay. As an alternative, the phase
samples can be assembled in a phasor sequence [36], [37]
and then employed as an input of the localization algorithm.
In both methods, multiple readings with a proper spatial
sampling must be available [38]. Furthermore, the offset term
¢o should be correctly measured to derive the distance infor-
mation from (2), leading to time-consuming calibration pro-
cedures. To overcome above issues, alternative approaches
use the Phase Difference of Arrival (PDOA) [36], [37].

An overview of the many techniques typically applied to
perform localization through the UHF-RFID technology, e.g.,
range-based methods and range-free methods, can be found
in [39], [40].

It is noteworthy that it is not possible to perform high accu-
racy and unambiguous ranging measurements of the reader-
tag distance by using the Time of Arrival (TOA) or Time
Difference of Arrival (TOA) approaches. In fact, the com-
munication channel bandwidth of COTS UHF-RFID systems
is relatively limited (around hundreds of kHz), and even the
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whole associated bandwidth is still not sufficient to make
accurate time-of-flight measurements.

lIl. RFID VEHICLE LOCALIZATION

A. APPLICATION SCENARIOS

Since an RFID system represents a valuable solution to
perform vehicle positioning, tracking, navigation or SLAM,
the vehicle-mounted RFID infrastructure can be profitably
employed for a simultaneous and accurate tagged-item inven-
tory and localization. Thus, the RFID technology combined
with ground vehicles could be promising to cover many
applications typical of pervasive robotic systems [41], being
a valuable alternative to other competitor technologies on the
market.

In retails, lots of robots already equipped with COTS
RFID-UHF hardware already exist, i.e., RFID robots [42].
Among them, AdvanRobot by Keonn [21], Tory by MetraL-
abs [22], and Robi by Fetch Robotics [23] are worth men-
tioning. Such robots are able to navigate themselves within
the indoor scenario for inventory purpose.

In logistics, RFID-based vehicles such as forklifts [43], can
help the implementation of smart warehouses [44], [45]. This
allows not only the item inventory, but also the development
of new services such as the optimization of item placement
and of vehicle paths within the warehouse, the real-time
interaction between the production facilities and the storage
area, thus aiming to get an effective Cyber Physical System
[46]. Moreover, the RFID infrastructure can help the colli-
sion avoidance or work-related injuries [47], by ensuring the
operator safety.

Still in the framework of Industry 4.0, smart manufacturing
can be implemented thanks to collaborative robots [48] able
to interact with each other and also with human operators
along the assembling line. In such case, high localization
accuracy is required for robots performing the assigned task,
also to guarantee the worker safety.

In healthcare, RFID robots can be also applied to imple-
ment intelligent hospitals [49] by monitoring the biomedical
equipment location [50] or by guiding the patients [51].

The coexistence of humans and robots in the domestic
sphere allows the deployment of smart homes where the
RFID technology can be fruitfully employed. An RFID robot
may sense the environment and interact with it. On the basis
of the detected tag, the robot can accomplish specific tasks.
Consequently, the RFID robot is ready to become a social
robot, suitable also for elderly care [52], guidance of visual-
impaired people [53] and ambient assisted living applications
[54]-[55].

Again, in Smart Environment applications [56], RFID
robots are employed to perform as shopping assistants
[57] or tour-guide in museums or exhibitions [58]. Since
such scenarios are typically multi-floor, e.g., shopping
malls or museums, reference tags can be easily installed to
allow the recognition of the floor/room through the associa-
tion of the detected EPC with a proper database.
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and moving in an indoor scenario where reference tags are deployed for
localization purposes.

B. RFID-BASED LOCALIZATION METHODS

A number of solutions have been presented, which are based
on a mobile agent [59]-[64] or a robotic grasping system [65],
[66]. We distinguish between moving-reader based systems,
e.g., reader-equipped vehicles exploiting a set of reference
tags, [67]-[69], and moving-tag based systems, e.g., tagged
robots that self-localize by using an infrastructure of fixed
reader antennas [39], [70]-[74]. The latter solution is more
expensive and complex with respect to the first one, which is
typically preferred.

In reader-equipped vehicles, the RFID reader, with one
or more antennas, is installed on the vehicle, whereas sev-
eral RFID tags are deployed in the scenario as reference
markers (Fig. 4). If the tags are placed at known positions,
the positioning/tracking/navigation task can be solved by
properly exploiting the backscattering signal data measured
from them. Alternatively, for either unknown or partially
known reference tag positions, a SLAM problem [59] can be
addressed.

Several factors may influence the vehicle localization when
using a grid of reference tags, such as tag typology, tag den-
sity, tag orientation, and tag mutual electromagnetic coupling.
A dense deployment of RFID tags may give higher localiza-
tion accuracy, but it is more expensive and presents a higher
influence of the electromagnetic coupling among nearby tags,
together with lower number of successful readings per tag,
in an assigned temporal interval. Since passive RFID tags
usually do not have computational capabilities to perform
any kind of data processing by themselves, the localization
is performed according to a centralized scheme at the vehicle
side or at the system back-end.

To reduce the number of reference tags while keeping
unaltered the localization performance, widespread solutions
foresee to apply a sensor-fusion approach [75], by combining
data acquired by the RFID system with other sensors. In
particular, we can employ proprioceptive sensors or other
exteroceptive sensors in addition to the RFID system itself.
Depending on the accuracy and performance of the employed
sensors, this can lead to a cost enhancement which however
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could be tolerated according to the specific application sce-
nario, or if high localization performance is required.

Proprioceptive sensors measure internal quantities to the
mobile vehicle system. When the localization task is pursued,
they are typically kinematic sensors such as encoders, optical
flow sensors or IMUs equipped with accelerometers, gyro-
scopes and/or magnetometers. A dead-reckoning approach is
typically applied to retrieve the vehicle trajectory in a local
reference frame, through a single or a double integration.
Since these sensors are not able to sense the environment, they
cannot provide any information about the absolute location
of the vehicle within the scenario and neither its starting
location. Moreover, even if the latter is perfectly known, the
only dead-reckoning is unable to track the vehicle along a
long trajectory due to the low accuracy of such proprioceptive
sensors. The longer the trajectory, the more the measurement
error accumulates and consequently the greater the error on
the estimated trajectory.

To overcome abovementioned issues, the vehicle has to be
able to sense the external environment through exteroceptive
sensors as for example Laser Range Finders, sonars, cameras,
and RFID systems as well. The data collected by both the
proprioceptive and the exteroceptive sensors can be combined
with several approaches.

The more widespread family of sensor-fusion algorithms
relies on sequential Bayesian or Monte Carlo estimators for
dynamical systems, such as the Kalman Filter and its exten-
sions (Extended Kalman Filter, EKF or Unscented Kalman
Filter, UKF), or the Particle Filter (PF) and its extensions [76].
In some other cases, smoothing algorithms, or Finite Impulse
Response (FIR) filters are adopted too, by resembling a vector
formed by consecutive sensor-data samples [77]. All these
algorithms may find application also when deploying sensor-
fusion localization systems that employ proprioceptive sen-
sors and the RFID system as an exteroceptive one.

A general representation of a sensor-fusion scheme that
combines data from several proprioceptive and exteroceptive
sensors is shown in Fig. 5 [78]. Typically, a centralized
approach is adopted, with proprioceptive and exteroceptive
data gathered by a central unit, e.g., the vehicle or the system
back-end, which then performs a set of processing operations.
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The first one is a pre-processing step to prepare all the data
for the localization procedure. The second one is the proper
association of data that require for some manipulation to be
correctly mapped into the environment, as for the case of the
range measurements by the LRF or the images acquired by
cameras [79]. The latter step can be skipped when employ-
ing the RFID system as an exteroceptive sensor, since in
commercial hardware the measured parameters are automat-
ically associated to the tag EPC within the output logfile and
therefore to the tag location [80]. The third operation is the
processing related to the localization algorithm itself. As far
as navigation systems are concerned, the central unit is also
able to send commands to the vehicle by piloting it through
the environment.

In the state-of-the-art description presented in the follow-
ing sections, we distinguish between three different localiza-
tion schemes:

i) localization systems which only rely on RFID technol-
ogy [28], [60], [67]-[72], [81]-[84] (Section IV);

ii) localization systems which fuse data from both an
RFID system and proprioceptive sensors [73], [85]-[101]
(Section V);

iii) localization systems which fuse data from RFID sys-
tem and any additional exteroceptive sensors, possibly even
together with proprioceptive sensors [52], [74], [102]-[111]
(Section VI).

In each proposed solution, the operating frequency and
the battery requirements of the tags can be different. The
employed measured parameter, e.g., EPC, RSSI and phase
may change too. For each solution, the test area description,
the required system infrastructure and the achieved local-
ization performance are reported. Moreover, each referenced
solution is also classified according to the type of localization
task to be performed, namely positioning, tracking, naviga-
tion, or SLAM (Fig. 1).

IV. LOCALIZATION WITH AN RFID INFRASTRUCTURE
This section is devoted to those solutions that only employ
an RFID system to determine the vehicle position [28],
[60], [67]-[72], [81]-[84]. This category does not rely on
the sensor-fusion paradigm, as only a single source of data is
available. A schematic of these systems is depicted in Fig. 6.
A set of reference tags are deployed in known or unknown
locations and detected by the on-board RFID reader during
its motion. A summary of the state-of-the-art contributions
here described is presented in Table 1, where we distinguish
among solutions exploiting HF-RFID or UHF-RFID tech-
nologies.

A. HF-RFID SYSTEMS

Early solutions have exploited an HF-RFID reader on the
vehicle with a grid of fixed reference tags installed in the sce-
nario, to perform the vehicle tracking [28], [83] or navigation
[81], [82], [84]. In the simpler systems, the vehicle position
is associated to the position of the detected tag (Fig. 7), thus
the localization performance is strictly dependent on the tag
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density. Since the reading range of HF tags is limited to a
few centimetres, such a grid has to be dense if an accurate
localization is required.

In [28], the authors presented a special carpet equipped
with HF tags, to perform the robot tracking. The robot is
equipped with an HF-RFID reader, moves upon the tagged
carpet, and localizes itself by associating its position with the
location of the detected RFID tag. A localization error of 9
cm was reached in a relatively small scenario (sizes are not
given in the manuscript) with 19 reference tags very close to
each other.

Likewise, in [81], the authors proposed a navigation
method for mobile robots by using an HF-RFID system. The
robot can identify tags deployed on the floor and measure its
position based on the relation between previous and current
location. 198 passive tags were laid on the floor in a grid-like
pattern over an area of 4.2 m x 6.2 m, with 34 cm spacing.
At each step, the robot orientation is updated according to
the detected-tag information, to reach the assigned goal. The
proposed navigation method allowed for navigation errors
of 13.3 cm and 5.7 cm on the x- and y- coordinates, respec-
tively, along a path of around 6 m.

In [82], a stigmergic approach [113] was proposed for
robot navigation through an hexagonal grid of HF-RFID tags
buried under a wooden floor. A robot equipped with an RFID
reader can exploit the tag map to navigate to the assigned
destination from any position in the environment, by simply
following the tag reading information. The algorithm relies
on the calculation of the shortest path and the gradient descent
navigation. As an experiment, a calibration procedure run for
some hours and provided a navigation RMSE error below
1 m after moving for 12 hours in a 7 m x 4 m apartment
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environment. 350 tags were placed underneath the floor for
the tests.

In [83], the authors proposed an indoor tracking system
that provides 2D position and orientation for mobile robots.
A priori-knowledge of the geometry of the reader-equipped
robot allows for its precise localization. The obtained average
error was equal to 6.3 cm, whereas the standard deviation was
5.3cm,ina3.0 m x 1.8 m experimental scenario with 39 HF
tags deployed on a carpet.

The solution presented in [84] showed a navigation algo-
rithm where a set of HF tags placed on the floor provide
information to guide the robot through a desired path. The
adopted navigation strategy is the Circular Navigation Guid-
ance (CNG). A mean navigation error of 6.5 cm was achieved,
when 81 tags were deployed on a 25 cm spacing grid to cover
a2m x 2 m area.

B. UHF-RFID SYSTEMS

Most recent solutions exploit a UHF-RFID reader on the
vehicle with a grid of fixed reference tags installed in the
scenario [67]-[69]. As for HF-RFID based systems, local-
ization performance depends on the tag density, even if the
larger reading range allows for a coarser tag deployment.
Both range-based [67] and range-free methods [68], [69]
were proposed.

In [67], a set of reference passive tags is placed close to the
known robot path in such a way that at least two reference
tags are detected at each reader interrogation. The proposed
algorithm is a Kalman-Filter variant based on two steps.
Firstly, a rough location of the reader is estimated through
an RSSI model which neglects the angle-dependence of the
path loss due to the non-isotropic antenna radiation-pattern.
Then, an iterative procedure is implemented to determine the
angle path-loss and therefore to modify the RSSI model by
aiming to improve the ranging accuracy. Finally, the position
is refined by accounting for some geometrical constraints.
Experiments were conducted by considering a robot path of
around 4.75 mina 6 m x 6 m area, by employing 8 reference
tags, which were located 1.2 m apart each other and 2 m far
from the robot path. The average absolute position error was
10 cm, and the average of the absolute tag-reader distance
errors was about 6 cm. In [68], the authors suggested a
tracking system adopting passive UHF-RFID tags attached
either on the floor or at the ceiling. Based on the tag EPC,
the algorithm extracts the portions of space where a tag
is detectable. Then, the algorithm assumes that the vehicle
motion follows a 3D B-spline surface function and leverages
the RFID detection data to estimate the robot trajectory. The
method also considers when the reader is close to the room
corners and some difficulties to detect the tags may be faced.
The obtained average localization error was 3.7 cm, when
81 tags were deployedina 7 m x 7 m area. In [69], the authors
proposed a navigation scheme with passive UHF-RFID tags
to guide robots through large environments. Basically, the tag
EPC is associated to an instruction for the robot motion.
A robot moves autonomously through a hallway and knows
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TABLE 1. Vehicle localization solutions employing an RFID infrastructure.

Ref. Year | Application Input 2D performance Experimental Infrastructure
Parameter scenario
Localization with HF-RFID Systems
[28] | 2009 | Tracking EPC Localization error of 9 cm Sizes not available 19 tags
[81] | 2009 | Navigation EPC Localization error of 13.3 cm | 4.2 m x 6.2 m area 198 tags with 34 cm spacing
in the x- coordinate and
5.7 cm on the y- coordinate
[82] | 2009 | Navigation EPC Navigation RMSE below I m | 7m x4 m apartment | 350 tags underneath the floor
after running for a 12-hours | environment
calibration step
[83] | 2012 | Tracking EPC Average error of 6.3 cm, and | 3.0 m x 1.8 m area 39 tags
standard deviation of 5.3 cm
[84] | 2012 | Navigation EPC Mean error of 6.5 cm 2m x 2 marea 81 tags with 25 cm spacing

Localization with UHF-RFID System.

[67] | 2011 | Positioning RSSI Average absolute error of | Robot path of around | 8 tags with 1.2 m spacing and 2 m
10cm, and the average | 4.75m,ina6mx6m | far from the robot path
absolute tag-reader-distance | area
error of around 6 cm
[68] | 2013 | Tracking EPC Average localization error of | 7 m x 7 m room 81 tags
3.7cm
[69] | 2014 | Navigation EPC Robot correctly recognizes | University  building | 4 tags
the steering direction (not specified size)
[70] | 2012 | Tracking Phase RMSE of centimetre order 3 m x 3 marea 4 fixed antennas (moving tag)
[71] | 2017 | Tracking Phase, Localization error below | 3 m x 3 marea 3-4 fixed antennas (moving tag)
RSSI 10 cm
[60] | 2014 | Tag Following | RSSI Mean tracking error of | Sizes not available Hallway: 400 tags (both UHF and
(navigate to tag) around 30 cm HF)
Library: 700 tags (both UHF and
HF)
[72] | 2020 | Navigation RSSI Steady state error of 28 cm 7 m x 7 m area One single tag

if it has to turn left or right based on the detected tag, to reach
the assigned destination. Experiments were conducted with
four tags in a university building of not specified sizes.

By considering the above-mentioned solutions, we can
state that the localization error can be of centimetre order,
for an average tag density of roughly 1 tag per square metre.

Generally speaking, when performing vehicle localization
with a grid of UHF-RFID reference tags, their installation
and the knowledge of their exact position are key issues.
Typically, during the setup stage, the reference tag database
is created, by associating the tag EPC to its position within
the scenario. Obviously, the uncertainty in the position mea-
surements reflects on the uncertainty in the vehicle local-
ization. In RSSI-based methods, this issue is less critical,
since the amplitude of the tag backscattering signal exhibits
a relatively small variation with respect to the positions.
On the contrary, in phase-based methods the phase value
is more sensitive to the position variations, as the wave-
length is nearby 34 cm at the UHF operating frequency band.
Consequently, when phase-based methods are applied, small
errors in the knowledge of the reference tag positions may
have a significant impact on the accuracy of the vehicle
localization.
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As an alternative to the employment of reader-equipped
vehicles, it is possible to install the tag on the vehicle,
by using an infrastructure of fixed reader antennas all around
the scenario. In such framework, we want to mention the
existing solutions to locate moving tags [70], [71]. Both are
range-based approaches exploiting an infrastructure of four
reader antennas. In [70], a phase-based tracking method for
moving tags and an infrastructure of fixed antennas was
presented. The phase measurement ambiguity is solved by
using the EKF and the Rauch-Tung-Striebel smoother, where
the dynamic state includes position, velocity and phase offset
term, for each antenna. The RSSI allows to estimate the initial
position of the tag. Such a solution achieved a localization
root mean square error (RMSE) of centimetre order when
employing four reader antennas at the corners of a 3 m x
3 m room. In [71], the authors proposed another phase-based
method to track the position of a moving UHF-RFID tag.
An Extreme Learning Machine processes the RSSI data to
determine the tag position, while phase data are used to
estimate the tag velocity. Then, both position and velocity
allow for applying the linear Kalman Filter. More than 90%
of measurement results showed a localization error lower than
10 cm, when employing four antennas in a 3 m x 3 m area.
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FIGURE 8. General schematic of a localization system employing a sensor
fusion approach that combines RFID system and proprioceptive sensors.
The central unit is on the vehicle.

In such framework, it is worth mentioning the tag-
following system presented in [60], which represents a kind
of navigation solution in which a robot is guided by following
a moving UHF-RFID tag. The algorithm relies on a com-
bination of a two-stage dynamic motion model with a dual
particle filter, to capture the dynamic motion of the object
and to quickly recover it from failures in tracking. To work
properly, the robot needs to measure RSSI data. Tests were
performed in a hallway and in a library environment of not
specified sizes, by deploying 400 and 7000 tags, respectively.
The robot travelled for a path of about 418 m in 1503 s in the
hallway, and for a 102 m long path in 465 s in the library. The
algorithm showed a mean navigation error of about 30 cm.

Another navigation solution for robots equipped with UHF
RFID commercial systems was proposed in [72]. The goal is
to make the robot reaching a static RFID tag. At each step,
the robot stops and turns to different directions on the basis
of the RSSI measurements. A set of experiments have been
carried out by including different initial heading-angles of
the robot with respect to the goal. The experimental results
showed an average steady-state error less than 28 cm within
a navigation area of approximately of 7 m x 7 m, with a time
interval between 176 s and 236 s to reach the goal.

V. RFID SENSOR-FUSION WITH PROPRIOCEPTIVE
SENSORS

Typically, vehicles are equipped with IMUs or rotary
encoders able to measure the wheel motion. In this section,
we address the fusion of the data gathered by the RFID
system with those measured by the proprioceptive sensors to
perform vehicle localization. Such kind of system is the most
representative and widespread category.

‘When proprioceptive sensors concur to the vehicle position
estimation, the reference tag density can be reduced, thanks
to the a-priori information about the vehicle motion given
by on-board sensors, so reducing the installation cost and
complexity. A simple schematic of such systems is depicted
in Fig. 8. A common approach to fuse proprioceptive sensors
and RFID data employs sequential estimators. Typically, two
main steps can be recognized: a prediction step and an update
step [9]. To better understand, we can imagine tracking a
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FIGURE 9. Graphical representation of a localization sequential estimator
that fuses RFID and proprioceptive data.
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FIGURE 10. Block schematics of a localization sequential estimator that
fuses RFID and proprioceptive data.

vehicle moving on a straight line (x-axis), as shown in Fig. 9.
The prediction step uses the kinematic proprioceptive sensors
data (e.g., odometry data) to compute the prior probability
density function, namely prior distribution, of the vehicle
location on the straight direction, so it consists of a first
hypothesis on the vehicle motion. Then, the prediction step
computes the predicted location at the k-th timestamp X,
starting from the location estimated at the previous step xx_1.
After that, the update step consists in using the measured
RFID data (EPC, RSSI, or phase) to compute a likelihood
function and use it to update the prior distribution, in order
to find the posterior distribution of the vehicle location. From
the posterior distribution, it is possible to infer the vehicle
estimated location X, which should be closer to the actual
location x; than the predicted location %, . This process is
repeated for each time instant &, as the prediction and update
steps are enclosed in a loop. Fig. 10 shows a block diagram of
a general localization sequential (or recursive) estimator that
fuses RFID and proprioceptive data.

A summary of the state-of-the-art on RFID sensor-fusion
with proprioceptive sensors is presented in Table 2. Per-
formance is relative to the 2D localization issues, unless
otherwise specified. For a better understanding, the main
solutions have been split into four categories, according to
the operating frequency and measured parameter:
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o solutions with HF-RFID
EPC [85], [86];

o solutions with UHF-RFID systems exploiting the
EPC [87], [88].

o RSSI-based solutions
[891-[92].

« phase-based solutions with UHF-RFID systems [73],
[93]-[98], [100], [101].

systems exploiting the

with UHF-RFID systems

A. HF-RFID SYSTEM AND EPC PARAMETER

HF systems only allow for EPC data gathering. In this case,
localization performance is strictly dependent on the tag den-
sity, but the presence of other sensors allows to reduce the
infrastructure complexity with respect to HF-based solutions
that do not rely on additional sensors. In [85], the authors
proposed a triangular geometry of the tag grid as it reduces the
estimation error with respect to the regular squared grid. Basi-
cally, the new configuration is formed by a regular squared
grid where the tags location on the even rows are shifted with
respect to the tag location on the odd rows. The experimental
analysis showed a localization error of around 1 cm, ina 1 m
x 1 m area with tags deployed on a grid with a 5-cm step.
In [86], a SLAM solution was presented. The prediction step
is done with odometry, then a delayed-state EKF provides
the position estimation and mapping by employing the tag
detection data. The HF-RFID reader is carried by the robot,
and some HF tags are placed on the walls. Through an exper-
imental campaign, the authors showed a mean mapping error
of 2.43 m, with 25 tags in a 20 m x 50 m environment. In the
same scenario, the mapping error could be reduced down to
1.44 m by resorting to 66 tags.

B. UHF-RFID SYSTEM AND EPC PARAMETER

The detection information of UHF-RFID tags has a differ-
ent meaning with respect to that of HF-RFID tags. Indeed,
the detection information of UHF-RFID tags cannot be univo-
cally associated with a specific location within the scenario,
due to the detection range of few metres and to the wide beam
of the conventional UHF reader antennas. To get a satisfactory
localization accuracy, probabilistic tag detection models are
usually inferred from tag detection.

A SLAM system based on odometry data and UHF-RFID
measurements was proposed in [87]. The reference tags are
arbitrarily placed in the scenario and their positions are
unknown. Thanks to a graph-based close-loop algorithm,
the RFID data allow to correct the odometry errors. Finger-
printing maps are built based on the reference-tag detection at
a given reference time. Different features are extracted from
the combination of close maps and far maps and are employed
on a k-Nearest Neighbour (k-NN) classifier able to recognize
previously visited locations (close-loop approach). A mean
residual localization error of around 40 cm was reached
by employing 400 reference tags in a 195 m? area, when
considering trajectories with arbitrary shapes and of lengths
from 68 m to 295 m. In [88], the authors proposed a tracking
system for UHF-RFID robot by exploiting a probabilistic

17930

sensing model of the reference tag detection. The algorithm
estimates the speed of the moving agent by exploiting the
reader antenna reading range and the maximum time duration
of the tag staying within such reading range. Based on this
value, different algorithms can be applied: a PF algorithm,
a Weighted Centroid Localization (WCL) algorithm or a
hybrid algorithm. WCL algorithms allows to reduce the com-
putational cost. The experimental results showed a localiza-
tion error lower than 20 cm for a robot moving at a speed
between 0.1 m/s and 0.6 m/s, in a 4 m x 6 m area, with
120 reference tags deployed on a square grid with 50-cm
spacing.

C. UHF-RFID SYSTEM AND RSSI PARAMETER

In this subsection, sensor-fusion approaches combining RSSI
data by a set of reference tags with data by proprioceptive
sensors [89]-[92] are investigated.

In [89], a navigation problem was presented where the
robot must follow an UHF-RFID-guided path. The current
robot position is estimated through a Particle Swarm Opti-
mization (PSO) algorithm applied to the RSSI data. A Fuzzy
Logic Controller (FLC) controls the robot actuators to let it
follow the provided mission. To validate the method, a 36 m?
room with two reference tags was built through a simulator.
Numerical simulations predicted a navigation RMSE of 6 cm.
In [90], the authors presented a self-recognition method for
vehicle tracking, which exploits a modification of a classical
particle filter. A calibration process is executed to a map
of points where the two readers, placed on the vehicle in a
symmetrical position, measure the same RSSI values. After
that, the odometer is used to predict the hypothetical position
of the moving vehicle. Then, the RSSI values gathered by the
reference tags are employed for the vehicle position estima-
tions. As a further step, the actual tag location is corrected
by comparing the observations of the two readers and using
the tag position of the unique observation with identical
RSSI or the smallest RSSI difference. Finally, the vehicle
location is corrected on the basis of the tag location. The
method allowed for a centimetre order localization error for
a vehicle moving at different speeds in a real indoor scenario
of 5 m x 10 m, by employing a dense grid with 578 tags.
In [91], the authors proposed an extended unbiased finite
impulse response (EFIR) filter for robot self-localization
(tracking). The robot is equipped with a UHF-RFID reader
and it can measure the distance from at least two tags at
once, by employing an RSSI model. The prediction step is
done with odometry data provided by the encoders on the
wheels. The update step is done with the EFIR filter that per-
forms the smoothing by exploiting the RSSI-based distance
data retrieved through a path-loss model. Such filter is more
robust with respect to the Kalman filter under unbounded
disturbances. Simulated results showed a centimetre order
localization error in a 16 m x 12 m area with 35 reference
tags.

In [92], a tracking method which adopts an active UHF-
RFID system was presented. The target device is a mobile
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TABLE 2. Vehicle localization solutions exploiting a sensor-fusion approach between RFID and proprioceptive sensors.

Ref. Year | Application | Proprioceptive sensors | 2D performance Experimental scenario Infrastructure
Localization with HF-RFID Systems. Input parameter: EPC
[85] 2007 | Tracking Encoders Localization error of around | 1 mx I m area Tags with 5 cm spacing
1 cm
[86] 2010 | SLAM Encoders Test 1: Average mapping error | 20 m x 50 m area Test 1: 25 tags
of2.43 m Test 2: 66 tags
Test 2: Average mapping error
of 1.44 m
Localization with UHF-RFID Systems. Input parameter: EPC
[87] 2010 | SLAM Encoders Mean residual cartesian error | Trajectories of length | 400 tags
of around 40 cm between 68 m to 295 m
with arbitrary shapes in a
195 m’ area
[88] 2015 | Tracking Encoders Localization error below 20 cm | 4 m X 6 m area 120 tags with 50 cm
(not mandatory) for a robot moving at speed spacing
between 0.1 m/s to 0.6 m/s
Localization with UHF-RFID Systems. Input parameter: RSSI
[89] 2008 | Navigation | Encoders RMSE of 6 cm (simulated | 36 m®> room (simulated | 2 tags
(for drive commands) analysis) scenario)
[90] 2013 | Tracking Encoders Centimetre order localization | 5m X 10 m area 578 tags
error
[91] 2014 | Tracking Encoders Centimetre order localization | 16 m x 12 m area 35 tags
error (simulated analysis)
[92] 2015 | Tracking Active RFID tags and Localization error below 1 m Room sizes varying from | 10 active tags with 5m
Bluetooth 18 m* to 50 m* spacing placed at the
room walls
Localization with UHF-RFID Systems. Input parameter: Phase
[93] 2014 | Tracking Encoders and custom Average position error of about | 6 m” area 2 tags
tags 4 cm
[94] 2015 | Tracking Encoders and custom Localization error of 4 cm 4 m x 3 mroom 2 tags
tags
[95] 2019 | Tracking Encoders Localization error of | 100 m x 10 m area Tags spacing varying
centimetre order with 99% from 1 mto5m
probability (simulated
analysis)
[96] 2019 | Tracking MU Localization  error  below | 10 m x 10 m area 2 tags
[97] 20 cm, (simulated analysis)
[98] 2020 | Tracking Encoders Average localization error of | 2.5 m x 2.5 m area 2 tags
11.4 cm
[100] 2020 | Tracking Encoders RMSE of 40cm (simulated | 60 m X 60 m area 4 tags
analysis)
[1o1] 2020 | Tracking Encoders Test 1: median error of 5.4cm | Test 1: 3.5mx2.6m | Test 1: 30 tags with 60
Test 2: median error of 5.9 cm office environment cm spacing
Test 2: 5 m x 5 m office- | Test 2: 42 tags with 60
like cluttered | cm spacing
environment
[73] 2019 | Tracking (IMU) — custom 5.8 | (1D) RMSE of 5 mm A 0.64 m long rectilinear | 1 fixed antenna (moving
GHz tag path tag)

phone connected to an RFID reader via Bluetooth, and two
active tags are deployed in the scenario. At first, a Kalman
filter is used to remove the fluctuations of the measured RSSI
values due to multipath. Once RSSI values are stabilized,
they are transformed into distance measurements through a
path-loss model. Hence, thanks to the Heron’s formula, a bi-
lateration estimation technique is performed. The method was
tested in rooms with different sizes, from 18 m? to 50 mz,
with 10 active tags placed on the room walls every 5 m.
The localization error never exceeded 1 m in all the analysed
scenarios.
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D. UHF-RFID SYSTEM AND PHASE PARAMETER

More recently, sensor-fusion approaches combine the phase
parameter available in modern UHF-RFID readers with data
gathered by the proprioceptive sensors [73], [93]-[101].

In [93], the robot tracking was achieved through a multi-
hypothesis EKF which combines the data from odometry
sensors and the phase of the signal backscattered by the
reference tags. The latter are custom tags placed at the ceil-
ing, which were designed to have a proper radiation pattern.
A calibration procedure for each reference tag is required to
estimate the phase-offset term (2). The average position error
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was 4 cm in a 6 m? room with two reference tags. An extended
version was presented in [94], which exploits both RSSI and
phase data. The new algorithm shows higher robustness with
respect to the errors on the knowledge of the reference tag
positions. Moreover, the phase offset calibration procedure
is avoided. Experimental results showed that a robot can be
localized with an error of around 4 cmin a4 m x 3 mroom by
employing two reference tags in the whole area. The author
concludes that the method can be employed in scenarios of
arbitrary sizes if deploying one reference tag every 2 m>.

In [95], the authors investigated the local and global non-
linear observabilities of the tracking system composed by a
unicycle robot which measures the PDOA data from multi-
ple UHF-RFID reference tags deployed in the environment.
It has been demonstrated that a dynamic position estima-
tor based only on the phase measurement is possible. The
prediction step is performed with the encoder data, while
phase data are employed to estimate the radial speed of the
vehicle with respect to the detected tags. Then, the latter
are used as input for the update step of a UKF algorithm.
Preliminary results in a realistic 100 m x 10 m simulated
scenario showed that the estimation error is of centimetre
order with 99% probability. The tag grid spacing ranges from
I mto 5 m.

More recently, a novel phase-based tracking method for
moving agents was presented in [96] after the patent applica-
tion in 2019 [97]. The robot localization is achieved through
a particle smoothing-like approach, by combining the kine-
matic data with the phase of the signal backscattered by a few
reference tags. By acquiring data during the relative motion of
the mobile reader with respect to the reference tags, it is pos-
sible to collect several phase samples resembling a synthetic
array, by notably reducing the reference tag density. The
phase variation of the tag backscattered signal varies accord-
ing to the distance variation between the reader antenna and
the tag, thus representing a peculiar parameter to estimate the
mobile-node trajectory. The algorithm can work with COTS
devices, and no calibration is required. The simulated analysis
showed a localization error below 20 cm, for robot arbitrary
paths in an area of 10 m x 10 m, by employing two reference
tags only. In [98], the method was tested in a real scenario,
when two rotary encoders are used as proprioceptive sensors
[99]. Two reference tags were deployed on the ceiling of a
2.5 m x 2.5 m office environment. The obtained average error
was 11.4 cm on a robot path of around 4 m.

In [100], an EKF with a Rauch-Tung-Striebel (RTS)
smoother was designed to perform the robot tracking when
rotary encoders are equipped. To properly meet the observ-
ability requirements, at least three tags are required to be
within the reader detection area at each observation time. The
authors tested the performance and the computational burden
of the algorithm for different sizes of the RTS smoother,
through a numerical analysis. A 40 cm RMSE can be achieved
with a smoother size of 55 samples, when running a complex
trajectory in a simulated 60 m x 60 m warehouse environ-
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ment, with four reference tags with an assumed unlimited
reading range.

In [101] a sensor-fusion algorithm was developed to track
a mobile robot equipped with two rotary encoders and two
RFID antennas pointed towards the floor. Sensor fusion is
performed through a particle filter that uses the data gathered
by the encoders in the prediction step, and PDoA together
with detection data acquired from a set of reference tags
placed at the floor in the update step. Thanks to the PDoA,
the method releases from the calibration of the phase offset
of each reference tag. Two tests have been conducted. In
the first one, the robot moved in a 3.5 m x 2.6 m office
environment with 30 tags spaced by 60 cm. The obtained
median position error was 5.4 cm for a 10 m path. The
second test has been conducted in a 5 m x 5 m office-
like cluttered environment with the presence of metallic
objects, and 42 tags were deployed with a grid spacing
of 60 cm. A median error of 5.9 cm was achieved on a 9-m
long path.

In [73], the Hybrid Inertial Microwave Reflectometry
(HIMR) method combined RSSI, phase and acceleration data
to track a 5.8 GHz custom semi-passive RFID tag in a 1-
D space, with one static reader. Here, the goal is to develop
a motion capture system which could be also applicable to
the mobile robot localization. The estimation algorithm is
derived using a continuous-time model of the system. The
accelerometer is embedded in the RFID tag, and acceleration
data are directly backscattered by the tag itself. Results from
measured data showed that the new approach results in a
5-mm tracking RMSE during the tag motion on a 0.64 m
long rectilinear path. Moreover, authors showed that RSSI
and phase data at the working frequency of 5.8 GHz, can
be enough to achieve mm-order localization even without
inertial sensors.

VI. RFID SENSOR-FUSION WITH ADDITIONAL
EXTEROCEPTIVE SENSORS

When vehicles are equipped with additional exteroceptive
sensors other than the RFID system, it is possible to include
them in the data fusion process. This category of systems
has a higher cost with respect to solutions where RFID data
are fused with proprioceptive-sensor data and may present a
slightly higher power consumption.

Exteroceptive sensors can have different natures: cameras,
i.e., computer vision systems, [55], [74], [102]-[104], Laser
Range Finders [58], [105], [106], Wi-Fi and other RF systems
[107]-[108], ultrasounds [109], [110], or hybrid solutions
[52], [111]. The introduction of a second exteroceptive sys-
tem in addition to the RFID system does not imply that pro-
prioceptive sensors must be removed. A schematic of a sensor
fusion architecture for this category of systems is shown
in Fig. 11.

A summary of methods based on RFID sensor-fusion with
other exteroceptive sensors in addition to the RFID system
itself is presented in Table 3.
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FIGURE 11. General schematic of a localization system employing a
sensor fusion approach between RFID system and other exteroceptive
sensors in addition to the RFID system itself. The central unit is on the
vehicle.

A. RFID SENSOR-FUSION WITH COMPUTER VISION

Computer Vision (CV) and RFID are usually employed
together for static object detection and localization [112].
Dynamic vehicle tracking can also be performed [55], [74],
[102]-[104]. The combination of such two technologies can
lead to several advantages. At first, the RFID system can
act when the room light conditions are inadequate, and the
CV system fails. Moreover, RFID tags can provide some a-
priori information about the scenario that can be profitably
used by the CV algorithms. By tagging objects and vision
markers put in the area of interest, they can be easily rec-
ognized by the RFID reader at the robot side. Thus, the
information gathered by the reader can help the CV system
by reducing the recognition complexity and consequently the
computational cost. In [102], a combined method employing
computer vision and UHF-RFID system was proposed to
solve the kidnapped robot problem. The latter consists of a
situation where an autonomous robot in operation is carried to
an arbitrary unknown location and must reinitialize correctly
its position [114]. This process is mandatory if the system
was meant for robot tracking, navigation, or SLAM. Few tags
are deployed in the environment. When the robot is placed
close to one of them, the recovery procedure starts. At first,
the tag bearing with respect to the on-board RFID antenna is
determined with a Fuzzy Logic scheme. Then, a monocular
camera implements the Speeded Up Robust Feature (SURF)
algorithm to find the location of some control points, which
could be represented by QR codes. A tag was placed in a 6 m
x 7 m laboratory area, and localization after kidnapping had
amean error of 8.3 cm. The localization error never exceeded
6.4 cmina 6 m x 9 m hallway with three RFID tags.

The authors of [103] proposed a sensor-fusion tracking
system that combines an HF-RFID system and CV to localize
a robot. The HF tags are deployed on the floor, the reader
is mounted on the robot and the camera is placed on the
ceiling. The sensor fusion strategy accounts for illumination
conditions. In good light conditions, localization is performed
by using the camera; when the uncertainty of the camera-
based localization algorithm overpasses a certain threshold
due to bad illumination conditions, the system switches to
RFID-based localization only.
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When this happens, the robot position is associated to the
detected tag position as common for localization systems in
the HF band. The obtained localization error was below 10 cm
inatestareaof 6.5 m x 2.5 m, with two cameras on the ceiling
and a tag grid spacing of 0.4 m.

A system that tracks and identifies trolleys in the entry area
of a distribution center was presented in [104]. The area is
monitored by an UHF-RFID system, consisting of a fixed
reader with four antennas, and a pair of webcams. The trolleys
are equipped with a passive RFID tag and an optical marker.
The system uses a Particle Filter to combine RSSI data from
the RFID system and image data from the webcams. The
resulting system achieved an RMSE of less than 30 cm in
static and dynamic scenarios in a laboratory environment
(room size is not specified).

In [55], a multi-sensor fusion process was proposed to
track a robotic wheeled walker designed to support people
with psychomotor problems. The walker is equipped with
two encoders, a HF RFID reader, a gyroscope, and a front
camera. HF tags and QR codes are placed on the room
floor in overlapped locations according to a regular grid. The
prediction step is done through the on-board proprioceptive
sensors. During the update step, the tag detection information
is used to correct the walker location, while the camera
detecting the QR codes concurs to the orientation update.
Experiments were conducted in a 150 m? indoor environment
with obstacles, where 30 tags and 30 QR were placed with 2 m
spacing. In the 95% of the case, the obtained position RMSE
and orientation RMSE were below 50 cm, and 0.15 rad,
respectively.

CV-based object tracking systems may find difficulties to
track objects moving simultaneously, and sometimes they
cannot recognize the object by looking at the shape and
colour. In [74], the authors proposed to combine RFID and
CV technologies for object tracking. A CV algorithm deter-
mines the moving object trajectories. Meanwhile, a COTS
RFID reader measures phase data from RFID tags. Then,
starting from hypothetical phase histories of moving objects
and measured RFID data, it is possible to associate object and
tag with a likelihood approach. Experiments were conducted
in a4 m x 8 m room, with only one RFID antenna and a
camera. The measured tracking error was around 1 cm.

B. RFID SENSOR-FUSION WITH LASER RANGE FINDER
RFID systems are not able to retrieve geometrical information
about the environment, or to detect obstacles unless they are
equipped with tags. On the other hand, Laser Range Finders
can perform those tasks, so resulting appealing for combined
approaches, especially if vehicle navigation in complex sce-
narios is required. In some cases, LRF simply concurs to
vehicle localization.

In [105], the authors proposed a SLAM system exploiting
a laser ranging sensor, an RFID system and an odometer.
Firstly, the laser scanner learns the geometric structure of
the environment. Then, the reference tag positions are esti-
mated based on the robot path, by exploiting the posterior
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TABLE 3. Vehicle localization solutions exploiting a sensor-fusion approach with RFID and other exteroceptive sensors.

Ref. Year | Application | RFID Input Other 2D performance Experimental Infrastructure
system parameter exteroceptive scenario
sensors
RFID + Computer Vision
[102] | 2009 | Positioning Passive EPC Computer Test 1: mean | Test 1: 6m x | Test1:1tag
UHF Vision localization error of | 7m laboratory | Test2: 3 tags
8.3 cm area
Test 2: maximum | Test 2: 6 m X
localization error of | 9 m hallway
6.4 cm.
[103] | 2010 | Tracking Passive EPC Computer Localization error | 6.5m x 2.5m | Two cameras on the
HF Vision below 10 cm area ceiling and tags with
0.4 m spacing
[104] | 2013 | Tracking Passive RSSI Computer Localization error | Not specified One RFID antenna and
UHF Vision below 30 cm two cameras
[55] 2015 | Tracking Passive EPC Computer Position RMSE below | 150 m’ area | 30 tags with 2m
HF Vision 50 cm, and orientation | with obstacles spacing
RMSE below 0.15 rad
in the 95% of the cases
[74] 2017 | Tracking Passive Phase Computer Tracking error of | 4mx 8 mroom | One RFID antenna and
UHF Vision around 1 cm (camera- one camera
based localization)
RFID + Laser Range Finder
[105] | 2004 | SLAM Passive EPC Laser range | Localization error of | 28 m x 28 m 100 tags
UHF scanner and | few metres area
encoders
[106] | 2007 | Tracking Passive EPC Two laser | Localization error | 1.77 m x | Tags deployed with
HF range sensors below 50 cm 2.05 m area grid spacing of 20 cm
[58] 2007 | Tracking Active RSSI Laser and | Test 1: position error | 6 m x 7mroom | Four tags on the
UHF encoders below 20 cm and ceiling of the room
orientation error below
25°
Test 2: a steady-state
localization error of
0.2 cm (laser-based)
RFID + Wi-Fi and/or other Radio Frequency technologies
[107] | 2016 | Tracking Passive RSSI Wi-Fi 802.11 Not specified 120m x 60m | 7 Wi-Fi Access Points
UHF area (APs) and 27 RFID
reference tags
[108] | 2019 | Positioning Not Not Wi-Fi  802.11 | Localization error | 1500 m? multi- | 12 wireless AP, 36
specified | specified and Bluetooth | below 2m in more | office RFID tags and 20
(iBeacon) than 90% of cases environment iBeacons
RFID + Ultrasounds
[109] | 2011 | Tracking Passive EPC Array of nine | Test 1: average | 6m x 24m | Test 1: 91 tags with
HF sonars position  error  of | area 30 cm spacing
1.6 cm (no obstacles) Test 2: 66 tags with
Test 2: average 50 cm spacing
position  error  of
2.4 cm (no obstacles)
and of 2.7cm (with
obstacles)
[110] | 2016 | Navigation Passive EPC Ultrasounds Navigation error | 4 m x 3 m area 18 tags
LF below 58 cm
RFID + Multi-sensor solutions
[52] 2007 | Navigation Active EPC Laser and | Navigation task | 30 m long | Not specified
UHF ultrasounds correctly hallway
accomplished
[111] | 2007 | Tracking Custom EPC Laser and | Localization error | Room office | 4 tags
laser- cameras below 20 mm | with maximum
activated (camera-based) reader-tag
UHF tags distance of 7 m

distribution over potential positions of an RFID tag, which
is built through a preliminary calibration procedure on the
tag detection frequency. The detection probabilistic model is

then combined with odometer data through a PF algorithm
to locate the reference tags. The obtained estimated positions
were then employed to further improve the robot localization
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up to a few metres of localization error, as shown in a 28 m
x 28 m environment with 100 tags.

In [106], the authors proposed a tracking method based
on a Support Vector Machine (SVM) combined to a least
square method to determine the position of an RFID reader
mounted on a robot. The measured features are read/no read
data of HF tags placed in the environment. Tag position can
be known or unknown as in the SLAM algorithms where a
long training procedure is required for the calibration. The
robot must be also equipped with two laser ranging sensors
to measure the distance from the walls. An experimental setup
wasrealizedina 1.77 m x 2.05 m scenario with a grid spacing
of 20 cm. The obtained localization error was less than 50 cm.

In [58], a sensor-fusion tracking system comprising an
active RFID system, an odometer and a laser scanner was
proposed. By employing the odometer data from the driving
wheels and the laser scanning measurements of the robot sur-
roundings, a localization algorithm based on Extended Infor-
mation Filter (EIR) is proposed to continuously keep track
of the robot poses at slow speeds. The RSSI data acquired
by the RFID reader were used to estimate both the unknown
start-up position and orientation of the tour-guide robot at any
circumstance, with a least square method. A first experiment
using only the RFID system was conducted to measure the
accuracy of the proposed method for the robot static position
estimate, with one reader on the head and four tags on the
ceiling of a 6 m x 7 m room. A position error of less than
20 cm and an orientation error of less than 25° were observed.
A second experiment validated the EIR performance and
showed a steady-state robot localization error of 0.2 cm for
a robot performing straight-line movements.

C. RFID SENSOR-FUSION WITH WI-FI AND/OR OTHER RF

TECHNOLOGIES

Since IEEE 802.11 Wi-Fi coverage in indoor buildings is
widespread, it might be reasonable to investigate how to com-
bine an RFID system and a pre-existing Wi-Fi infrastructure
to locate a moving agent. Wi-Fi systems operate in the ISM
band, so they can provide RSSI measurements at a different
operating frequency with respect to RFID systems. Since Wi-
Fi devices are active and need for a local internal oscillator
to communicate, the phase information is not exploitable.
Moreover, the single communication channel bandwidth is
not enough to perform TOA measurements, so only the RSSI
information can be used. The same reasoning is valid for
BLE, ZigBee, or other narrowband RF technologies.

In [107], the authors proposed a novel indoor tracking
mechanism, which realizes an effective data fusion of Wi-
Fi and UHF-RFID signal parameters. Two variants of the
Kalman Filter localization algorithm are proposed. RSSI
values acquired from the Access Points (APs) can be pro-
cessed to measure the distances between them and the moving
object, and then a multilateration algorithm is performed. The
experimental setup was deployed in a museum hall of 120 m
x 60 m, with 7 Wi-Fi APs and 27 RFID reference tags (results
of the experimental campaign are not given).
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In [108], an indoor positioning system, fusing Bluetooth,
Wi-Fi and RFID systems data was presented. The typology
of the RFID system is not specified. Variants of Kalman
filter algorithm are investigated to provide multiple fusion
positioning schemes. Wi-Fi technology is used to estimate
the position of the moving device through a fingerprinting
and a Weighted k-NN method. Apple iBeacons and RFID
systems are used to refine the position estimation. To validate
the performance of the proposed approach, experiments were
conducted in a 1500 m? multi-office environment. 12 wireless
APs, 36 RFID tags and 20 iBeacons were installed for Wi-
Fi fingerprinting, iBeacon correction and RFID positioning,
respectively. Localization error lied under 2 m in more than
90% of test cases.

D. RFID SENSOR-FUSION WITH ULTRASOUNDS

Similarly, to LRF, ultrasounds can be used to provide the
vehicle with information about the geometrical constraints of
the scenario and the presence of obstacles. With respect to
LRF however, sound waves suffer from acoustic noise and
are not supposed to be used in noisy environments such as
crowded shops or warehouses.

In [109], a system for robot tracking combined HF-RFID
technology and an array of nine sonars. HF tags are placed
on the floor to form a regular grid, and the reader antenna
was installed on the robot facing downward. The sonars are
used to estimate the distance from obstacles and walls. Infor-
mation about the scenario are fused together to RFID EPC
to estimate the robot position over time. Two experiments
were conducted in a 6.0 m x 2.4 m area. In the first one,
no obstacles were placed in the area. The average position
estimation error was 1.6 cm with a grid of 91 reference tags
with a 30 cm spacing, and 2.4 cm with 66 tags placed with
a grid step of 50 cm. When the test area was filled with
obstacles, the average position estimation error was 2.7 cm
with 66 tags placed with a grid step of 50 cm. In [110],
a LF-RFID system was combined with sonars to design a
navigation scheme for mobile robots. A fuzzy cognitive map
allows for generating the drive commands to guide the robot
through an optimized path. 18 tags were deployed ina 4 m x
3 m area. According to conducted experiments, the average
deviation from the optimal trajectory never exceeded 58 cm.

E. MULTI-SENSOR SOLUTIONS
Some solutions exist which combine RFID data with more
than one exteroceptive sensor. The cost of the system is
higher, but better performance and reliability are expected.
The authors of [52] presented a multisensory-hybrid nav-
igation method for an active mobile robot assistant, with the
combination of several ultrasonic ranging sensors, one laser
scanner and a UHF-RFID system. First, a global optimal path
is determined by the Dijkstra’s programming approach. Sec-
ond, a fuzzy adaptive speed control method is proposed to
adapt the robot to users’ speed and to keep a desired distance
from them. Third, the UHF-RFID system is used to reduce the
hypothesis estimation error by adding one more environment
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FIGURE 12. Timeline of number of papers analysed in this survey, with
respect to the publishing year, according to the proposed categorization.

feature for similar environment identification. Thus, this is
combined with the laser scanning data to achieve global local-
ization. Finally, the fuzzy hybrid navigation is achieved by
merging three useful fuzzy behaviours, which are constructed
by fusing the laser scanner and the ultrasonic range finder.
Experiments were made in a 30 m long hallway showing
that the robot was able to correctly accomplish the navigation
task.

In [111], a new artificial landmark-based tracking system
for mobile robots in indoor environments was introduced.
The system combines custom active UHF-RFID tags, a laser
and a camera stereovision localization system mounted on the
robot. The RFID tags are modified to include a Light Emitting
Diode (LED) and are used to store the LEDs location data.
The on-robot laser impinges one RFID tag at a time and turns
on the LED. Then, the RFID reader collects the data stored in
tags and the cameras measure the distance between the robot
and the LED. The localization scheme is a multi-lateration
approach resorting to a set of reference laser-activated RFID
tags. Since tag location is directly sent in the RFID message,
no central database is needed to register the reference tag
locations. Tests conducted by the authors showed a localiza-
tion error below 20 mm in a room office of not-specified sizes
with four reference tags. The maximum reader-tag distance
is 7 m. A reduced localization accuracy is expected in larger
scenarios since camera resolution decreases with distance.

VII. DISCUSSION

A. ANALYSIS AND RESEARCH TRENDS

On the basis of the state-of-the-art analysis here carried
out, it is apparent that the RFID technology has been
recently investigated as an effective enabling technology
for mobile vehicle localization. Both HF and UHF systems
have been employing, with several configurations which typ-
ically exploit a grid of reference tags. To investigate the
trends in the adoption of such radio systems, Fig. 12 shows
a timeline of the presence of RFID-based methods for
vehicle localization, grouped according to the classification
adopted in this paper: localization with only RFID sys-
tems, [28], [60], [67]-[72], [81]-[84], RFID systems com-
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FIGURE 13. Classification indicating the type of adopted RFID system
(abscissa), the employed RFID parameter and adopted sensors (ordinate):
RFID only (blue), RFID system and proprioceptive sensors (red), and RFID
system with other exteroceptive sensors (black).

Passi\lle HF

bined with proprioceptive sensors [73], [85]-[101] and RFID
systems combined with other exteroceptive sensors in addi-
tion to the RFID system itself [52], [74], [102]-[111] through
sensor-fusion approaches. In particular, the timeline investi-
gates the trend from 2003 to 2020.

The most representative category is the RFID sensor-fusion
localization system with proprioceptive sensors (red bars),
which represents 40% of the analysed references, with an
increasing interest over the time. The reason could be that
such a system represents a good compromise between instal-
lation cost and performance, as we better show later in this
section.

By considering the localization tasks, i.e., positioning,
tracking, navigation, or SLAM, the most representative cate-
gory is the “tracking” one, with more than 60% of the total
papers analysed in this survey. This is reasonable, since the
vehicle tracking issue is the enabler for navigation and SLAM
tasks.

Fig. 13 shows the details of the RFID data employed in
the localization method, as well as the typology of the RFID
system. On the x-axis there is the adopted RFID technology
divided into three categories: Passive HF, Passive UHF, and
Others, the latter comprising active RFID tags and custom
RFID tags operating at different frequencies, e.g., the SHF
band, and the custom tags with other embedded sensors as
IMUs or embedded devices as LEDs. On the y-axis there
is the employed localization parameter: EPC, RSSI, and
Phase. Each paper is identified in the grid through its bibli-
ographic reference number used in this manuscript. The text
colour refers to one of the three categories of the localization
scheme. The most represented RFID system for the analysed
vehicle localization scheme is the passive UHF one, which
is employed in more than 60% of the proposed methods.
The reason is that the higher reading range of UHF systems,

VOLUME 9, 2021



A. Motroni et al.: Survey on Indoor Vehicle Localization Through RFID Technology

IEEE Access

ElPassive HF - EPC
[IPassive UHF - EPC
[EPassive UHF - RSSI
[CPassive UHF - Phase

JWW%W |

2003-200%,006-20089-2011,11-201445-2017, 152020

o
|

# of works
N

I\J

Year

FIGURE 14. Timeline of number of papers analyzed in this survey with
respect to the publishing year and categorized with respect to the
employed RFID parameter.

with respect to the HF ones, allows for an infrastructure of
reference tags with lower density, with a consequent cost
reduction and lower deployment overhead.

Now, we focus on the RFID parameter, i.e., EPC,
RSSI, or phase, mostly employed. Even though the phase is
the most promising localization parameter available in RFID
systems, it only represents less than 30% of the case studies.
On the contrary, the methods exploiting the tag EPC are
almost 50% of the total. There are many reasons to justify
this phenomenon. The first one is that the phase parameter is
available only for passive UHF systems or custom systems
that allow coherent demodulation, so not all RFID systems
can use it. Secondly, even though any UHF-RFID reader must
estimate the phase to correctly retrieve the tag EPC from the
backscattering signal, the phase is not always available as
an output parameter in COTS readers. The third reason can
be retrieved from research trends over the time. In particu-
lar, Fig. 14 shows the timeline of the RFID-based methods
for vehicle localization, using passive RFID systems and
exploiting the EPC, the RSSI or the phase parameter, from
2003 to 2020. As apparent, the phase-based methods have
been investigated only in the recent years, since only modern
readers give such output data. On the contrary, localization
methods based on tag EPC were more popular in the past
but have been discarded in the last years, e.g., 2018-2020.
Finally, at the authors’ best knowledge, RSSI-based vehicle-
localization methods have received a very limited attention in
the last three years.

B. PERFORMANCE ANALYSIS

Localization performance in RFID-based localization must
be evaluated by also considering the system architecture,
the spatial density of the reference tags and the installation
complexity.

Fig. 15 shows the localization error of the solutions inves-
tigated in this survey, with respect to the infrastructure com-
plexity expressed in terms of tag spatial density (number of
tags per square metre). Different types of markers indicate the
category of the localization system. The reference number is
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TABLE 4. Features of each category of RFID-based solutions for vehicle
indoor localization.

RFID only RI*.‘ID + ) RFID + ntl‘ter
proprioceptive exteroceptive
Cost Medium- Medium Medium-High
Low
Energy . Low Medium-Low Medium-High
consumpftion
Complexity Low Medium Medium-High

added within the corresponding marker. The marker colour
indicates the adopted RFID system with the employed param-
eter. We can observe that most of the contributions in the cate-
gory ““‘Passive HF Systems with EPC”’ (grey markers) have on
average the highest infrastructure complexity, with the high-
est number of reference tags per square metre, as expected.
The category of “Passive UHF Systems with RSSI” (green
markers) is the more heterogeneous as the performance is
strictly dependent on the RSSI model, on the sensor-fusion
method and on the adopted sensors. Finally, the category
“Passive UHF Systems with Phase” (pink markers) provides
on average a localization error below 10 cm and requires a
number of tags per square metre lower than one, without the
use of other exteroceptive technologies apart of the RFID
system.

For a fair comparison, we excluded from this diagram
all the solutions here investigated where only a simulated
analysis was presented or where some parameters are missing
in the experiment description, as for example the number of
reference tags or the size of the test area. Moreover, solutions
where the RFID system is not employed as the main local-
ization technology and only operates as a support to other
localization schemes exploiting exteroceptive sensors, €.g.,
CV-based approaches, are excluded too.

It is noteworthy that not all the analysed methods presented
the performance with the same criteria. Some of them show
the RMSE result, others the mean localization error, and still
others the median error.

Table 4 summarizes the features of the analysed works in
terms of cost, complexity, energy consumption and scalabil-
ity.

The cost of a solution is estimated based on the required
hardware to build the infrastructure. The energy consump-
tion is determined on the basis of the employment of
active/passive devices and the power supply.

The complexity is evaluated by considering the hardware
infrastructure, depending on the scenario size, the reference-
tag density, the need of a calibration procedure and the inte-
gration requirements for hardware components. The table is
not meant to be exhaustive, but it could be useful for an imme-
diate comparison between the proposed solution categories.

Eventually, it is underlined that the present survey focused
on indoor vehicle localization which necessarily includes the
exploitation of the RFID technology, either alone or com-
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FIGURE 15. Localization error vs tag density by considering the analysed papers.

bined with other localization technologies. For a detailed
review on the many other methods and technologies, the inter-
ested reader can refer to [25], [116].

VIil. CONCLUSION
This paper presented a survey of the methods exploiting the
RFID technology for vehicle positioning, tracking, naviga-
tion or simultaneous localization and mapping. Three main
categories of vehicle localization systems have been identi-
fied, namely, solutions exploiting only the RFID technology,
sensor-fusion techniques combining data from RFID systems
and proprioceptive sensors, and sensor-fusion techniques
combing RFID data from those of other exteroceptive sensors
in addition to the RFID system itself. Together with the imple-
mentation and methodological details, the applied RFID tech-
nology (passive HF system, passive UHF system, or other
RFID systems) and the employed RFID parameter (EPC,
RSSI, phase, or any their combination) have been discussed.
By generally speaking, the selection of the vehicle local-
ization scheme is strictly related to the application scenario
together with the tolerated implementation cost and complex-
ity. As a result of the present survey, the authors believe that
the category of the phase-based passive UHF-RFID systems
combined with proprioceptive sensors seems to be the most
investigated and relevant solution in the recent years. Even
if it is at an early stage, the authors consider that further
research efforts should be carried out in this direction, aim-
ing to improve the robustness and the reliability of such
promising solutions. Indeed, such systems could represent
valuable competitors to classical indoor positioning systems
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for real-world applications, thanks to their low cost, extreme
flexibility and ease of implementation.
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