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ABSTRACT The electromagnetic acoustic transducer (EMAT) is a powerful and useful non-destructive
testing technology for structural health monitoring. However, EMAT has an issue of low efficiency in
conversion and its signal is easily affected by noise, which make it difficult to accurately identify and
evaluate structural defects. Thereby, signal de-noising preprocessing is essential for the evaluation of defects.
In this paper, we proposed an improved singular value decomposition (SVD) de-noising method based
on the fitting threshold for EMAT signal. For SVD de-noising method, the key point is to determine the
singular value threshold for reconstructing the signal. We applied a segmented regression model to find the
appropriate threshold in this approach. To investigate the efficacy of the proposed method, simulation signals
and experimental signals are used for verification respectively. A comparative analysis has been under-taken
to confirm that the proposed signal de-noising has advantages over other methods in EMAT signal noise
reduction, and it is useful for more accurate evaluation of defects.

INDEX TERMS De-noising, electromagnetic acoustic transducer, fitting threshold, SVD.

I. INTRODUCTION
Surface defect identification and evaluation is an impor-
tant part of structural health monitoring. At present, various
non-destructive testing methods, such as ultrasonic testing,
eddy current testing, magnetic memory testing, are applied
to identify and evaluate surface defects due to different envi-
ronments [1]–[3]. Among these popular methods, electro-
magnetic acoustic transducer (EMAT) is widely used for the
advantages of high precision, no coupling agent, non-contact
and flexible detection [4]–[6]. Rayleigh wave-based elec-
tromagnetic ultrasound is often used to detect and evaluate
surface defects due to its energy concentration on the sur-
face. The EMAT signal is a non-stationary signal, which is
weak and vulnerable to noise and external electromagnetic
interference [7], [8]. The characteristic values of evaluation
defects are submerged in noise and cannot be extracted accu-
rately. Therefore, a suitable and effective de-noising method
for the EMAT signal is very important for the quantitative
evaluation of defects. A noise reduction method suitable for
EMAT signals must meet certain requirements. Especially,
the key features of the signal should not change as a result of
de-noising.

Many efforts have been made to reduce noise in the EMAT
signal. Wavelet de-noising, SVD de-noising algorithm, and
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empirical mode decomposition (EMD) de-noising algo-
rithm are some of techniques proposed to preprocess sig-
nals [7], [9], [10]. These methods may work well under
certain circumstances but they may not be optimal for
EMAT signal. The wavelet de-noising method has no obvious
effect on weak signals and signals with less signal-to-noise
ratio [11]–[13]. Additionally, wavelet de-noising is limited
by the choice of wavelet threshold function, decomposition
level, and wavelet basis function. EMD has non-negligible
end-point effects and modal aliasing. So, we need to find a
noise reduction method that is effective for EMAT signals.

The singular value decomposition method attracts
researchers’ attention for its less phase shift and no delay and
it is sensitive to weak signals in noise. SVD can be widely
used in many fields. Wen et al. [7], Li et al. [14] applied SVD
to inspect the health conditions of important components and
diagnose faults. The SVD method can also be used to extract
features [8], [15]. In addition, SVD de-noising method can be
used to improve the signal-to-noise ratio of signals [16], [17],
and which can meet certain requirements of EMAT signals
noise reduction. As far as we know, the information of signal
is reflected in the sequence of singular values, so the key
point of SVD noise reduction method is how to determine the
effective order of singular values for the reconstructed signal.
The traditional determination methods of reconstructed order
include the fixed threshold method [18], singular entropy
increment [17], singular value curvature spectrum [8], and
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singular value difference spectrum [19]. Yang et al. [18]
used a fixed threshold truncation method in the process of
processing signals with SVD to significantly improve the
performance of a three-axis magnetometer (TAM). For dif-
ferent signals, the singular value de-noising method based on
a fixed threshold has no universality, and the selection of fixed
threshold has a great influence on noise reduction. Singular
value difference spectrum and singular value curvature spec-
trum cannot always effectively determine the reconstruction
order and lose useful signals [8], [19]. Singular value entropy
sequences have no obvious characteristics for determining
the number of effective singular values. Thereby, a suitable
selection method of the effective order of singular values is
very important for SVD noise reduction, which is also the
main of this paper.

Since the singular values of EMAT signals are abrupt and
the difference of singular value in magnitude between main
signal and noise is obvious, we make effort to find a threshold
that can be used to distinguish the singular value of the
noise and the main signal to achieve the purpose of noise
reduction. According to the characteristics of the singular
value sequence, the slope change point is the boundary point
of the singular value between the noise and the main signal.
However, neither the maximum value of the singular value
difference spectrum nor the maximum value of the singular
value curvature can accurately determine the position of the
slope change point. In order to find the slope change point,
we propose a fitting threshold method based on segmented
regression in this paper. Firstly, the singular value sequence
is equally divided into several segments, and then the second-
order difference spectrum of each segment is obtained sep-
arately. Finally, the number of effective singular values is
determined by the intersection point of the fitting curves in
the adjacent interval of the second-order difference spectrum
maximum value. The major contribution of this paper: we
propose a fitting threshold determination method based on
segmented regression method for improving the SVD de-
noising method, and verify that the proposed method is suit-
able for EMAT signal noise reduction.

The rest of this paper is organized as follows. In Section II,
the principle of the SVD and the threshold determination
method are described. Section III verifies the effectiveness of
the proposed method using simulated signals. The compar-
ison results of different noise reduction methods and char-
acterization results are analyzed in Section IV. Section V
presents the conclusions.

II. SVD-BASED SIGNAL PROCESSING METHOD
For electromagnetic acoustic testing, it is of prime importance
to extract the feature of the transmitted signal for identifying
and evaluating the defect. However, the signals of EMAT
are easily affected by noise for its physical mechanism. The
important information of the received signal will be buried
in noise. In order to keep important information of sig-
nals, we introduce an improved singular value decomposition
method for EMAT signal noise reduction.

A. SINGULAR VALUE DECOMPOSITION
We first take a brief review of SVD. Assuming that the
received signal fromEMAT isX = (x (1) , x (2) , · · · , x (N)).
It is necessary to reshape the signal X into a matrix for SVD.
Here, we chose the Hankel matrix to obtain the matrix due to
its zero phase shift property and wavelet-like characteristics
[7]. The Hankel matrix of the signal X is:

H =


x (1) x (2) · · · x (n)
x (2) x (3) · · · x (n+ 1)
...

...
...

...

x (m) x (m+ 1) · · · x (N )

 (1)

If the number of columns is closer to the number of rows,
that is, the constructed Hankel matrix is square or close
to a square, the useful signal and noise can be sufficiently
separated [11], [20]. So, we select positive integers n and m,
1 < n < N ,m ≥ 2, n ≥ 2,m + n − 1 = N , and n close
to m; if N is even, m = N/2, n = N/2 + 1; if N is odd,
m = (N + 1)/2, n = (N + 1)/2.
Singular value decomposition is an orthogonal transforma-

tion that could transform the original matrix into a diagonal
matrix whose eigenvalues reflect some of the main features of
the original matrix [16]. It will display different relationships
among variables in a preferable way by altering the correlated
variables to a group of uncorrelated ones [15]. By applying
SVD, the matrixH can be decomposed into a product of three
matrices and can be expressed as equation (2):

H = U
∑

V T (2)

where T is the conjugate transpose, U and V are unitary
matrices, U = (u1, u2, · · · , um) , ui ∈ Rm×1 and V =
(v1, v2, · · · , vn) , vi ∈ Rn×1,

∑
denotes non-negative diago-

nal matrix,
∑
=

[
S 0
0 0

]
and S = diag (σ1, σ2, · · · , σr ) with

σ1 ≥ σ2 ≥ · · · ≥ σr> 0. σ1, σ2, · · · , σr , and σr+1 =
σr+2 = · · · = σn = 0 are the positive square roots of
the eigenvalues of HTH which are also called the singular
values of H . The columns of U are called the left singular
vectors of H , while the columns of V are called the right
singular vectors of H . Singular values can reflect the major
characteristic information of the raw signal. The larger the
singular values, the more information it contains. The smaller
the singular value, the less information. The singular value of
noise is generally small. Thereby, the signal can be de-noised
by selecting the appropriate singular values and the main
information of the signal can be retained. A new matrix H ′

can be obtained by selecting the appropriate nonzero singular
values for reconstruction.

H ′ =
∑k

i=1
σiuivTi (3)

where k is the number of selected nonzero singular values,
and the key to the reconstruction of matrix H ′ is how to
determine k . If k is not properly selected, some useful infor-
mation of the original signal will be lost, and it may even
result in signal distortion after noise reduction. Therefore,
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FIGURE 1. Singular values sequence of signal.

FIGURE 2. Singular values sequence of noise.

the key to realizing signal noise reduction with SVD is to
select the singular values of the reconstructed signal using
an appropriate threshold value.

B. SINGULAR VALUE THRESHOLD DETERMINATION
To keep the useful information and reduce the noise, we need
to find a threshold point that can be used to distinguish the
useful signal and noise. According to the literature [21], the
singular values of the main signal are different from the sin-
gular values of the noise, so the mutation point of the slope of
the singular value curve is the threshold point required. Some
scholars take slope variation as a criterion for judging the
threshold, but there may be points where the slope change is
greatest before the correct threshold. Therefore, the threshold
value obtained is not accurate. In this paper, we propose a
new approach based on fitting to approximate the threshold
point.

Figure 1 presents the sequence of singular values of the
signal with a depth 3mm defect. We can know from the
figure that the singular values appear in pairs, that is, adja-
cent singular values are close in size. We also know that
the sequence of singular values consists of two curves with
distinctly different slopes. Figure 2 shows the sequence of
singular values of noise. The noise is a white Gaussian noise
constructed randomly. The magnitude and distribution of the
singular value of noise are different from that of EMAT
signal. Therefore, the noise can be reduced by selecting the
appropriate singular values. The singular values sequence
decreases rapidly at first and then decreases slowly at a certain
point. This is the point where the slope changes and this is
the threshold point that we need. We propose a threshold

FIGURE 3. The fitting threshold.

FIGURE 4. The flow chart of de-noising.

determination method based on the segmented regression
model. The detailed steps are as follows:
Step1: Supposing that the singular value sequence of the

raw signal is SV = (sv1, sv2, sv3, · · · svn). The SV is divided
intom segments of the same length. Since the singular values
appear in pairs, the number of data in each interval should be
even.
Step2: Calculate the regression coefficient for each inter-

val. The change point of the slope is not the point with the
largest change of slope, but the point with the largest change
rate of the slope. The interval of the slope change point is
determined by the maximum of the second-order difference
of the slope.
Step3: The data of two adjacent intervals of threshold

interval is fitted using linear regression. The threshold is
the intersection of two fitting curves. Figure 3 displays the
threshold point we find.

The singular values larger than the threshold are selected to
reconstruct the signal. The reconstructed signal is the signal
after de-noising. The flow chart of de-noising is as follows:

III. EFFECTIVENESS ANALYSIS USING SIMULATION
SIGNAL
This paper proposes an improved singular value decom-
position de-noising approach based on the fitting thresh-
old. The fitting threshold selection approach based on the
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FIGURE 5. Simulation signal of Rayleigh wave in a sample with defect
depth of 0 mm.

FIGURE 6. Simulation signal with random white Gaussian noise.

segmentation regression method can realize the adaptive
threshold selection. We use the simulated Rayleigh wave
signals with random Gaussian white noise to verify the effec-
tiveness of the proposed method. The simulated signal of the
Rayleigh wave is obtained by COMSOL Multi-physics [22].
Figure 5 displays the normalized simulated Rayleigh wave
of a sample with no defect. Figure 6 presents the simulated
signal with random Gaussian white noise.

In order to verify the pros and cons of the proposed
approach, we use the three parameters of signal-to-noise
ratio (SNR), root mean square error (RMSE), and waveform
similarity coefficient (WSC) to evaluate the performance of
noise reduction.

SNR = 10× lg

(
n∑
i=1

x2(i)/
n∑
i=1

(x(i)− z(i))2
)

(4)

RMSE =

√√√√1/n×

(
n∑
i=1

(z(i)− x (i))2
)

(5)

WSC =
n∑
i=1

x (i)z (i) /

√√√√( n∑
i=1

x2 (i)

)(
n∑
i=1

z2 (i)

)
(6)

In formula (4) (5) and (6), x(i) denotes the original noise-
free signal. z(i) denotes the signal after noise reduction. The
SNR reflects the quality of the signal after noise reduction.
The higher the SNR is, the better the noise reduction effect
will be. The RMSE represents the error between the signal

after de-noising and the original signal. The larger the value
is, the more information is lost after noise reduction, and the
more serious the signal distortion is. The WSC describes the
similarity in shape between the signal after de-noising and
the original signal. The closer the WSC is to 1, the more
similar it is to the original signal, and the smaller it is,
the more serious the distortion is.

We will verify the effectiveness of the threshold selection
method proposed in this paper comparing it with other thresh-
old selection methods. Fig.7 (a) is the signal obtained by the
SVD noise reduction method based on the fitting threshold
proposed in this paper. The method filters out the added
noise and gets a good consistency between the reconstructed
signal and the original signal. Fig.7 (b) shows the signals after
de-noising by SVD with different fixed thresholds. When the
threshold is 3, the signal after noise reduction still contains
a little noise. When the threshold value is 3.5, the noise
reduction effect is similar to that when the threshold value
is 4. However, compared with RMSE and WSC with the
threshold value of 3.5 and 4 in Table 1, the noise reduction
effect is better when the threshold value is 3.5. It reflects that
the de-noising effect is different when the fixed threshold is
different. Therefore, it is important to select a threshold for
SVD-fixed threshold de-noising method, and the universality
and operability of the fixed threshold are not strong.

Fig.7 (c) and Fig.7 (d) show the signals after de-noising
using the singular value difference spectrum method and the
singular value curvature spectrum method respectively. It is
obvious that the signals obtained by these two methods have
very serious distortion, so these two methods are not suitable
for Rayleigh wave signal de-noising.

We also apply wavelet de-noising to process the noisy
signal for comparison. Fig.7 (e) displays the result of wavelet
de-noising. Most of the noise is filtered out, but the signal is
slightly distorted. In comparison, the SVD de-noisingmethod
based on the fitting threshold is more suitable for Rayleigh
wave signal de-noising.

IV. APPLICATION CASE ANALYSIS
In the practical application of electromagnetic ultrasonic
transducer detection and evaluation of defects, signal prepro-
cessing is an essential step. EMAT signal is vulnerable to
noise, and the signal attenuates with the increase of defect
depth, which makes EMAT signal noise reduction challeng-
ing. In this paper, we propose an improved SVD de-noising
method based on the fitting threshold for EMAT signal. At the
same time, we use experimental signals with different defect
depths and different lift-off distances to verity the effective-
ness of the proposed noise reduction method in this section.
Furthermore, we characterize the depth of defect by the de-
noised signal based on the lift-off slope.

A. EXPERIMENT DETAILS
The experimental platform of EMAT is the same as that
in reference [23], [24]. As shown in figure8, the platform
consists of a signal generator, a RITEC’s GA-2500A gated
pulse amplifier, a BR640 wideband receiver, an EMAT
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FIGURE 7. Signal after noise reduction by different de-noising methods. (a) SVD-fitting threshold. (b) SVD-fixed
threshold. (c) SVD- singular value difference spectrum. (d) SVD- singular value curvature spectrum. (e) Wavelet
de-noising.

TABLE 1. Results of different noise reduction methods.

transmitting probe T, an EMAT receiving probe R, an oscil-
loscope, and aluminum plates. The RITEC’s GA-2500A
gated pulse amplifier is used to amplify the sinusoidal pulses
generated by the signal generator. Secondly, the high-power

FIGURE 8. Schematic diagram of experimental system.

pulse current emitted is transmitted through the transmit-
ting probe T, and the excited Rayleigh wave propagates
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FIGURE 9. Schematic diagram of probe position.

in the sample and interacts with the defect. The receiving
probe R receives signals from the aluminum plate. Finally,
the received signal is then filtered and amplified by the
BR640 wideband receiver and the processed data is saved
and displayed on the oscilloscope.

The transmitting probe T and the receiving probe R are
located at different sides of the defect, and the distance
between them is 300mm as shown in Figure 9. The receiving
probe R has the same structure as the transmitting probe T,
which includes a permanent magnet and meander coil. The
magnet size in the probe is 40 × 40 × 40 mm, providing a
residual magnetic flux strength of 1.21T. The meander coil in
the probe transmits a three-cycle sinusoidal pulse signal, and
the excitation signal has a peak-to-peak voltage of 350V and
a frequency of 500KHz. Since the single layer signal is weak,
a double layer coil is used to increase the signal strength. Each
layer has 10 coils, and each coil has 6 wires. The width of the
wire is 0.15 mm, the height is 0.035 mm, and the length is
45mm. The spacing between the adjacent wires is 0.3 mm.
The interval between the adjacent coils is 3.0 mm. In the
figure 9, ht represents the lifting distance of the transmitting
probe, which remains unchanged at 0mm in the experiment.
hr is the lifting distance of the receiving probe, which varies
from 0mm to 2mm.

The sample size is 500 ∗ 250 ∗ 60 mm and the material is
6061 aluminum alloy. At the center of the sample, the grooves
were machined vertically on the surface with a width of 1 mm
and depths of 0.5 mm, 1 mm, 1.3 mm, 2mm, 3 mm, 4mm, and
5 mm, respectively.

B. RESULT ANALYSIS
To verify the validity of the proposed method in practical
application, we collected transmitted wave signals with dif-
ferent defects at different lift distances. We use the proposed
SVD noise reduction method based on the fitting threshold
to preprocess the experimental signal. In comparison, many
different noise reduction methods are employed to conduct
the de-noising process of experimental signal. Since the
amount of noise contained in the experimental signal cannot
be determined, the signal-to-noise ratio cannot be calculated.
We use the ratio of the power of the original signal to the
power of the filtered noise to express the performance of
de-noising. The formula is as follows

SFN = 10× lg

(
n∑
i=1

x2(i)/
n∑
i=1

(x(i)− z(i))2
)

(7)

TABLE 2. Results of different improved SVD noise reduction methods for
experimental signals.

This formula (7) is the same as the SNR formula, but the
meaning is different, which is the ratio of the power of the
original signal to the power of the filtered noise. x(i) denotes
the original noisy transmitted wave signal. z(i) denotes the
signal after noise reduction. x(i) − z(i) represents the signal
filtered out by the filtering process, rather than all the noise
contained in the signal. The greater the difference, the more
noise is filtered out. Thus, the smaller the value of SFN,
the more noise will be filtered out. However, if the value SFN
is too small, the signal will be severely distorted. The WSC
describes the difference in shape between the de-noised signal
and the original signal, which can be used to evaluate the
distortion of the signal. The smaller the WSC, the greater the
distortion.

To verify the effectiveness of the SVD de-noising method
based on fitting threshold proposed in this paper, we com-
pare it with different improved SVD de-noising methods.
Table 2 lists the de-noising results of different improved SVD
de-noising methods for signals with different defect depths
and different lift-off distances. It can be seen from the table
that the SFN of SVD-fitting threshold method is less than
the SFN of SVD-fixed threshold, and the WSC of the two
are equivalent. Additionally, the SVD de-noising based on
fitting threshold can adaptively obtain the appropriate thresh-
old for different signals. Thus, the SVD-fitting threshold
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TABLE 3. Results of different latest noise reduction methods for
experimental signals.

FIGURE 10. Normalized lift off slope.

de-noising method is superior to the SVD- fixed threshold
method for EMAT signals. The WSC of SVD-difference
spectrum method and SVD-curvature spectrum method are
between 0.5 and 0.9, indicating that the signals after noise
reduction have great distortion. Therefore, the improved SVD
de-noising method based on fitting threshold has been veri-
fied to be effective for noise reduction of EMAT signals.

We also verify the effectiveness of the proposed method by
comparing it with other state of-the art de-noisingmethods on
the EMAT signal [14], [25]–[27]. Table 3 shows the results

FIGURE 11. Lift-off slope fitting curve.

TABLE 4. The calculation depth and relative error of the characterization
after different noise reduction.

of different latest noise reduction methods. We can know
that signals with crack depth greater than 2 mm at 1mm
lift-off distance are distorted after noise reduction by the
variational mode decomposition (VMD) de-noising method
and EMD-wavelet de-noising method. From the Table 3, it is
apparent that the SFR of wavelet de-noising and wavelet
packet-SVD de-noising method are greater than that of the
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proposed method, and the WSC of both methods are greater
than 0.99, indicating that these two methods filter out very
little noise. Thereby, the improved SVD de-noising method
based on fitting threshold is more suitable for EMAT signal
than other latest methods.

In reference [24], Zhang Kang proposed a characterization
method of surface defect based on the lift-off slope. There
is a linear relationship between the exponential form of lift
off distance (exp(T∗hr)) and signal strength (vpp) as shown
in figure 10. The slopeK is different when the depth of defect
is different, and the slope K decreases monotonically when
the depth of defect increases in figure 11. In this paper, we use
the lift-off slope to evaluate the defect quantitatively. After
noise reduction using different methods, the calculated depths
of defects and relative errors are listed in Table 4. We can
know that the relative error of defect characterization is the
smallest after noise reduction using the SVD-fitting threshold
method, which is less than 4%. It is obvious that after noise
reduction using SVD-difference spectrum, SVD-curvature
spectrum, EMD-wavelet, and VMD de-noising respectively,
the relative errors of defect characterization are very larger,
which are all greater than 8%. According to the analysis
of results in Table 4, the maximum relative errors of the
proposed method are reduced by 36.70%, 35.40%, 61.55%,
57.27%, 15.12%, 62.59, and 58.59%, respectively com-
pared with those of different methods. Therefore, the SVD
noise reduction method based on the fitting threshold is
beneficial to improve the quantification accuracy of defect
depth.

V. CONCLUSION
To develop a more reasonable and practical de-noising
method for the EMAT signal, a fitting threshold is pro-
posed for improving the SVD noise reduction method in this
paper. With the aid of fitting threshold, the effective singular
value order of the SVD noise reduction method is deter-
mined. The effectiveness of this method is verified by simu-
lation signals and experimental signals. From the calculation
results and discussion, the following conclusions can be
drawn.

(1) Aiming at the distribution characteristics of singu-
lar values of electromagnetic ultrasonic signals, a fitting
threshold method based on a segmented regression model is
proposed to obtain the effective singular value order. This
method can adaptively determine the selection of singular
values.

(2) The effectiveness of the proposed method is analyzed
by simulation signals and experimental signals. The method
in this paper can achieve fairly better noise reduction effect
for EMAT signal compared with other methods.

(3) After noise reduction of the experimental signal by
different methods, we obtained the defect depth based on
the lift-off slope. The results show that the SVD noise
reduction method based on fitting threshold can obtain more
accurate characterization results, and the relative error of
characterization is the smallest comparedwith other methods.
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