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ABSTRACT This paper proposes a continuous-time communication model of an energy harvesting
device (EHD) in the scenario that such EHD suffers from the temporal death caused by the energy depletion
and completion death caused by the destruction of its hardware or software, respectively. The harvested
energy is modeled as continuous fluid process, it arrives continuously and varies in time. The data is assumed
to be infinite backlog, and the EHD transmits it via a wireless channel fluctuates randomly due to fading.
We reformulate the system model into an equivalent piece-deterministic Markov process (PDMP) based
on the imbedded discrete-time decision epoch sequence of the system model, and then an infinite horizon
discrete-time Markov decision process (MDP) is built. We show the existence of the stationary deterministic
optimal transmission power rate (TPR) policy, and an algorithm for computing the TPR policy and the
maximum total expected throughput is developed. Finally, numerical examples are provided to confirm the
analytical findings. The effects of some system parameters to the optimal TPR policy and the maximum
expected throughput are investigated numerically.

INDEX TERMS EH-WSN, transmission power rate (TPR), throughput maximization, temporal death,
complete death, piece-deterministic markov process(PDMP).

I. INTRODUCTION
Conventional energy-constrained wireless sensor net-
works (WSNs) in general have limited lifetime. To alleviate
these energy scarcity issue, numerous energy harvesting
technologies emerge, such as mini solar panel, piezoelectric
transducers, and cognitive radio. The energy harvesting (EH)
technique enables the WSN nodes to harvest energy from the
natural sources, and store the collected energy in a storage
for future use. By embedding the energy harvesting modules,
energy harvesting WSNs (EH-WSNs) can exploit renewable
energy sources in the environment continuously to provide
energy consumption for the EH-WSN nodes. Harvesting
energy from ambient sources becomes a promising approach
to prolong the lifetime of wireless networks.

Since the EH-WSN nodes harvests energy from the
ambient energy sources asynchronously or periodically,
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the harvested energy varies dramatically over time due
to the varying environmental conditions. In many applica-
tions, the collected energy cannotmeet the power requirement
of the EH-WSN node uninterruptedly. Thus, the effective
utilizations of the harvested energy have receivedmuch atten-
tion from the industry, and it becomes an important research
area.

In contrast to the energy management strategy for the tradi-
tional sensor nodes, additional considerations to the impacts
from the energy replenishment process are required. The
energy management policy of the nodes need to adapt to the
harvested energy status. Obviously, an overly conservative
energy expenditure may limit the transmitted data by failing
to take the full advantage of the harvested energy, while
an overly aggressive use of energy may result in an energy
outage, which prevents nodes from functioning properly in
the future.

Recent years there has been a significant amount of
literature is focused on the efficient optimal transmission
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and energy allocation policies with different objectives
in EH-WSNs. For example, [1] studies the joint energy allo-
cation and routing problem for network utility maximization,
and an online solution is developed to achieve asymptotic
optimality. In [2], the authors propose a throughput-optimal
energy allocation algorithm for a times-slotted system under
time-varying fading channel and energy source by using
Markov Decision Process (MDP). Tomaximize the aggregate
average importance of the transmitted data, the authors of [3]
numerically show that the Balanced Policy (BP) and the
Heuristic Constrained Energy Independent Policy (HCEIP)
achieve near optimal performance in most cases of interest.
In [4], the authors develop optimal energy scheduling algo-
rithms forN -user fading multiple-access channels with EH to
maximize the channel sum-rate. In [5], the authors consider
wireless powered communication networks, and they propose
a transmission scheme for optimal allocation of the BS broad-
casting power and time sharing among the wireless nodes to
maximize the overall network throughput. The authors of [6]
propose a multi-layer Markov fluid queue (MLMFQ) model
to model the EH-WSN node with temporal death, an algo-
rithm for the optimal transmission policy to maximize the
steady-state average reward rate of the reported data packets
is proposed. The paper [7] explores joint power allocation
and route selection in a multi-hop cognitive radio network.
A new frame structure of radio frequency EH-cooperation-
transmission is considered, and closed form expressions of
the optimal time duration for EH and power allocation fac-
tor on each relay are developed. An overview of recent
exciting achievements related to the EH wireless commu-
nication system are provided in [8]–[10] and the references
therein.

In this paper, we develop a novel wireless communication
of the EH-WSN node, and investigate the optimal control
policy of the transmission power rate (TPR) to maximal the
expected throughput. Compared to the literature mentioned
above, our work have the following main contributions.
• Firstly, we develop a continuous-time hybrid-state
stochastic system model to describe the wireless com-
munication of the EH-WSN node. Especially, two
discrete-state stochastic processes are used to capture
the EH process and channel fading process respectively.
Unlike previous work, we use a continuous fluid process
to catch the dynamic of the energy level in the EH-WSN
node. In the later we will see that continuous fluid model
of the energy can characterise the energy evolution at a
more finer granularity.

• Secondly, two peculiar phenomena, i.e., temporal death
and complete death, of the EH-WSN node are consid-
ered simultaneously in our model. More specifically,
when the node runs out of the energy, it will be dead
temporally, and it will restart again after the accumulated
energy reaches a predefined threshold. When the node
suffers from hardware or software damage and can not
self-healing, the complete death will be occurred, and
the node will be dead permanently. We believe that the

current framework is more practical and more natural to
guide the design and optimization of the communication
of the EH WSNs.

• Thirdly, with the system state information, i.e., the cur-
rent energy harvesting state, fading channel status, and
the current residual energy level, we propose an optimal
control policy to achieve the maximum expected amount
of data transmitted during the lifetime of the EH-WSN
node. And the TPR control policy can be computed
offline and stored in a lookup table for implementation.

The remainder of this paper is organized as follows. The
system model is given in Section II, and the control problem
is reformulated in Section III. In Section IV, we reformulate
our control problem, and the optimal policy and the corre-
sponding algorithm are derived. In Section V, we present
numerical examples to illustrate the analytical results, and
close with conclusions in Section VI.

II. MODEL DESCRIPTION
Now, we develop a continuous time communication system
model to describe the data transmission from a terminal EH
device (EHD) to a receiver. In such a scenario, we assume
the EHD has a back-logged data queue for transmission, and
it transmits the data via a point-to-point wireless communi-
cation channel fluctuates randomly due to fading. The EHD
harvests energy continuously from the ambient environment
to meet the energy requirement. The energy arrives contin-
uously and varies in time. Furthermore, the EHD suffers
from the temporal death and complete death, which will be
described in more detail later. Our main goal is to develop
an optimal transmission scheduling policy for the transmit
power to achieve the maximum total expected throughput in
its lifetime.

The following is the detail description of the working
mechanism and control schedule of the EHD. The main
nomenclatures are listed in Table 1.

TABLE 1. The main nomenclatures of the model.
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A. TRANSMISSION MODEL
We propose a finite-state continuous-time Markov chain
(CTMC), which is denoted by JC = {JCt , t ≥ 0}, to
model the channel fading process similar to [13], [14].
Specifically, we assume that channel state space is divided
into nc non-overlapping state, which is denoted by �C

=

{1, 2, . . . , nc}. Let transition rate matrix of JC be QC = [qcij],
where qcij, i, j ∈ �

C , is the transmit rate of the channel from i
to j(6= i). We denote the channel gain rate by ct at time t , and
assume that the channel gain rate in each state is fixed and
known.

Consider a continuous-time communication of the EHD
that similar to that presented in [12]. At time t , let the
transmission power rate (TPR) of the EHD be πt , then the
instantaneous rate of the EHD at time t is

r[ct , πt ] = Wlog2

(
1+

ctπt
N0W0

)
, (1)

where W is the bandwidth of the channel, N0 is the power
spectral density, and 0 is the SNR gap.

B. ENERGY EVOLUTION AND DEATH
We adopt the view of [15] and establish a finite-state CTMC
to describe the EH process. More specifically, let JH =
{JHt , t ≥ 0} describe the evolution of the ambient energy
source. The energy source has nh states, which is denoted by
�H
= {1, 2, . . . , nh}.We denote the transition rate matrix of

JH be QH = [qhij], where q
h
ij, i, j ∈ �

H , means the transmit
rate of the resources from i to j(6= i). The energy harvesting
rate (EHR), which is denoted by ht at time t , is assumed to be
constant in each fixed state. The energy harvested by the EHD
is stored in an energy buffer and can be used immediately. The
energy buffer is with finite capacity which is denoted by θ ,
when the collected energy reaches its capacity, the excess
energy will be discarded.

To characterise the energy evolution at a more finer gran-
ularity, we use a continuous fluid level process to model
the energy dynamic in the energy buffer. Denote the energy
evolution process by X = {Xt , t ≥ 0}, and the state space
of X is denoted by �X

= [0, θ]. Let 1ht
πt = ht − πt , and

we refer to 1ht
πt as the energy net increment rate of the EHD

at time t . We can see that when 1ht
πt < 0, the energy in the

buffer decreases, as soon as the EHD runs out of its energy,
i.e., Xt = 0, the EHDwould be dead temporally due to energy
depletion, and we refer to this type of death as temporal death
in this paper.

Different from the general energy outage, when the tem-
poral death is occurred, the device becomes inactive and
its communication functionalities are consequently lost.
However, the EH module of the device is still harvesting
energy from the environment independently, which results
in the accumulating of the energy in the energy buffer. The
EHD has to be kept in the dead state until the amount of
harvested energy meets a predefined threshold energy level,
which is denoted by η ∈ [0, θ], then the device is triggered to
wake up and switch to a normal working fashion. We denote

the temporal death duration by L, it can be seen that L is a
random variable, it is independent of the TPR and completely
determined by the energy harvesting process. Amore detailed
analysis of the temporal death can be found in our previous
work [6]. A sample path of the energy level with temporal
death is described in Fig. 1.

FIGURE 1. A sample path of the energy level in the energy buffer of
the EHD, where the interval AB is one of the temporal death duration.

The temporal death can not be avoid completely in a
stochastic communication system without backup energy,
because the energy supply is determined completely by the
ambient environment, and the basal energy expenditure for
the EHD is necessary.

Moreover, we assume that the EHD is typically deployed
in hostile environments, and it is highly susceptible to the
random physical destructions. When it suffers unrecoverable
hardware or software destruction, it will be dead permanently.
We refer to this type of death as complete death. We let
α > 0 be the complete death rate, and α is assumed to be
constant [16], [17]. We denote the lifetime of the device by T ,
and we can see T is a random variable and it is exponential
distributed with mean α−1.

In summary, the evolution of the energy level process X of
the EHD can be described as

∂Xt
∂t
=


min{0,1ht

πt } Xt = θ, t /∈ L,
1
ht
πt 0 < Xt < θ, t /∈ L,

ht 0 ≤ Xt < η, t ∈ L.

(2)

Now, we obtain our stochastic system model, which is
denoted by

[JH , JC ,X ] = {[JHt , J
C
t ,Xt ], t ≥ 0}.

It is important to note that the evolution of JH only depends
on the environment factors, such as climate, time, location,
and other ambient conditions. Thus we assume that the pro-
cess JH operates independently of the process JC .

III. CONTROL FORMULATION
A. CONTROL MODE
When the system state changes, a new TPR is taken to adapt
to the new system state. More specifically, the TPR will be
not rescheduled when the state of the system keep constant,
and the decision of choosing a new TPR is only driven by one
of the following events: (i) Energy harvesting state changes;
(ii) Channel fading status changes; (iii) Energy over-
flow occurs; (vi) EHD wakes up from a temporal death.
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FIGURE 2. The sample path of the decision epoch sequence, where the
points a, c, f ,g, j are the time epochs that the channel fading changes,
b,e,h, l are the energy harvesting state changing points, points c is
temporal death occurrence point, and d is the restart time epoch, k is the
energy overflow occurrence point. It should be noted that during the time
interval [c,d ], there is no decision epochs due to the temporal death.

We consider the optimal TPR control policy with system
state information. That is, a TPR is chosen only based on
the current known system state, i.e., energy harvesting state,
the channel status, the energy level in the buffer, and no other
more information are known.

We index the decision time epochs by t0, t1, t2, . . . with
the convention that t0 = 0, and denote decision epoch set
by {tn} = {tn, n = 0, 1, 2, . . .}. At each decision epoch
tn, one of the TPR should be chosen to transmit the current
data. In practice, the EHD just has finite different TPR levels,
we assume that there are na available discrete TPR levels,
which is denoted by A = {a1, a2, . . . , ana}, where 0 = a1 <
a2 < . . . < ana = ψ < ∞, and ψ is the maximal TPR that
determined by the configuration of the EHD. We refer to an,
n = 1, 2, . . . , na, as an action, and A as the action space. At
time epoch tn, let a TPR σ̂n ∈ A is chosen, we then define

πt = σ̂n ∈ A, t ∈ [tn, tn+1), n = 0, 1, . . . , (3)

and π is referred to as a TPR policy. Since the TPR must be
kept constant in each epoch, thus TPR control policy πt is a
piecewise linear function. It is intuitive that, when the EHD
is in the temporal death, we need not to control the TPR. That
is, we can assume that πt = 0 when t ∈ L.

B. CONTROL PROBLEM
Let the initial state of the system be [JH0 , J

C
0 ,X0] = [j, k, x],

whichmeans that the EH state is j ∈ �H , channel status is k ∈
�C , and the energy level in the EHD is x ∈ �X . We define

V π [j, k, x] = Eπ[j,k,x]
[ ∫ T

0
r[ct , πt ]dt

]
, (4)

where Eπ[j,k,x][·] represents the conditional expectation under
control π given the initial state [j, k, x], I{·} is an indica-
tor function, r[·, ·] is given in (1) and T is the lifetime of

the EHD. Then V π [j, k, x] is total expected throughput of the
EHD during its lifetime when TPR policy π is taken. We also
call V as value function in this paper.

We rewrite (4) equivalently as

V π [j, k, x] = Eπ[j,k,x][
∫
∞

0

∫ s

0
αe−αsr[ct , πt ]dtds]

= Eπ[j,k,x][
∫
∞

0
e−αtr[ct , πt ]dt],

It means that V π [j, k, x] can be considered to be a total
expected α-discounted amount of the throughput of the EHD,
and α can be interpreted as a discount factor in the value
functions after reformulating the system model as an infinite
horizonMDP later. Now, we obtain our optimization problem
as follows.

For given [j, k, x] under (1), (2), (3), (4), find a TPR policy
π∗ defined in (3) such that,

V [j, k, x] = V π
∗

[j, k, x] = max
π
{V π [j, k, x]} (5)

Remark 1: In our control mode, we choose four events
as the trigger event. In fact, we can add some other events
to improve the control intensity in the system, for example,
the event when the energy level reaches some predefined
warning threshold, to be a trigger event without changing our
theoretical analytical framework.

IV. CONSTRUCTION FORMULATION
In our control mode, we first note that the decision time
sequence {tn} is a random time sequence, the evolution of
the system is not deterministic even if some (optimal or not)
policy is given due to the random nature of the system model.
Moreover, since we control the system at the occurrence time
epochs of the energy overflow and temporal death, the system
is not a Markov (fluid) process any more, and the markov
theory cannot be used directly.

To deal with the challenges, it is important to note that
the markov property of the system still exists on some
special time epochs, i.e., the decision epoch sequence {tn}.
Then based on this important observation, we consider the
sequence of states at these decision epochs, and using the sim-
ilar method provided in [18], [19], and [20], we can reformu-
late our system model into a piecewise-deterministic Markov
process (PDMP) based on the system state information. Ulti-
mately we can obtain a discrete-time infinite-horizon MDP,
which results in a solution of the control problem.

A. BACKGROUND PROCESS
To simplify the presentation in this paper, we first superim-
pose the two processes JH and JC . Let

B = {Bt , t ≥ 0} = {[JHt , J
C
t ], t ≥ 0},

�B
= {[i, j]|i ∈ �H , j ∈ �C

}.

We refer to B and �B as the background process and its state
space, respectively.
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To simplify the notation, we put the state [i, j] in �B in
lexicographic order, and label all states in �B from 1 to
nh× nc. Let nb = nh× nc, then state space�B can be simply
written as�B

= {1, 2, . . . , nb}. In the remainder of the paper,
we use the second symbols for simplification. The EH rate
and the channel gain rate of B are denoted respectively by hi

and ci when the background state is i ∈ �B. That is, when
Bt = i, we have ht = hi and ct = ci, respectively.
In order to introduce the complete death into our system

model, let us imagine that there is an additional artificial
cemetery state in the state space of the background process,
and assume that the process enters this state with probabil-
ity rate α, once the process B enters in the cemetery state,
the system will be killed and terminated. Then B becomes a
terminating CTMC on the state space �B, and its transition
rate matrix is given as QB

= [qbij] = QH ⊕ QC − αI , where
⊕ denotes the Kronecker sum, and I represents unit matrix
with an appropriate dimension [21].

It should be note that the control policy cannot change the
evolution of the background process B. Now, we reduce our
system model to the following simple form

[B,X ] = {[Bt ,Xt ], t ≥ 0}

on state space �B
×�X .

Since the randomness of the lifetime of the EHD are
injected in the background process, in the reminder of this
paper, we think equivalently that the EHD has a infinite life-
time, such equivalent assumption will make our presentation
more easier.

B. CONTROL REFORMULATION
Now, we reformulate our system model as an PDMP. For
conveniently describing the trajectory of the system model,
we define the following first passage times (FPTs). Let

νi = inf {t > 0 : Bt 6= i, B0 = i} i ∈ �B,

κyx = inf {t > 0 : Xt = y,X0 = x} x ∈ �X .

We can see that νi is the time epoch that the background
process B first leaves state i, and κyx is the time epoch that
the energy level process X starts from level x, and it first hits
the energy level y. In particular, when 1hi

a > 0, the FPT κθx
means the first occurrence time of the energy overflow of the
EHD with initial energy level x and action a is taken, and we
have

κθx =
θ − x

1hi
a

0 ≤ x ≤ θ.

Similarly, when1hi
a < 0, the FPT κ0x is the first occurrence

time of the temporal death due to the energy depletion, and
we have

κ0x =
x

−1hi
a

0 ≤ x ≤ θ.

In the sequel, we reconstruct the sample path of the system
model [B,X ] iteratively based on the imbedded discrete time
decision epoch sequence {tn}.

Let the current time epoch be t0 = 0, and the current
system state be [B0,X0] = [i, x]. We assume the action
σ̂0 = a ∈ A is chosen. The evolution of the system from
t0 is determined by the following three stochastic cases.
• The first case: νi ≤ min{κθx , κ

0
x }.

In this case, the background changes its state first before
the occurrences of energy overflow and the temporal
death, then we have

t1 = νi; Xt1 = x +1hi
a νi,

The transition probability density, which is denoted by
Pa[j, dy|i, x], in this case can be given as

P̂a[j, dy|i, x]

= Pa[Bt1 = j,Xt1 ∈ dy|i, x]

=

∫ min{κθx ,κ
0
x }

0
qbije
−qbi t I

{i6=j, x+1hi
a t∈dy}

dt, (6)

where we let qbi = −q
b
ii, i ∈ �

B.
• The second case: 1hi

a > 0, and νi > κθx .
In this case, the energy level increases, and the overflow
is occurred first before the background changes its state,
and we have

t1 = κθx ; Xt1 = θ; Bt1 = i.

The transition probability density is given as

P̂a[j, dy|i, x] =
∫
∞

κθx

qbi e
−qbi t I{i=j, θ∈dy}dt

= I{i=j, θ∈dy}e−q
b
i κ
θ
x . (7)

• The third case: 1hi
a < 0, and νi > κ0x .

In this case, the energy level decreases, and the temporal
death is occurred first before the background changes its
state, and the system is temporally dead until the energy
level first reaches the restart energy threshold η. Thus,
we have

t1 = κ0x + κ
η
0 ; Xt1 = η,

The transition probability density is given as

P̂a[j, dy|i, x] =
∫
∞

κ0x

qbi e
−qbi tgij[η]I{η∈dy}dt

= I{η∈dy}gij[η]e−q
b
i κ

0
x . (8)

The probability gij[η] is defined as

gij[η] = P[Bκη0 = j,Xκη0 = η | B0 = i,X0 = 0],

and we denote G[η] = (gij[η]). The derivation of gij[η]
is too cumbersome, and we give it in the appendix.

We are considering the throughput obtained during [0, t1)
as a lump reward received at the beginning of the interval.
Thus, during [0, t1) the throughput is given as follows

R̂a[i, x]

= Eπ[i,x]
[ ∫ t1

0
r[ct , πt ]dt

]
VOLUME 9, 2021 13433
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= I
{1hi

a =0}

[ ∫ ∞
0

qbi e
−qbi tr[ci, a]tdt

]
+ I
{1hi

a >0}

[ ∫ κθx

0
qbi e
−qbi tr[ci, a]tdt + e−q

b
i κ
θ
x r[ci, a]κθx

]
+ I
{1hi

a <0}

[ ∫ κ0x

0
qbi e
−qbi tr[ci, a]tdt + e−q

b
i κ

0
x r[ci, a]κ0x

]
.

A short calculation gives the expected throughput during
[0, t1) as follows

R̂a[i, x] =
r[ci, a]

qbi

[
1− e−q

b
i κ
θ
x I
{1hi

a >0}
− e−q

b
i κ

0
x I
{1hi

a <0}

]
.

(9)

Now, we obtain the state at t1 and the reward in [0, t1), which
is viewed as the reward at time epoch 0. At time epoch t1,
a new decision σ̂1 ∈ A is chosen, and the system model
‘‘restarts’’ from t1 to reach the time epoch t2, t3, . . ., in the
same fashion described above until it enters the cemetery
state, and then the process is killed and terminated.

We denote the new embedded discrete-time stochastic pro-
cess in the PDMP as

[̂Bn, X̂n] = {[Btn ,Xtn ], n = 0, 1, 2, . . .}.

It is noticeable that all the states, the transition probabili-
ties, and the expected throughput of [̂Bn, X̂n] at the next time
epoch are only dependent on the current state and the action,
this important fact guarantees that we can reformulate the
embedded process [̂Bn, X̂n] into an equivalent infinite horizon
discrete-time MDP [24].

C. REFORMULATION OF THE CONTROL PROBLEM
Based on [̂Bn, X̂n], we reformulate the original control prob-
lem as an equivalent infinite horizon discrete-time MDP
given as follows:
• State space: �̂ = �B

×�X .

• Action space: Â = A.
• One-step reward: R̂a[i, x] which is given in (6), for all
[i, x] ∈ �̂ and a ∈ Â.

• Transition density: P̂a[j, dy|i, x], which is given in (6)-
(8) for all [i, x], [j, y] ∈ �̂ and a ∈ Â.

We denote this MDP by M̂, and define the policy of M̂ by

σ̂ = {̂σ0, σ̂1, σ̂2, . . .}, (10)

where σ̂n ∈ Â, n = 0, 1, 2, . . ..
Under the policy σ̂ , the reward function of M̂ is defined

as

V̂ σ̂ [i, x] = Eσ̂[i,x][
∞∑
n=0

R̂σ̂n [̂Bn, X̂n]] (11)

for all [i, x] ∈ �̂.
The optimization problem of M̂ is defined as

V̂ [i, x] = max
σ̂

V̂ σ̂ [i, x], (12)

and V̂ [i, x] is the maximum expected throughput over a infi-
nite horizon under policy σ̂ .

The next lemma shows that the original control prob-
lem (5) can be treated as the discrete time control problem (9)
equivalently.
Lemma 1: Let π be the control policy for [B,X ] defined

in (3), and σ̂ be the control policy of M̂ defined in (10). Then
we have

V̂ σ̂ [i, x] = V π [i, x], (13)

V̂ [i, x] = V [i, x]. (14)

Proof: (14) can be obtained directly from (13).
To prove (13), we denote the natural filtration of [B,X ]

upon time tn by Fn, and let Eσ̂nFn [·] denote the conditoinal

expection Eσ̂nFn [·|Fn]. Noting

πt = σ̂n, t ∈ [tn, tn+1), n = 0, 1, . . . . (15)

Then in view of the strong Markov property, the value func-
tion V π [i, x] of (4) can be rewritten in terms of the process
(̂Bn, X̂n) as

V π [i, x] = Eπ[i,x][
∫ L

0
r[ct , πt ]dt]

= Eπ[i,x][
∞∑
n=0

∫ tn+1

tn
r[ct , πt ]dt]

= Eπ[i,x]

[
∞∑
n=0

Eσ̂nFn [
∫ tn+1

tn
r[ct , πt ]dt]

]

= Eπ[i,x][
∞∑
n=0

R̂σ̂n [̂Bn, X̂n]]

= V̂ σ̂ [i, x]

This completes the proof. �
From lemma 2, to obtain the control policy π for the

original optimal problem (5), we just need to investigate
the control policy σ̂ of M̂ based on the connection (12),
the existence of a policy σ̂ for M̂ would imply the existence
of a policy π for the optimal problem (5), and vice versa.

D. EXISTENCE OF OPTIMAL STATIONARY POLICIES
For the MDP M̂ obtained above, the following theorem
shows the optimal deterministic stationary policy exists in our
control problem.
Theorem 1: In the MDP M̂ described above, the reward

function V̂ satisfies uniquely the following dynamic pro-
gramming equation

V̂ [i, x] = max
a∈Â

{
R̂a[i, x]+

nb∑
j=1

∫ θ

0
V̂ [j, y]̂Pa[j, dy|i, x]

}
.

(16)

If for each [i, x] ∈ �̂, we choose a∗[i, x] to be the small-
est action in A to achieve the maximum in (16), then
σ̂ = {a∗, a∗, . . .} is an optimal policy.
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Proof: By the principle of optimal programming,
we have

V̂ [i, x] = max
a∈Â

{
R̂a[i, x]+

nb∑
j=1

qbij
qbi

×

∫
∞

0
qbi e

qbi t V̂ [j,min{(x +1hi
a )
+, θ}]dt

}
, (17)

where the notation [z]+ = max {0, z}.
Substitute (6)-(8) into above equation (17), and we obtain

the bellman equation (16) directly.
Now, we show that MDP M̂ satisfies the following

conditions:
(a) For each [i, x] ∈ �, the feasible action set Â is a

non-empty and finite set.
(b) For all [i, x] ∈ �, the value function V̂ [i, x] <∞.
The condition (a) is obvious, and we only need to check
condition (b). Since complete death probability rate α > 0
in the system model, then the sum in (11) has only finitely
many non-zero terms, and then the discrete time optimal
problem (12) is well defined. That is, for all [i, x] ∈ �̂

and policy σ̂ , we have V̂ [i, x] < ∞. Under the conditions,
by the similar proof of Th. 2.2 in [25], we can obtain the
results. �
Remark 2: The assumption of non-empty and finiteness

of the action set in our model simplify the mathematical
theory needed for the existence of optimal solution. The
proof of the existence of the optimal stationary solution
in the continuous (compact) action set case can be found
in [26] and [27].

E. OPTIMAL TPR ALGORITHM
In the following, we propose an optimal TPR control algo-
rithm for the TPR control policy of the EHD based on
theorem 1. In this paper, we use a state-space discretization
to yield recursive approximations to MDP. This is a general
method for stochastic control problems with hybrid-state
space. The convergence and the complexity of this algorithm
can be found in [27]. The TPR algorithm is summarized
into Algorithm 1.

In Algorithm 1, we can adjust the parameters k and
ε in step 1 and step (4-i) according to the accuracy
required in practical application. In step (3-iv) the probabil-
ity p̂a[j, xv|i, xu] can be calculated by the definite integral
directly. For example, when 1hi

a > 0, v > u and i 6= j,
we have

p̂a[j, xv, k|i, xu] =
∫
ωv

p̂a[j, dy|i, xu]dy

=

∫ v
k θ

u
k θ

p̂a[j, dy|i, xu]dy

=
qbij
qbi

(e−q
b
i
v−u
k − e−q

b
i
v−u+1

k ).

Algorithm 1 Computing the Optimal TPR Policy and
Maximum Expected Throughput
• Step 1. Specify k > 0 large enough.
• Step 2. Partition of �X .
(2-i) Let �X

k = {ω1, . . . , ωk+1}, where ωi = ((i −
1)δ, iδ], i = 1, . . . , k , where δ = θ

k .
(2-ii) Fix any point xi in ωi, i = 1, . . . , k + 1, and let
Xk = {x1, . . . , xk+1}.

• Step 3. Construction of MDP M̂.
(3-i) Build state space �̂ = �B

× Xk .
(3-ii) Build action space Â = A.
(3-iii) Compute one-step reward R̂a[i, xu] by (9), for all
[i, xu] ∈ �̂, and a ∈ Â.
(3-iv) Compute transition probabilities

p̂a[j, xv|i, xu] =
∫
ωv

p̂a[j, dy|i, xu]dy

by (6)-(8) and (18)-(19) for all [i, xu], [(j, xv] ∈ �̂, and
a ∈ Â,

• Step 4. Computation of MDP M̂.
(4-i) Specify ε > 0 small enough.
For each [i, xu] ∈ �̂, generate a candidate of V̂0[j, xv] =
0, set n = 0.
(4-ii) Compute iteratively V̂n+1[i, xu] by

V̂n+1[i, xu] = max
a∈Â

{
R̂a[i, xu]

+

nb∑
j=1

k∑
v=1

V̂n[j, xv ]̂pa[j, xv|i, xu]
}
.

(4-iii) If |V̂n+1 − V̂n| ≤ ε, let the maximal throughput
and the optimal TPR policy be

V̂ [i, xu] = V̂n+1[i, xu], a∗[i, xu] = a

and stop. Otherwise, increase n by 1 and go to step (4-ii).

And other transition probabilities can be obtained
similarly.

V. NUMERICAL RESULTS AND OBSERVATIONS
In this section, we give numerical examples to illustrate
the computation of the optimal TPR policy and the max-
imum expected throughput, we investigate the effect from
the system parameters to the optimal TPR and the maximum
expected throughput.

A. NUMERICAL SETTING AND DISCRETIZATION
In our numerical setting, we let the channel bandwidth be
W = 2 MHz, and the noise power spectral density be
N0 = 10−19 W/Hz. The SNR gap only depends on the
error probability requirements, and we set the SNR gap be
0 = 4. The channel considered here has three states {0, 1, 2},
which represents the ‘‘worst’’, ‘‘fair’’, and ‘‘best’’ state of
the channel. The channel gain rate of the state 0, 1, 2 are 0,
8× 10−13 and 15× 10−13. Through statistical measurement,
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the transition rate matrix is given as

QC =

−1 0 1
1 −2 1
0 1 −1

 .
Similarly, we use {0, 1, 2} to represent the ‘‘bad’’, ‘‘nor-

mal’’ and ‘‘good’’ states of the energy source, and the EH
rates at each state are 0, 0.05 J/s, and 0.1 J/s. The transition
rate matrix is given by

QH =

−1 1 0
0 −1 1
1 1 −2

 .
Then we obtain a background process B, whose state space

is denoted by {1, 2, . . . , 9} for simplification.
We let the action step-size and the energy step-size be δa =

0.05 J/s and δe = 0.02 J/s, respectively. And the action set and
the discrete energy level can be denoted by A = {iδa, i =
0, 1, . . . , na}, and Xk = {jδe, j = 0, 1, . . . , k}.
The system parameters: the maximal TPR ψ = naδa,

the capacity of the energy buffer θ and the completion death
rate α will be given in various value to observation their
impacts to the optimal policy and the maximal throughput
later.

Then we obtain a infinite horizon discrete time MDP with
finite state, and we implement the optimal TPR control algo-
rithm in Algorithm 1, and our numerical results are plotted
in Fig. 3 to Fig. 8.

B. OBSERVATIONS
In the following, we present some observations to highlight
some characteristics of the EHD.

The optimal TPR control policies and the maximal
throughput are plotted in Fig. 3 and Fig. 4 as functions
with respect to various background states and the residual
energy levels, respectively. From Fig. 3, we can see that at
background state 1, 4 and 7, the optimal TPR is zero nomatter
what the initial energy level is. This observation is obvious
since we note that the channel gain rate of state 1, 4 and 7 are
all zeros, in this case, the optimal energy control policy is no
transmission.

Given the background state, from Fig. 3 and 4, the TPR and
themaximal throughput increase with the growth of the initial
energy level. (In fact, use the mathematical induction, we can
prove easily this result that the TPR and themaximal through-
put are increase function in the initial energy level.) This fact
illustrates that a more aggressive energy control policy can
be taken when the residual energy is greater. Similarly, when
energy level is given, the TPR and the maximum expected
throughput with higher channel gain rate is larger than that of
state with lower gain rate. The observation can be explained
intuitively by the fact that, under the same EH rate and initial
energy level, the better the channel status is, the greater the
throughput is under the same energy consumption rate.

FIGURE 3. Optimal policy vs initial background states and energy levels
when θ = 0.5 J/s, η = 0.2 J/s, ψ = 0.5 J/s, α = 0.3.

FIGURE 4. Maximum expected throughput vs initial background states
and energy levels when θ = 0.5 J/s, η = 0.2 J/s, ψ = 0.5 J/s, α = 0.3.

Now, we investigate the impacts of the system parameters
θ , ψ , α, and η on the maximum expected throughput, and the
impacts on the optimal TPR can be analyzed similarly.

In Figure 5, we report the maximum expected throughput
vs the energy buffer capacity θ when the initial background
state is given as 5. From this figure, when the capacity
θ increases, the maximum expected throughput increases
too, however, the degree of the increment becomes weaker
when the capacity increases to some degree. This fact is
because that when the energy buffer is small, the energy
overflow occurrence probability is large, which give rise to
the much more energy waste and less expected throughput.
When the energy buffer is bigger enough, the energy overflow
occurrence is smaller or even becomes zero, in this case,
the increase of the energy buffer makes less or even no impact
to the maximal expected throughput.

Fig. 6 plots the maximum expected throughput vs various
initial energy level when the background state is 5 when the
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FIGURE 5. Maximum expected throughput vs initial energy level when
η = 0.04 J/s, ψ = 0.4 J/s, α = 0.3.

FIGURE 6. Maximum expected throughput vs initial energy level when
the background state is 5, θ = 0.5 J/s, η = 0.1 J/s, α = 0.3.

FIGURE 7. Maximum expected throughput vs initial energy level when
the background state is given as 5, θ = 0.5 J/s, η = 0.1 J/s, ψ = 1 J/s.

maximal TPRψ is 0.1 J/s, 0.15 J/s and 0.2 J/s.We can see that
when the initial energy level is low, the change of themaximal
TPR ψ makes a negligible impact to the maximal TPR.
However, when the initial energy level is high, the change

FIGURE 8. Maximum expected throughput vs initial energy level when
background state is 5, θ = 0.4 J/s, ψ = 0.4 J/s, α = 0.3.

of the maximal TPR ψ leads to more heavy impact to the
maximum expected throughput with a higher energy level.
This fact can be explained that when the initial energy is low,
its corresponding optimal TPR is low, thus it is not sensitive to
the changes of the TPR range. when the energy level becomes
larger, the optimal TPR becomes larger, too. Thus, increasing
the maximal TPR makes the range of the available TPR for
selection becomes larger, which leads to the increase of the
maximal throughput, when the global optimum of the TPR
is included in this range, the increase of the maximal TPR ψ
makes no impact to the throughput.

Fig. 7 plots the impacts of the different complete death
rates α on the maximum expected throughput. As expected,
the maximum expected throughput decrease with the increase
of the complete death rate α, since larger death rate leads to
a shorter lifetime of the EHD.

In Fig. 8, the maximum expected throughput is plotted as a
function with respect to various restart threshold level ηwhen
the initial background state is given as 5.We can see that when
increase the restart threshold level, the maximum expected
throughput decreases. The reason for this observation is that
increasing of the restart threshold level means the increase
of the temporal death duration, which leads to the decrease
of the working time of the EHD in its lifetime, and then the
maximum throughput is decreasing.

VI. CONCLUSION
In this paper, we consider the wireless communication of
an EHD with temporal and complete deaths in a wireless
fading channel. We develop a continuous-time, hybrid-state
stochastic communication systemmodel of the EHD.We pro-
pose the TPR policy that maximizes the expected throughput
in its lifetime, we optimize the objective by reformulating
the control problem into a PDMDP by using the markov
property of the system model. The space-space discretiza-
tion algorithm is proposed, and the numerical examples are
given to illustrate how to use our model and the algorithm
to obtain the optimal policy and the value numerically. some

VOLUME 9, 2021 13437



Y. Li et al.: Transmission Power Rate Control for EHD With Temporal and Complete Deaths

observations are investigated based on the numerical exam-
ples. The model and the method can be extended to some
specific communication application scenarios to analyze the
transmission strategy, and thus help to provide guidance on
designing more practical resource management schemes and
determining optimal system parameters. One of the extension
of this model and method that can be studied in the future
is the optimal energy management to maximize the expected
throughput under some additional Quality of Service(QoS)
constraints, for example, the delay-constrained, the energy
expenditure-constrained and so on.

APPENDIX A DERIVATION OF THE CONDITIONAL
PROBABILITY MATRIX G[η]
We first note that the interval [0, κη0 ] is exactly the temporal
death duration. During the temporal death, the EHD does
not work but harvests energy from the environment until the
accumulated energy reaches the level η. We further note that
πt = 0 for all t in the temporal death duration. That is,
the background process B evolves independently in its own
way. Therefore, during the temporal death, the process [B,X ]
reduces to a standard markov fluid queue (MFQ) [28], [29].
For simplicity, we will drop the superscript ‘‘b’’ in the all
notations.

First, we divide the state space of the background
process � into two parts

� = �0 ∪�+,

where �0 = {i ∈ �|hi = 0} and �+ = {i ∈ �|hi > 0}.
That is, when the background process enters the state in
�0, the EHD can not harvest energy, while the background
process enters the state in �+, the node can harvest energy
from the environment.

We reorder and partition Q according to � = �0 ∪ �+
as

Q =
[
Q00 Q0+
Q+0 Q++

]
.

We let H = diag[hj, j ∈ �+] be the EHR matrix.
During the temporal death duration, we define matrixG[η]

of the MFQ [B,X ], where the [i, j]th entry ofG[η] is given as

gij[η] = P[Bκη0 = j,Xκη0 = η | B0 = i,X0 = 0].

We assume thatG[η] is also partitioned according to�0∪�+.
Observing that the energy level first reaches the level η only
in �+, we have the block form of the matrix G[η] as given
by

G[η] =
[
0 G0+[η]
0 G++[η]

]
,

where 0 represents zero matrix with an appropriate
dimension.

We determine the sub-block matrices in G[η]. We have
the following theorem. A similar proof can be found
in [22], [23].

Theorem A.1: For the MFQ [B,X ] given above, we have

G0+[η] = −Q
−1
00 Q0+G++[η], (18)

G++[η] = eKη, (19)

where

K = H−1[Q++ − Q+0Q
−1
00 Q0+].

Proof: For i ∈ �0 and j ∈ �+, let qi = −qii, we have

gij[η] =
∫
+∞

0
qie−qit

∑
l 6=i

qil
qi
glj[η]dt

= q−1i
∑
l 6=i

qilglj[η].

Rewrite this in matrix form as follows

G0+[η] = 3
−1
0 [Q0+G++[η]+ [Q00 +30]G0+[η]],

where 30 = diag[qj, j ∈ �0]. Thus we have

G0+[η] = −Q
−1
00 Q0+G++[η].

Then we obtain (18).
To prove (19), considering the first transition of the back-

ground process, for i ∈ �+ and j ∈ �+, we can write

gij[η] = I{i=j}e
−qi

η

hi

+

∫ η

hi

0
qie−qit

∑
l 6=i

qil
qi
glj[η − hit]dt.

By substituting z for η − hit into the above equation, we get

gij[η] = I{i=j}e
−qi

η

hi

+

∫ η

0
e−qi

η−z
hi
∑
l 6=i

qilglj[η]
1
hi
dz.

Multiplying with eqi
η

hi on two sides, and differentiating with
respect to η, the above equation can be written in a matrix
form

∂G++[η]
∂η

= H−1[Q+0G0+[η]+ Q++]G++[η].

We then have the differential equation

∂G++[η]
∂η

= KG++[η],

where we denote

K = H−1[[Q++]− Q+0Q
−1
00 Q0+].

Noting the condition G++ [0] = I , we then have

G++[η] = eKη.

This concludes the proof. �
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