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ABSTRACT Essential tremor (ET) is diagnosed and monitored by movement disorder specialists based
on clinical observations. While many ET cases are benign, some require pharmacological and surgical
management, and there is a need for tools to assist clinicians in making informed decisions. This work
aimed to develop a computerized technique to detect the presence and severity of ET. A set of 6 writing and
sketching tasks were performed by 39 subjects on a digital tablet. The position and pressure of contact during
the sketching were recorded and analyzed to obtain the dynamics of drawing. ET patients were scored on the
Fahn-Tolosa-Marin Tremor Rating Scale by blindedmovement disorder neurologists, and then separated into
two groups: moderate and severe ET. Drawing tasks were more effective than writing tasks in distinguishing
the groups, with drawing horizontal and vertical lines being the most sensitive. A new set of composite index
feature was found to be most suitable in separating the three groups, with a Spearman correlation coefficient
of 0.72. The technique shows significant differences between controls, patients with moderate tremor and
those with severe tremor, with an accuracy of 87.2%. Our computerized analysis significantly outperformed
non-specialist clinicians in differentiating ET from control. We conclude that computerized analysis of the
dynamics of sketching horizontal and vertical lines is a suitable method to assess the presence and severity
of ET.

INDEX TERMS Computerized diagnosis, essential tremor, feature selection, task selection, writing and
sketching task.

I. INTRODUCTION
Tremor is an involuntary, rhythmic, oscillatory movement of
a body part. Most people have a slight tremor of their unsup-
ported limbs, only noticeable in circumstances of anxiety or
fatigue. Pathological tremor, on the other hand, is visible and
persistent. The most common form of pathological tremor is
essential tremor (ET) [1], [2], which affects roughly 2% of
the population [3]. ET is obvious when the limbs are held
in posture, affecting tasks such as carrying a cup, feeding,
and writing [4]–[6]. A family history of tremor is common in
ET. Some patients report improvement with small amounts
of alcohol. While the tremor may be intrusive, the disor-
der is not otherwise disabling in many cases and runs a
benign course. A minority, though, has a severe tremor that
impairs functional activities of independent living [7]–[9].
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Tremor amplitude increases slowly over the decades, so late
in life, ET can become more disabling.

At a clinical level, ET has two major problems. Firstly,
the disorder lacks a gold standard diagnostic test, and there
is uncertainty about the limits of its classification and even
whether it represents one or several underlying disease enti-
ties [3]. There are grey zones with other tremor disorders
such as dystonic tremor and tremor-dominant Parkinson’s
disease. Imaging-based biomarkers for ET have been inves-
tigated, but there are limitations from cost and inconclusive
results [10], [11]. Secondly, there is an unmet need for better
treatments. Currently prescribed drugs are modestly effective
at best. At the severe end of the ET spectrum, functional neu-
rosurgical or interventional neuroradiological procedures for
ET exist, yet there is uncertainty around the optimum patient
selection. In both of these areas, reproducible, quantitative
measurements can assist research into ET.

Simple pen and paper tests are often performed in the
clinic, both as a diagnostic aid for ET and as a rough
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measure of severity for monitoring purposes [4]. Comput-
erized methods using digital tablets [5]–[12] or wearable
sensors [13]–[17] have potential as sensitive and quantita-
tive assessments of writing and drawing in ET. This could
augment, or even outperform, the standard clinical tools for
tremor grading, and would be of particular use in clinical
trials of pharmacological treatments of ET.

Spiral drawing is impaired in ET, and a number of studies
have identified features corresponding to the shape of the
spiral that makes the test more objective. One observation
has been the altered axis alignment during spiral sketching
in ET cases [12], [18]. The Spiral width variability index
is the measure of loop-to-loop spiral width variation, which
was reported as a metric for screening ET [8]. Inter-spiral
tightness variability based on the 25%–75% range in tightness
across hand-sketched spirals has been proposed as a marker
of functional (psychogenic) tremor [19]. An alternate method
to detect the presence of tremors is the use discrete cosine
transform features from hand sketched spiral [5].

Digital tablets provide spatio-temporal location, pen-
pressure, azimuth, and altitudes information while writing
or sketching. This provides information on the dynamics of
strokes and hand-movements such as tremors and has been
reported to be more sensitive than shape-based analysis for
detecting tremors [5]–[12], [20]. The dynamics of sketching
or writing provide movement and pressure information such
as speed, acceleration, and pressure variability which can
be used to identify the presence of tremor, its amplitude,
and frequency [21]. Fourier transform of velocity has been
applied to capture the effect of tremor in [22]. However, these
dynamic-based techniques used only hand-sketched spirals
and most of them did not include shape-based or static infor-
mation. A few studies [7], [23] have combined shape and
temporal information to classify ET and controls. Entropy
and fractal dimension based features were applied to the
time series of shape information to determine the differences
between ET and controls [6], [9]. However, no study has
effectively used the dynamics of multiple sketching tasks to
identify the presence and severity of the disease.

The aim of this project was to develop a computerized
technique for the detection and assessment of the severity of
ET. We have investigated the dynamics of 6 handwriting and
sketching tasks to identify the tasks and features that best dif-
ferentiate between controls and ET, and between ET of mod-
erate and high severity. Novel composite index features were
developed to enhance the separation between the groups.
The recordings were also visually assessed by non-specialist
clinicians for comparison with the computerized technique.

II. MATERIALS AND METHODS
A. PARTICIPANTS
Ten men and nine women diagnosed with ET were recruited
from the Movement Disorders Service at Monash Health.
Their mean age was 67.2 ± 13.0 and the mean duration
of tremor symptoms was 21.7 ± 19.0 years. All complied
with the axis 1 definition of ET in the 2018 Consensus

TABLE 1. Demographic and clinical information of the age-matched
healthy controls and ET patients.

FIGURE 1. Average Fahn-Tolosa-Marin (FTM) tremor scale of each ET
patients. The average FTM tremor scale varies from 3.2 to 59.

TABLE 2. Demographic and clinical information of moderate ET and
Severe ET patients.

Statement on the classification of tremors [3]. No subject met
any of the Axis 1 exclusion criteria for ET. Twenty healthy
participants (9 men and 11 women) acted as controls for
automated writing and drawing tasks. Their mean age was
64.3 ± 12.0.
The study was conducted in accordance with the

human experiments Helsinki Declaration (revised 2004)
and approved by the Monash Health and RMIT University
Human Research Ethics Committees (HREC Project Num-
ber: 184981). All participants in this study gave their written
informed consent before data recording. The demographic
and clinical information of healthy control and ET partici-
pants are shown in Table 1.

B. ET SEVERITY SCORING
Scoring on the Fahn-Tolosa-Marin (FTM) Tremor Rating
Scale [24] was performed by two blinded assessors from
videotaped recordings. The FTM score of each ET patients
are shown in Fig. 1. The ET patients were grouped into
moderate ET (FTM < 30) and severe ET (FTM greater than
or equal to 30). The demographic and clinical information of
moderate and severe ET patients are shown in Table 2.
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TABLE 3. The details of the six different tasks that were performed by the age-matched control subjects and ET patients. Among six different tasks, four
were naturally handwritten tasks and two were guided hand-sketched tasks.

C. DATA ACQUISITION
Dynamics of handwriting and sketching were recorded using
a digital tablet (Wacom Intuos Pro Large, A3 sized) with a
pressure-sensor mounted ink-pen. This was chosen because it
provides the user with the feel of a regular pen andwith a large
sheet of paper and is perceived as comfortable and convenient
to elderly subjects. Customized software was developed in c#
which was then integrated into the tablet to record the pen
trajectories (x, y), pen tip pressure between the pen and the
tablet surface, azimuth–the angle between pen and vertical
plane of pad surface, altitude–the angle between pen and pad,
and time stamp. The data was recorded at 133 Hz of sampling
rate, analyzed in real-time to obtain the dynamic measures
using the customized software and stored as.csv files. The
tablet was placed as was comfortable to the participants.

D. WRITING AND DRAWING TASKS
The data was collected when the participants performed six
different writing and drawing tasks (Table 3). The first task
required repeated writing of the letter ‘‘e’’ which is con-
sidered as a basic assessment of fine motor skills of writ-
ing [25], [26]. The second task was writing ‘‘bd’’ repeatedly
as thewriting strokes are distinctively affected by tremor [27].
Both of these tasks have letters with vertical strokes. Task
3 consisted of drawing a spiral between dotted lines in a
clockwise (3a) and then anti-clockwise (3b) direction. In
Task 4, the participant again drew between dotted lines; this
time two horizontal and vertical lines. The drawing tasks with
displayed dots are language independent and less dependent
on visual feedback. Task 5 was the handwriting task that
required attention and visuospatial memory compared with
task 1 and 2. Writing one’s signature was Task 6, and this
represents the natural writing style of the person.

E. VISUAL ASSESSMENT
Two independent medical professionals who were not neurol-
ogists volunteered to examine the Task 3a and 3b drawings.
This assessment was included to give a broad comparison

with the ability of the non-specialized eye to detect features
of ET on a standard clinical drawing task. Each assessor was
given a description [4] with illustrative samples of the use
of pen-and-paper drawing assessments in the diagnosis of
tremor disorders. They were then provided the de-identified
static spiral images with the corresponding duration of spiral
drawing and asked to label these based on whether it was
drawn by a control or ET participant.

F. PRE-PROCESSING
The data were segmented using the pen-tip pressure to sep-
arate on tablet strokes from the on-air movement; pressure
= 0 labeled as ‘in-air’, while pressure > 0 as ‘on tablet’.
To remove outliers and artefacts caused by accidental touch
of the pen or wrist on the tablet, two steps of pre-processing
was conducted:

Step 1: The total length d of each segment was calculated
as follows:

d =
N∑
i

√
(xi − x0)2 + (yi − y0)2

where (x0, y0) is the starting point and (xi, yi) is the ith sam-
ple in the cartesian coordinate trajectory while sketching,
i = 1, 2 . . . . . .N . N is the total number of samples in each
segment. The segments of length, d < 2mm were considered
as noise for task 3 and 4 and were discarded–2mm chosen
empirically.

Step 2: To remove points due to accidental contact on the
tablet, median filtering was applied. If the distance between
two adjacent points is five times higher than the median value
of the distances between the previous five adjacent points,
was considered as accidental touch and removed from the
time series.

G. FEATURE EXTRACTION FROM WRITING AND DRAWING
TASKS
Seventy-nine features were computed from handwriting and
drawing tasks- details of these are in Table 4. The 79 features
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TABLE 4. A set of 79 computed features from six different writing and drawing tasks.

can be broadly classified into four categories: 18 static,
39 dynamic, 12 pressure, and 8 composite indices.

H. FEATURE SELECTION
An appropriate number of features improve the classification
of data, but excessive numbers can result in overtraining,
increased error and computational complexity [28]. Feature
selection was performed using statistical tests to identify the
most suitable set of features. The distribution of the data
using Shapiro-Wilk test [29] was found not to be normal
and non-parametric distribution-free Kruskal-Wallis test was
applied to identify statistically significant features. The fea-
tures with p < 0.05 for between-group differences were
selected [30]. These features were ranked based on Spear-
man correlation coefficient and the top ten were selected for
classification analysis. All computation, including statistical
analysis, was performed using Matlab2018b (MathWorks).

I. SUPPORT VECTOR MACHINE
The selected ten features were classified by support vector
machine (SVM) for both two-class and multi-class classifi-
cation. In the multi-class problem, SVM was used to classify
control vs moderate ET vs severity of ET and architecture is
shown in Fig. 2a.

J. HIERARCHICAL SUPPORT VECTOR MACHINE
The twenty selected features were incorporated in H-SVM
as a two-layer problem where the first layer detects the ET,
and the second layer classifies ET to moderate and severe.

FIGURE 2. Multi-class classification model using (a) Single layer and
(b) Multi-layer hierarchical classifier. In hierarchical classifier, the first
layer is used to distinguish control vs moderate ET and severe ET and
the second layer for moderate ET vs severe ET.

SVMbasedmulti-layer hierarchical multi-class classification
as shown in Fig. 2b.

The first layer classifies the control vs ET, and the second
layer classifies moderate ET vs severe ET. Instead of using
the same feature set, the top ten distinctive features of each
layer were used for classification. Compared to a single-layer
multi-class classifier, the multi-layer hierarchical classifier
has been reported to have better classification accuracy and
robustness [31]. It has also been found to be less sensitive to
the datasets being imbalanced or skewed [31].

K. MODEL TRAINING AND TESTING PROCEDURE
In this study, we have employed a leave one subject out cross
validation where each subject was picked from the pool of
the whole dataset and the rest are used for training the model.
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TABLE 5. The performance evolutions of six different tasks for two class
classification with leave one subject out cross-validation.

The average performance of each subject is reported as over-
all performance.

L. PERFORMANCE METRICS
In this study, four statistical measures called accuracy, sen-
sitivity, specificity and F score were applied to evaluate the
performance of the proposed model, which were calculated
as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
× 10,

Sensitivity =
TP

TP+ FN
× 100,

Specificity =
TN

TN + FP
× 100,

F Score = 2×
Sensitivity× Sensitivity
Sensitivity+ Sensitivity

× 100,

where TP (true positive) is the number of ET subject detected
as ET, TN (true negative) is the number of controls detected as
control, FP (False positive) is the number of controls detected
as ET, and FN (False Negative) is the number of ET detected
as control.

III. RESULTS
The classification result of leave-one-out validation for two-
class (control vs ET) and multi-class (control vs moderate
ET and severe ET) using support vector machine (SVM)
classifier with linear kernel have been presented in Table 5
and Table 6 respectively. For two-class, the classification
accuracy using writing tasks (task 1, 2, 5 and 6) varies from
64.10% to 71.80% while for drawing tasks (task 3a, 3b
and 4) it is in the range of 76.92% to 84.62%. The details
of the writing and drawing tasks are presented in Method
Section. The sensitivity, specificity, and F score of writing and
drawing tasks for two class classification are listed in Table 5.
Multi-class classification using multi-class SVM (M-SVM),
the overall classification accuracy using writing tasks varies
from 43.58% to 53.84%while for drawing tasks from 66.66%
to 74.35%. Multi-class classification using proposed Hierar-
chical SVM (H-SVM) has an accuracy of 53.84% to 64.69%
for the writing tasks and 74.36% to 87.18% for the drawing
tasks (Table 6).

The screening of drawn spirals was done by visual inspec-
tion performed by two independent evaluators and is shown
in Table 7. In both cases, the inter-rater variability and
misclassification-rate were high, with sensitivity, specificity

TABLE 6. The accuracy of six different tasks for multi-class classification
with leave one subject out cross-validation using M-SVM and H-SVM
classifier.

TABLE 7. The Performance evaluation of screening ET from control by
visual examination of spiral tasks by two different evaluators. The
proposed model predicted responses are compared with the evaluators.

and accuracy for the two evaluators being 55.5 and 66.6%,
44.4 and 66.6% and 50 and 66.6% respectively. In compari-
son, the overall performance of the computerized analysis had
specificity of 90.00%, sensitivity of 84.21%, and accuracy
of 87.18% (Table 7).

A. RANK OF THE FEATURES
The features were individually tested for statistical signifi-
cance using non-parametric distribution-free Kruskal-Wallis
test and Spearman’s correlation was performed on those with
p < 0.05. Spearman’s rank correlation coefficients of the
tasks and their features are presented in Table 8 and 9.
The tables show that drawing tasks (3a, 3b, and 4) out-
perform the writing tasks and thus are more suitable for
distinguishing between controls and ET, and ET moderate
and severe. The rank of features shows that composite index
features (combining both dynamic and shape features) of the
drawing tasks have the highest correlation for distinguishing
between ET and control. For writing tasks, both shape and
dynamic features have comparable correlation coefficients.
Comparing moderate ET vs severe ET, the dynamic features
obtained from drawing tasks had a higher correlation than the
shape-based ones. Of the top ten features of drawing tasks
based on Spearman’s rank correlation coefficients, most of
the features were from dynamic and composite index feature
sets.Writing tasks had a lower correlation, and both shape and
dynamic features had comparable correlation coefficients.
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TABLE 8. The list of the top ten features of six different tasks based on
Spearman rank order correlation coefficient to differentiate ET from
age-matched healthy controls. The features are represented by the
acronym and Spearman correlation coefficient is in the brackets.

TABLE 9. The list of top ten features of six different tasks based on
Spearman rank order correlation coefficient to differentiate moderate ET
from severe ET. The features are represented by their acronym and the
Spearman correlation coefficient in brackets.

B. ROBUSTNESS OF THE MODEL
The higher sample size is considered necessary for the train-
ing to represent the phenomena being modeled. However,
with limited labeled data samples, which is often the case
with medical data, the appropriateness of the feature selection
and thus the resultant model needs to be tested for robustness
when trained with the small training set. For this purpose,
the minimum number of data points (participants) that were
necessary to train the model for accurate classification was

FIGURE 3. Evaluation of model performance with a different number of
training subjects and a certain portion of total samples. The boxplot
represents the distribution of overall accuracy of the model for a different
number of training subjects from 5 to 35 for a) control vs ET and b)
control vs moderate ET vs Severe ET. The box represents the 1st, median,
and 3rd quartile of the overall accuracy using a varying number of
subjects from the training pool randomly for five iterations. (c) control vs
ET and d) Severity of ET- show the bar chart the overall classification
accuracy based on the percentage of total samples (10% to 70%) of each
subject used for training the model and leave-one-out cross-validation.

determined for each classification problem, control vs ET,
and for ET severity. This was only performed for task 4 which
was found (Table 5 and 6) to be the most discriminative task.

Two measures were used to test the robustness of the
model- (i) based on the number of participants used for
training, and (ii) the proportion of the data of each participant.
The first step was to obtain the performance by increasing the
number of participants from 5 to 35. The training data was a
random subset of the participants from each class while the
class balance was maintained for training the model. Each
step was iterated five times and the results were averaged and
the results are shown in Fig. 3a and 3b. The figure shows that
accuracy improved with increasing the number of training
subjects and plateaued with 20 subjects, with classification
accuracy reaching 84.20% for two-class and 82.10% for
three-class.

The model robustness was also assessed by determining
the minimum amount of data from each participant that is
needed to train the model to differentiate between ET and
controls and between ET severity levels, and the graphs are
demonstrated in Fig. 3c and 3d. The data used for training is
shown as a percentage of the full recording. The figure shows
that accuracy was about 75% for 20% data and plateaued
at 85% when 50% of the data was used to train the model.
These two tests demonstrate that the features obtained from
ranking (Table 5, 6 and 7) were suitable for identifying ET
from controls and moderate ET from severe ET.

IV. DISCUSSION
There is a need for computerized techniques to detect and
monitor the severity of ET. This study investigated features
of different writing and sketching tasks for computerized
detection and assessment of ET. The results show that for
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standardized sketching tasks, computerized analysis shows
a good correlation with the presence of ET and the severity
of the disease. This technique, therefore, shows promise for
applications that require objective intra-individual assess-
ments of severity, blinded clinical trials of new therapies
or measuring the outcome of pharmacological or surgical
interventions. The degree bywhich the computerized analysis
outperformed visual assessment by non-specialized physi-
cians emphasises the potential value of our approach. The
selection of the tasks, the associated features, and the method
of classification are discussed below:

A. TASK SELECTION
An important observation of this study is that the drawing
tasks outperformed the writing task in differentiating between
control and ET, and between moderate and severe ET, with
the sketching of horizontal and vertical lines (Task 4) being
the most effective. The drawing of the horizontal and vertical
lines requires long strokes which was found to be the most
effective task for discriminating between the groups. Among
the writing tasks, the group difference was the highest for
task 5 (writing a long sentence). This task has a cognitive
loading component which could cause psychological stress
and enhance the tremor in ET patients.

B. SKETCHING AND WRITING FEATURES
The standard deviation of stroke-length on the tablet surface
(stdStrLen) was higher in ET compared with controls indi-
cating that there was large variability in their stroke-length.
It was also observed that the maximum stroke length (maxStr-
LenAir) in the air was significantly higher in ET. This indi-
cates that when the ET patients write, they spend significantly
more time hovering above the tablet, which could be because
of their poor fine-motor control, indecisiveness or both.
Severe ET patients have constant high pressure(satPreDur)
while writing. This could relate to impairments of repetitive
movement in ET that are independent of the tremor [32].

Among the drawing tasks, it was found that the difference
between ET and controls was most significant for CIDA,
the composite index of bi-directional changes and median
acceleration in x. HigherCIDA indicates either a greater num-
ber of total directional changes or larger acceleration- both
of which would indicate the presence of tremor. There was a
significant difference in the acceleration (medAx ,medAy) and
jerk (medJx ,medJy) between moderate and severe ET. This
confirms that the severity of ET is based on the amplitude
and frequency of tremor.

C. CLASSIFICATION
The statistical analysis shows that the feature set with signif-
icant differences between ET and control is different from
the feature set required to differentiate between moderate
and severe ET. This motivated the use of the hierarchical
classification method, where the first step was to detect ET
from control, and the next step was to detect the severity
of the disease. Such an approach also has robustness on
problems such as class imbalance and skewed datasets [31].

The incorporation of the hierarchical multi-layer classifier
improves the accuracy ∼13% over conventional single layer
multi-class classifier (see Table 6). However, the performance
metrics for classifying moderate ET for both the classifiers
and for each of the six tasks is much less than for controls
and severe ET. The relatively lower classification accuracy of
moderate ET may be because of partial overlap in the feature
spaces with the control groups.

D. LIMITATIONS OF THE STUDY AND FUTURE DIRECTIONS
The proposed approach has shown that computerized analysis
can be used to distinguish ET from controls and moderate
from severe ET. One limitation is that this study did not
investigate the difference between ET and other disorders
with tremor symptoms. We have not compared PD and ET
tremor. While this is important and has been attempted by
other authors, but it was not the focus of this study. The FTM
scoring was only performed by blinded movement disorders
specialists, and the small post hoc examination of static spi-
rals by two non-specialized physicians (Table 7) has been
included to provide a general benchmark for classification
by visual inspection. This minor part of this study should
not be used to infer a level of performance for specialized
neurologists. Another shortcoming of this study is the size of
the dataset of 39 (19 + 20) which, while comparable with
other studies, is not sufficient to investigate within the sub-
groups. Thus, there is a need for a larger dataset. It is also
important to test patients over multiple visits to study the
repeatability of these experiments.

V. CONCLUSION
In this work, we have developed a computerized system for
detecting ET and for monitoring its level of severity. The
novelties of this work are threefold. Firstly, several writing
and sketching tasks have been compared and those that best
differentiate ET from control, and classify the severity of
the disease, have been identified. Secondly, a wide range of
features reported in the literature have been investigated and a
novel set of composite features to best discriminative ET from
control as well level of severity of ET have been developed.
Finally, a hierarchical multi-layer classifier has been incor-
porated, which outperformed the single layer support vector
machine. This work has the potential of being used to detect
and monitor ET symptoms, which can support clinicians and
be used for measuring improvement frommedication or other
treatments.
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