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ABSTRACT Acoustic seabed classification (ASC) is a fast and large-scale seabed sediment survey method.
In particular, combining it with an automated classifier can theoretically achieve fast automatic seabed
sediment classification. However, owing to the cost of sampling, a lack of labeled data for sediment
classification based on seabed acoustic images impedes the training and deployment of classifiers. Herein,
we use shallow-water, side-scan sonar images collected from the Pearl River Estuary combined with
deep learning to study sediment classification and optimization methods for a small dataset of seabed
acoustic images. In this paper, we applied different and deeper convolutional neural networks (CNNs) and
used grayscale CIFAR-10 for pretraining to achieve large-span parameter migration and improve model
performance. The best result in the experiment is a 3.459% error rate achieved by ResNet after fine tuning,
verifying the improvement brought by our fine tuning strategy and the deeper models used in such tasks. The
results of data enhancement based on generative adversarial networks (GANs) indicated that this method
can improve the accuracy of sediment classification; however, the effects of GANs are limited and they are
computationally expensive. Overall, our findings resolve, to an extent, the dilemma of using small datasets
of seabed acoustic images for sediment classification and provide a framework for future studies on sediment
classification, which has a certain significance in helping people better understand the seabed.

INDEX TERMS Acoustic seabed classification, side-scan sonar, deep learning, convolutional neural
network, pretraining, generative adversarial network.

I. INTRODUCTION
Inspired by the great success of deep learning (DL) in com-
puter vision and related fields, research on the applications of
DL to underwater imaging has also begun. There are twomain
types of underwater images—optical photographic images
and acoustic images—which typically include underwater
targets, seafloor topography, and seafloor sediments, among
others. Seabed sediment classification is used to investigate
the type and distribution of seabed sediments, which is of
great significance to marine geology and related research.
However, the traditional seabed sampling method is time-
consuming and expensive, and it is also difficult to cover
a large seabed area. Therefore, an effective-cost method for
seabed sediment classification is necessary.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

Acoustic seabed classification (ASC) has been studied for
a long time [1], and its basic principle is to realize classifi-
cation through the information contained in back-scattering
(BS) intensity. When sound waves are transmitted to the
seabed, they will undergo complex reflection and refraction
and return in the direction of the incident angle, which is the
BS intensity. It is usually related to surficial sediments prop-
erties, such as hardness, grain size, and roughness, which is
the basis of ASC [2]–[4]. At present, there are many pioneers
in the research of BS-based sediment classification, such as
the geoacoustic inversion method [5]–[9] and statistical algo-
rithms [10]–[14]. These studies have proved the effectiveness
of this method of ASC.

Side scan sonar (SSS), as a large-scale and rapid seabed
detection equipment, has been widely used in missions such
as seabed topography and geomorphology survey. The prin-
ciple of SSS involves transmitting dense beams to the seabed,
and receiving and recording the BS intensity through the
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transducer. Some researchers have studied the relationship
between SSS data and seabed sediments [15], and the appli-
cation research of seabed sediment classification based on
SSS images shows the effectiveness of this method [16]–
[18]. However, relying on manual operation when classifying
the sediments based on SSS images is a time-consuming
process. Therefore, the automatic seabed sediment classi-
fication method based on acoustic images has become a
research focus in related fields. Sediment classification based
on SSS or other acoustic data usually requires some known
samples or ground truthing, but such ground truthing is
usually very scarce because seabed sampling is expensive
and time-consuming. Therefore, it is difficult to construct
an automatic SSS-based sediment classification method with
small datasets.

There are many precedents in the field of sediment
classification which are based on seabed acoustic images
and use classic machine learning algorithms, such as sup-
port vector machines (SVMs) [19], decision trees [20],
k-means [18], [21], and back-propagation neural net-
works (BPNNs) [22]–[24]. Paired with a combination of
such machine learning algorithms and feature engineering,
the end-to-end training method of DL omits complex feature
engineering, rendering it more convenient in the application.
As a representative algorithm in DL, convolutional neural
networks (CNNs) have facilitated considerable achievements
in various fields, especially in computer vision, making it the
current mainstream method for processing image data.

As convolutional neural networks are excellent algorithms
for processing image data, they are suitable for dealing
with seabed acoustic images; and there have been multiple
studies in which CNNs were applied to sediment classifica-
tion [25], [26], target detection [27]–[31], and semantic seg-
mentation [32]–[34]. The results yielded have been favorable.
Compared with traditional algorithms, CNNs can automati-
cally learn data features without the need for feature engi-
neering and other preprocessing steps required by traditional
algorithms, and theoretically have better generalization and
application deployment capabilities. At present, CNNs have
made considerable development, especially deep CNNs with
better high-dimensional feature extraction capabilities have
been proposed and applied. However, as mentioned earlier,
there is usually a lack of sufficient labeled data in SSS-based
sediment classification tasks, a problem faced when applying
CNNs to the task of the current study. Compared with the
dataset that usually have thousands of samples in the field of
computer vision (such as ImageNet), our dataset is actually
very small, so this is a typical DL application based on small
dataset. Under such data conditions, what kind of CNNs can
achieve the best performance is not conclusive, so in the
experiment we test CNNs of different depths and complexity.
Besides, in this paper, we combine transfer learning and gen-
erative adversarial networks (GANs) in DL to optimize CNN-
based sediment classification under a small SSS dataset.

To the best of our knowledge, fine tuning has already been
applied in sonar image recognition and target detection [35]–

[38], but it is rarely used for sediment classification based
on SSS data. Therefore, we believe that it is necessary to
verify its feasibility for such applications. However, due to the
lack of mature relevant datasets, we can only focus on some
existing datasets of computer vision, such as CIFAR-10 [39].
The CIFAR-10 dataset contains 10 classes of images, such as
cars, airplanes, whereas the content of our SSS image dataset
is of three types of sediments, and there is almost no similarity
between the two datasets. There is little precedent for the
transfer of model parameters between two such extremely
different datasets in sediment classification based on a small
SSS dataset; thus, we termed it fine tuning based on large-
span parameter migration (LSPM) and verified its utility.

Data enhancement is derived from the field of data opti-
mization. In addition to performing a certain geometric trans-
formation on the original data, a generation model such as a
GAN [40], is also a means by which simulation data may be
generated to expand the dataset. At present, some GANs have
been applied in the study of seabed acoustic images for data
enhancement, such as the generation of synthetic aperture
sonar (SAS) data [36], [41] and sonar wreck images [37]. We
believe that generating new SSS data by GANs can enrich
the feature expression of a small SSS dataset, which could
optimize sediment classification performance.

In this study, we apply deeper CNNs, LSPM-based fine
tuning, and GANs to achieve high-accuracy sediment clas-
sification based on a small SSS image dataset. We introduce
several commonly used CNNs for classification testing and
migrate the model parameters, pretrained on the grayscale
CIFAR-10 (GCIFAR-10) dataset, to our target dataset to fine
tune the CNNs. Our experimental results verify that fine
tuning based on LSPM can greatly improve accuracy and
training stability. In particular, compared to SVM combined
with feature engineering, significant improvement in accu-
racy is evident. According to the results, the ResNet-4-2 in
our experiment was able to achieve a very low error rate
of 3.459% after fine tuning, which is suitable for the target
mission. We also expanded the training dataset by applying
GANs to enrich the small SSS dataset, and our results demon-
strate that the enhancement of GANs can improve sediment
classification to a certain extent; but it is limited in application
and computationally expensive. Overall, the results of this
study can be used to alleviate the problem of small datasets
in sediment classification to a certain extent. We believe our
research has practical meaning in helping us to understand
the distribution of seabed sediments, topography, and even
the distribution of some biological habitats.

II. DATA
The study aimed to classify sediments from a small SSS
image dataset and study the optimization of such classifica-
tion. The data we used were taken from SSS images obtained
in the Pearl River Estuary as part of the ‘‘China Offshore and
Ocean Comprehensive Survey and Evaluation Special.’’ The
micro-geomorphology and sediment types of the Pearl River
Estuary are diverse. Based on an analysis of the acquired
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FIGURE 1. SSS image data used in this study.

scanning images, there are large areas of sandwaves and reefs
distributed in the estuary. Mud is concentrated in the inner
Lingtingyang shoal area, where the water depth is relatively
shallow.

Since the data we obtained is post-processing data,
we only have partial experimental parameters. In this sur-
vey, we used a DF1000/560D digital dual-frequency SSS
system (EdgeTech, USA), a differential global positioning
satellite system, an SDH-13D depth sounder (South Survey-
ing & Mapping Instrument Co., Ltd., China), and a CAP-
6600 Chirp II shallow profiler system (Datasonics, Inc., Aus-
tralia). The SSS operating frequency was 500 KHz, and the
analog-to-digital (A/D) resolution of the SSS system was
12 bits/sample. We estimate that its working depth is about
10 meters from the water surface. The width and height of
a pixel in the SSS images correspond to 0.2 m each. The
specific image data are shown in Fig. 1.

SSS data labeling is based on actual seafloor grab samples.
The SSS dataset we used in this research was very small
and, as shown in Fig. 1, the SSS images of each sediment
type were evidently separable; this was suitable for our
research. In practice, grab sampling is used to obtain ground
truth in a small area, and then applied it to train the classifier.
Specifically, the very few seabed samples resulted in a very
small training set, and it is impossible to sample from the
entire dataset like random sampling. Therefore, to get closer
to the actual situation, we cut out about a quarter of the
original data as a training set (the area in the red rectangle
in Fig. 1), and use the rest as training set. We believe that this
division is better aligned with actual application scenarios.

The original data were cut using a window with a core
size of 20 × 20 pixels to avoid losing feature information,
and 2 pixels were filled around the window to appropriate
account for the influence of the surrounding content of the
core, so each sample after cutting is a picture with a size of
24× 24 pixels. The training dataset adopted sliding-window
sampling, with a spacing of 6 pixels. Such a continuous sam-
pling method can theoretically ensure the feature richness,
and can also expand the training set as much as possible. For
the testing set, the continuous samplingmethod obviously has
no meaning, so there is no intersection between the sliding
windows when cutting. After cutting with different sampling
methods, the total number of the training set was ∼900, and
the number of testing set was ∼300. It is worth noting here

that the reason why the training set, which accounts for about
a quarter of the original data, can be obtained with more
samples is that we adopt the small spacing (6 pixels) sliding
window sampling method.

As the original datasets were very small, we divided the
cutted images into training set and testing set, without setting
a verification dataset. In our experiments, we use the training
set to train the model, and the testing set to measure the
performance of the algorithm. However, the division of data
will inevitably affect the results, which can easily lead to
unreliable results. To weaken the influence of dataset divi-
sion, we combined different parts of the original data as
a training dataset in turn and finally divided the data into
64 subdatasets (SCH-0, 1, 2, . . . , 63). This segmentation
method is very similar to cross validation, in which a quarter
of each type of sediment samples are selected in turn to form a
training set (as shown in the red rectangle area in Fig. 1). Our
model was then applied to each of these 64 datasets, which
weakened the impact of division as much as possible and
made the experimental results more reliable.

III. METHOD
A. CONVOLUTIONAL NEURAL NETWORKS
The basic purpose of a CNN is to extract high-dimensional
features through the combination of a convolution kernel,
nonlinear activation function, and pooling layer, whose struc-
ture is shown in Fig. 2. During forward propagation, the con-
volution kernel automatically extracts the features of the
input. After convolution, features are generally mapped by
a nonlinear activation function, such as the widely used rec-
tified linear unit (ReLU) function [42], given by

ReLU (x) = max(x, 0). (1)

Down sampling underlies the nonlinear activation function,
which usually employs maximum or mean pooling. The
CNNs typically output prediction values through the softmax
function, and the loss function is calculated according to the
output of the CNNs and the real label. The loss function is
the key to training CNNs through a back-propagation (BP)
algorithm, and CNNs rely on BP algorithms for training to
update the network parameters. The cross-entropy formula is
generally used in CNNs to calculate the loss value (LOSS),
given by

LOSS = J (W , b) =
1
N

∑N

i

∑M

j
yij log(pij), (2)

where W is the convolution kernel parameter, b is the bias,
N is the number of samples in the batch, M is the number of
classifications, yij is the label value of the i-th sample on class
j, and pij is the predicted value of the i-th sample output by
the CNNs on class j. These operations are described in detail
by Goodfellow et al. [43].

Since their introduction, the depth and width of CNNs
have increased, and various structures have been introduced
to optimize their performance. As a pioneer in CNNs, LeNet-
5 (hereafter, ‘‘LeNet’’) [44] has a small number of parameters
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FIGURE 2. Basic structure of CNNs, wherein the convolution layer is used to extract features to form a
high-dimensional feature vector, and the classifier establishes the mapping relationship between the
feature vector and the output.

FIGURE 3. Basic structure of a (a) basic residual block, (b) residual block, and (c) dense block.

and a simple structure, which is designed to recognize hand-
written digits. Meanwhile, AlexNet [45] achieved a break-
through on ImageNet in 2012. As an exploratory means of
developing CNNs, VGG [46] has achieved the same receptive
field as large convolution kernels with fewer parameters by
combining convolution kernels, and thereby increasing the
depth of CNNs and improving performance. A milestone was
achieved for CNNs with the development of ResNet [47],
which connects input and output by introducing a residual
module design, as shown in Fig. 3a. Themathematical expres-
sion of the residual is

Output = F (x)+ x (3)

where x is the input and F(x) is the convolution operation.
The residual structure utilizes multiscale feature information
and alleviates network degradation. Compared to the ResNet
(Fig. 3b), DenseNet [48] concatenates all of the output from
the previous layer in the depth dimension as input (Fig. 3c).
In theory, DenseNet makes better use of multiscale feature
information and reduces the number of parameters; however,
the calculation speed is also reduced due to excessive con-
catenation and memory operation.

The seabed sediment classification based on SSS images is
actually a computer vision task—tasks for which CNNs are

theoretically suitable. In particular, the end-to-end structure
of CNNs makes feature engineering and other preprocessing
work on the original data unnecessary. At present, the appli-
cation of CNNs to sediment classification based on small
SSS datasets lacks theoretical guidance. Moreover, the model
choice needs to meet both performance and speed require-
ments. In this study, various types of CNNs were used to
measure and evaluate their performances, and we aimed to
determine the optimal solution in the target scenario.

B. FINE TUNING IN TRANSFER LEARNING
Solving the difficulties caused by small datasets is one of the
most pressing challenges in DL. In this section, we present
methods of optimizing sediment classifications based on
small SSS datasets by fine tuning according to transfer learn-
ing. The key contribution of fine tuning in transfer learn-
ing is that it provides a priori knowledge to CNNs, so that
they have better initialization parameters and generalization
capabilities. The fine tuning of CNNs can be regarded as a
method of obtaining better initialization parameters for con-
volution kernels, which also appears to provide CNNs with a
better starting point. A pretrained model already can extract
shallow basic features and deep high-dimensional features.
Therefore, when fine tuning on a target dataset, the updating
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FIGURE 4. (a) Grayscale CIFAR-10 (GCIFAR-10) dataset for pretraining and
(b) SSS image dataset for sediment classification.

of the parameters of the convolutional layer during training
generally uses a small learning rate or is frozen, as it will
otherwise cause losses to the existing feature extraction capa-
bilities. The subsequent classification layer (usually a fully
connected layer) is then redesigned and retrained because it
establishes amapping relationship between high-dimensional
input features and output results.

Sediment classification is mainly based on textures and
other features in sonar images. In previous studies, seabed
acoustic image-based fine tuning has been applied to the
detection and classification of underwater targets [37], [38],
as well as to tasks like the classification of sonar images [35]
and synthetic aperture sonar (SAS) image data [36]. In our
experiments, we used the GCIFAR-10 as our pretraining
dataset, and our sediment classification dataset was based on
the division of SSS image data, as shown in Fig. 4. From the
comparison of these two datasets, it can be seen that there is a
large difference between them. Our assumption is to pretrain
the model on GCIFAR-10 and then migrate the parameters
of the convolution layers to our target mission, which we
term LSPM. To the best of our knowledge, there is currently
no precedent for the application of such fine tuning methods
to the classification of sediments based on small SSS image
datasets. If our assumptions are correct, it means that, given
the current lack of relevant available seabed acoustic image

datasets, fine tuning based on LSPM is useful, and it will
provide insights in related future studies.

C. DATA ENFORCEMENT BASED ON GANs
Transfer learning is the optimization of model parameters,
whereas data enhancement is the optimization of data. In this
paper, we included the geometric deformation data enhance-
ment method (i.e., random flip, random mirror transforma-
tion) by default, but the effect is still limited. To enhance
the data used in this study, we expanded small datasets to
enrich the expression features in the training data. The GANs
were first proposed by Goodfellow [40] and have been widely
used in generation tasks. The theory of GANs is based on
the adversarial relationship between a ‘‘generator’’ and a
‘‘discriminator,’’ and its key contribution is to reduce the
distance between the distributions of the model and real data,
so that the generated image of the generator is as close as
possible to the real image.

Considering that our training dataset included three sedi-
ments, training a GAN model for a single type of sediment
would waste time, and the size of the training data would
be very small. Therefore, we used conditional batch nor-
malization (CBN) [49], which is an improved form of batch
normalization (BN) [50]. The basic principle of BN is shown
in (4), where B = [F1,F2, . . .] is a batch, E stands for the
exception, c represents the channel, ε is a constant damping
factor with numerical stability, and γ and β are the learned
BN parameters. The improvement of CBN over BN is the
introduction of conditional labels, which can change γ and
β according to the input labels, as shown in (5).

BN
(
Fi,c | γc, βc

)
=

Fi,c − EB(F·,c)√
VarB

[
F·,c

]
+ ε

γc + βc (4)

{
γCBN = γ +1γ

βCBN = β +1β
(5)

Therefore, it can generate different classes of data. By adding
CBN, the algorithm can be directly deployed on the
entire training dataset. As a branch of GAN development,
the Wasserstein GAN-gradient penalty (WGAN-GP) [51],
[52] improves the stability, as well as the performance of
GANs by adding a GP and modifying the LOSS function.
The LOSS function of the WGAN-GP is shown in (6), which
includes a GP term λEx̂∼Px̂ [

(
‖ ∇x̂D

(
x̂
)
‖ −1

)2], so that the
weight parameters satisfy the 1-Lipschitz limit. In particular,

LOSSWGAN−GP = Ex̃∼Px
[
D (x̃)

]
− Ex∼Pr [D (x)]

+ λEx̂∼Px̂ [
(
‖ ∇x̂D

(
x̂
)
‖ −1

)2] (6)

whereD represents the discriminator, λ represents the weight
parameter, and x̂ = εx − (1− ε)x̃.
To combine with CBN, the class information needs to be

outputted at the end. Additionally, as the LOSS value of the
classification (LOSSCLASS) uses the cross-entropy function
mentioned earlier, the LOSS of the algorithm is combined
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TABLE 1. Parameters and FLOPs of different CNNs and their training time
and testing time.

with LOSSWGAN-GP and LOSSCLASS, as shown in (7), where
α represents the weight parameter.

LOSS = LOSSWGAN−GP + αLOSSCLASS (7)

The specific structural flow of the entire algorithm is shown
in Fig. 5, and is actually a generation algorithm based on
the fusion of ACGAN [53] and WGAN-GP. Such a structure
can generate specified types of image data according to the
conditional label input.

IV. RESULTS
The results of our experiments can be divided into two parts,
based upon the goals: (1) optimization of CNNs; (2) data
enhancement based on DL.

A. COMPUTATIONAL SETUP
The configuration of the workstation we used in the exper-
iments was as follows: the central processing unit (CPU)
was an Intel Core-i9-9820X with a C422 motherboard (Intel
Corp., USA), the memory was 32 GB, and the graphics pro-
cessing unit (GPU)was a single GeForce RTX2080Ti (Nvidia
Corp., USA). We used Python as the programming language.
The architecture used in the CNNs was PyTorch v. 1.2.0, and
for GANs, it was TensorFlow v. 1.17.0.

B. OPTIMIZATION OF CNNs
In our experiments, we tested multiple groups of CNNs and
verified the impact of LSPM-based fine tuning on their clas-
sification accuracy and also added the traditional algorithm
of SVM combined with feature engineering as a comparison.

As shown in Table 1, to measure its influence, we varied
the depth of the models for the ResNet, DenseNet, and VGG
architectures. That of ResNet-3-2 revealed that there were
3 residual blocks in the model, with each residual block hav-
ing 2 basic residual blocks; the numbers behindDenseNet and
VGG represent the depth of the network. The terms AlexNet-
BN and LeNet-BN imply that we added BN layers to improve
these classical CNNs. For fine tuning, we modified the sam-
ple size in our SSS dataset to the same format as GCIFAR-10,
namely, (32,32,1). Regarding the specific parameter settings,
the batch size was 16, the optimizer used stochastic gradient

TABLE 2. Experimental results of fine tuning with the lowest error rates
indicated in bold.

TABLE 3. Experimental results of SVM.

descent (SGD), and the epoch was set to 200. For the learning
rate, the initial learning rate of AlexNet, LeNet and VGGwas
0.01, whereas that of ResNet and DenseNet was set to 0.1.
However, when fine tuning, we set the learning rate of the
convolutional layer part to be the learning rate multiplied by
0.1 (compared to frozen parameters of convolutional layers,
we found this method to be more effective). It is worth noting
that we used geometric transformations to enrich the training
set, including random mirroring, random resized cropping,
and random flipping.

To better compare the accuracy of CNNs to existing tra-
ditional algorithms, we considered the traditional algorithm
based on an SVM [54] and feature engineering. As a well-
known algorithm, SVM occupies an important position in the
field of classification or other missions. In our experiment,
the parameter C of the SVM was set to 1, the kernel function
was the radial basis function (RBF), and the degree of the
kernel function was set to 3. In terms of feature engineer-
ing, we extracted a total of 12 features, including the gray
level co-occurrence matrix features [55], [56] and the mean,
variance, and standard deviation of the grayscale. In order
to optimize the performance of SVM, we introduce principal
component analysis (PCA), a commonly used data compres-
sion method in feature engineering. Thus, we set two groups
of experiments: the first group used the extracted original
features; the second group used PCA to compress features
into 6 dimensions. Besides, the features were normalized
before being inputted into the SVM. The results are shown
in Table 3.

Table 2 shows the averaged classification results of the
application of CNNs to all subdatasets before and after
fine tuning. Furthermore, Fig. 6 provides an illustration of
these results before and after LSPM-based fine tuning under
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FIGURE 5. Structural flow of generative algorithm.

FIGURE 6. Comparison of the classification error rates of different CNNs on all datasets before and after fine tuning.

all subdatasets. Notably, AlexNet-BN and LeNet-BN could
achieve high accuracies and performedmuch better than other
deeper models, even though they were reasonably simple
and small. Meanwhile, other models, such as ResNet and
DenseNet, showed a clear trend of decreasing performance
as complexity and depth increased. However, after fine tun-
ing, the deeper networks showed better results. Through
comparison, it is obvious that fine tuning can allow for

significant improvements to some of the models. Table 3
presents the classification results of SVM as the control
group, which also achieved classification, but the effect was
poor. Although PCA helped its error rate decrease from
13.101% to 10.510%, there was still a performance gap
between the SVM and the CNNs. Ultimately, this showed
that CNNs performed better on this mission than traditional
algorithms.
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As mentioned earlier, there are significant differences
between the results of the CNNs before and after LSPM-
based fine tuning, especially the correlation between the
depth and performance of the model. Before fine tuning,
small and shallow models such as LeNet-BN and AlexNet-
BN performed better than a series of deep and complex
models such as DenseNet and, generally, showed an inverse
proportion between depth and performance. This overall
trend is also in line with the result of our previous exper-
iments [24]. Of course, we noticed that AlexNet-BN and
LeNet-BN are contrary to the overall trend. This may have
been caused by the shallow structure of LeNet-BN; in the
absence of a large enough training set, a small model with
shallow feature extraction ability can only capture basic
features, lacking the ability to acquire high-dimensional
abstract features. The results of ResNet and DenseNet before
fine tuning reflected a poor performance of complex and
deeper models on small datasets, which may have been due
to the small datasets causing the models to learn all the
features of the training sets, resulting in weak inference
capabilities.

However, the deeper models after LSPM-based fine tun-
ing showed better results. As shown in Table 2 and Fig. 6,
the ResNet and DenseNet improved greatly, with DenseNet,
improving from an error rate > 11.4% to ∼4%, and
ResNet-4-2 reaching a minimum error of 3.459%. Addi-
tionally, the relationship between the depth and complex-
ity of the model and its performance showed a generally
proportional trend. Although some models had no substan-
tial improvement before and after fine tuning, the perfor-
mance of ResNet-4-2FT (fine-tuned ResNet-4-2; for simplic-
ity, the abbreviation FT is added to all fine-tuned models
to indicate fine tuning) and DenseNet-151FT is enough to
illustrate the significance of LSPM-based fine tuning.

Against our expectation, AlexNet-BN performed well
before fine tuning. Therefore, we compared AlexNet-BN
with ResNet-4-2FT and DenseNet-151FT, and plotted its test
accuracy on all subdatasets in Fig. 7. According to Fig. 7,
AlexNet-BN seemed to perform well, but the performance of
ResNet-4-2FT and DenseNet-151FT on more than half of the
subdatasets was better than that of AlexNet-BN by one or two
percentage points. Ultimately, the fine tuning based on LSPM
is alleviation, to a certain extent, of the problem of poor
performance of complex and huge models on small datasets.

To analyze the relationship between performance and
depth more intuitively, the averaged testing accuracy for
various CNNs with different depths before and after LSPM
based fine tuning are presented in Fig. 8. ResNet (Fig. 8a) and
DenseNet (Fig. 8b) both showed the same trend as previously
discussed, i.e., the depth and classification accuracy were
inversely proportional after fine tuning, whereas the opposite
was true before fine tuning. However, VGG (Fig. 8c) did
not show the same trend; this may have been caused by
the small dataset or the absence of residual connections.
The improvements brought by LSPM-based fine tuning went
against the supposition that deep CNNs perform poorly on

small datasets, thereby allowing them to exert their high-
dimensional feature extraction capabilities.

Finally, fine tuning based on LSPMaccelerated the training
speed and convergence of the models, resulting in a lower
amount of time required to train the model, which is sig-
nificant in some applications. The better starting point for
parameter initialization allowed by fine tuning can make
CNNs converge more stably and rapidly. Figure 9 shows the
comparison of ResNet-4-2 and AlexNet-BN before and after
fine tuning on the SCH-52 dataset. Notably, both AlexNet-
BN and ResNet-4-2 exhibited faster convergence speeds after
fine tuning, meaning that fine tuning can help CNNs converge
quickly. Moreover, the curves for training loss and testing
accuracy of the model trained from scratch were chaotic,
which may have been caused by random initialization that let
the model fall into some local optimums, resulting in numer-
ous oscillations before it could smooth out. In summary, fine
tuning based on LSPM allows the models to reach a usable
level with a lower training time, being of great significance
for certain application scenarios in which a long-term training
process needs to be avoided.

According to the results, although small CNNs performed
well, especially when they were trained from scratch, they
still had a comparatively performance and convergence
speed. In general, the fine tuning of models based on LSPM
is practical, effective, and can improve the performance of
CNNs, especially for deeper CNNs, such as DenseNet and
ResNet. The LSPM-based fine tuning allowed for the appli-
cation of deep CNNs’ high-dimensional extraction abilities
and, notably, resulted in ResNet-4-2FT achieving a very low
error rate of 3.459%, highlighting the general applicability
of ResNet to this mission. These results may also allow
for theoretically better deep CNNs to be applied to similar
missions. Although different missions should select models
based on their characteristics, our research shows that when
performing sediment classification under a small SSS dataset,
it is useful to use a deeper model and pretrain on other
irrelevant datasets. Based on the discussion above, we believe
that if the needed computing power is available, it is feasible
to use a large model and pretrain it by LSPM based fine
tuning.

C. DATA ENHANCEMENT BASED ON DL
In this study, we used GANs for DL-based data enhance-
ment to improve the richness of the training dataset. This
approach differs from data enhancement based on geometric
transforms, and generates new data by inputting random noise
into the generator after training the GANs. We applied a
CBN-based WGAN-GP algorithm to generate new SSS data.
In contrast to training a GAN on a limited single-sediment
SSS image dataset, after adding the CBN, the algorithm can
train on the entire training set and generate corresponding
SSS images under the control of conditional labels. In the
experiment, a total of 100,000 iterations (not epochs) were
set; the initial learning rate was 0.0002, and the batch size
was 64. All convolutional parts in the algorithmwere residual
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FIGURE 7. Comparison of the classification error rates of AlexNet-BN before fine tuning, and
ResNet-4-2 and DenseNet-151 after fine tuning based on LSPM.

FIGURE 8. Comparison of the classification error rates of (a) ResNet, (b) DenseNet, and (c) VGG before and after fine tuning.

FIGURE 9. Comparison of the training losses (left y-axis) and test errors (right y-axis) of the (a) ResNet-4-2 and (b) AlexNet-BN models before and after
fine tuning with the SCH-52 dataset. The solid line represents the loss function and the dashed line the test accuracy.

networks. The dimension of the feature maps in the discrimi-
nator and generator were both 128, and the discriminator was
trained 5 times per generator update (to ensure the stability of
the algorithm). However, considering the large computational
resources and time consumed by GANs, it is impractical
to apply GAN-based data enhancement to all subdatasets.
Therefore, we selected the following subdatasets for our tests:

SCH-36, SCH-52, SCH-56, and SCH-60. Some generated
images are shown in Fig. 10.

In our experiments, we generated 300 images of each
sediment and put them into the original dataset to expand
the training dataset, which was approximately doubled in
size. For each subdataset, we randomly generated six sets of
enhanced datasets to measure data enhancement performance
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FIGURE 10. Images generated by GANs based on the SCH-52 and
SCH-60 datasets.

TABLE 4. Experimental results of GAN-based data enhancement.

as well as to weaken the impact of random processes (i.e.,
stochasticity). To further weaken the impact of random pro-
cesses in CNNs, the model performed five repeated experi-
ments on each enhanced dataset, and the mean of all results
was taken as the final result. We selected AlexNet-BN,
AlexNet-BNFT, and ResNet-4-2FT for evaluating the effects
of data enhancement, using the same training configurations
as described in the previous section.

FIGURE 11. Training set and testing set in the SCH-60 dataset.

Our experimental results are shown in Table 4. For the
SCH-52 and SCH-56 datasets, the application of CNNs to the
enhanced dataset brought significant improvements, whereas
for the SCH-36, only minor improvements were achieved.
Among them, the degree of improvement for SCH-52 and
SCH-56, facilitated using GANs, was greater. This was espe-
cially the case for SCH-52, with which AlexNet-BNFT and
ResNet-4-2FT achieved substantial improvements in accu-
racy of∼7%; this confirmed the important role of generating
data for improving training datasets. It is worth noting that
there was a slight decline in accuracy (∼0.4–0.8%) in the
SCH-60 dataset.

However, we are still unsure about the unexpected per-
formance under the SCH-60 dataset, which shows that the
data enhancement based on GANs did not allow for improve-
ment, or even a decline. For this reason, we analyzed what
caused the data enhancement to be unsuccessful or unstable.
Figure 1 shows the data division in the SCH-60, where the red
box is the divided training set, and the specific comparison
of the training set and testing set in the SCH-60 sub-dataset
is shown in Fig. 11. A large deviation between the training
and test set for reefs were seen, with a specific lack of flat
and strong reflection areas in the training set (but a large
number in the testing set). Additionally, strong reflection
areas existed in the training set for mud, which had high
similarity with some areas in the testing set for reefs and sand
waves. Thus, in the SCH-60 subdataset, data quality caused a
similar situation after cutting, which led to misclassification.
In this case, generating a large amount of similar data through
GANs will not significantly improve the situation and may
even cause the classifier to be confused, resulting in a slight
decrease in accuracy. In general, data enhancement based on
GANs does not bring any improvement when data quality is
insufficient and discrimination is low, which may even result
in a slight decrease in the performance of the CNN classifier.
Finally, GANs are used to imitate the original information
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distribution and generate similar information and not to man-
ufacture information.

In view of the fact that the data enhancement of GANs
brought improvements for the SCH-36, SCH-52, and SCH-
56 and a slight decline for the SCH-60, we believe that this
kind of data enhancement is effective to a certain extent, but
it is not universally applicable. In case of good data quality,
it can bring a certain extent of improvement, but this improve-
ment depends on the quality of the original data. In addition
to the improvements brought by GANs, we identified two
problems in the experiments.

(1) The GANs input includes random noise, which results in
differences in the generated images, so that the accuracy
of the CNNs classifier differs slightly between repeated
experiments.

(2) The training of GANs is resource intensive, occupying
approximately 9 GB of GPUmemory, and each iteration
takes 0.212 s on average when the number of iterations
is set to 100,000. It is difficult to accept such costs in
general application scenarios.

Through our analysis, we determined that the GANs in
the experiment could improve model accuracy for some
inferior datasets, but it was not suitable for all application
scenarios (or data). Additionally, GANs demand a substantial
amount of computing resources and time. In general, they
can help to solve the poor performance of classification for
small datasets; however, they are resource-intensive and time-
consuming, and improvement depends on the quality of the
original data. Therefore, we consider data enhancement using
GANs to be a possible effective solution only in certain cases.

V. DISCUSSION AND CONCLUSION
In this study, we optimized the sediment classification of a
small SSS dataset based on DL using deeper CNNs, fine
tuning based on LSPM and data enhancement employing
new data generated by GANs to expand the original dataset.
The experimental results showed that fine tuning allowed for
further breakthroughs in the classification accuracy of CNN
classifiers, whereas the use of GANs for data enhancement
was unstable but could generally improve classification accu-
racy. The small dataset is a bottleneck to sediment classifi-
cation based on seabed acoustic image data and, thus, our
findings have practical implications for related studies.

A. FINE TUNING BASED ON LSPM
Notably, after fine tuning, the CNNs had more rapid
and stable performances, achieving meaningful improve-
ments in classification accuracy, especially for ResNet-4-2.
We observed that, even if the pretraining and target data
were essentially irrelevant, such LSPM-based fine tuning was
of great value in optimizing the performance of CNNs in
small SSS datasets. Compared with existing studies on the
application of fine tuning to seabed acoustic image data,
the key contribution of our research is the broadening of its

application, especially when there is a lack of mature and
relevant datasets.

More importantly, the deep CNNs (e.g., ResNet and
DenseNet) that performed poorly in previous experiments
displayed improved accuracies after fine tuning and achieved
relatively promising results. Contrary to the general recom-
mendation of not applying deep complex models to small
datasets, we applied deep CNNs to our target dataset and
achieved favorable results through fine tuning, thereby broad-
ening the application of CNNs for similar tasks. Considering
the importance of parameter weight initialization, we believe
that training a CNNwith random initialization on limited data
will cause problems in model training, which can be greatly
improved by fine tuning. In general, the fine tuning of LSPM
can optimize the performance of CNNs applied to sediment
classification based on small seabed acoustic images dataset,
and aid in the application of theoretically better deep CNNs
to similar tasks. We suggest, if the computing resources are
sufficient, using a larger model and reasonably pretraining
the CNNs. For example, the use of fine-tuned ResNet is an
effective path.

B. DATA ENHANCEMENT BASED ON GANs
The deployment of our enhanced dataset revealed that the new
data generated by GANs can enhance the feature richness
of a training dataset. GANs generate simulation images by
antagonizing the distance between the distribution of the
model and the real data. However, because sediment images
are composed of textures and gray scales, they often lack a
sufficient number of expressive features and enough labeled
data; therefore, data enhancement based on GANs seems to
be an effective solution.

In contrast to the prevailing research on the application of
GANs to seabed acoustic images [36], [37], [41], we applied
GANs to generate SSS image data with sediment contents
and then added them into the original dataset to enrich its
features, finally verifying the resulting improvements. How-
ever, whether our approach works depends largely on the
quality of the original data. That is, GANs is impractical
for be in common use in optimizing the processing of small
seabed acoustic image datasets. However, GANs still have
considerable potential in the field of data generation and,
in theory, their application can optimize seabed acoustic
image data processing tasks. Therefore, in future research,
we will combine the latest results of current related studies in
an attempt to optimize the data enhancement effects of GANs
and apply them to a wider range of applications for seabed
acoustic image data.

To a certain extent, our methods allowed us to overcome
the lack of labeled data for sediment classification based
on seabed acoustic image data and provided a feasible way
to apply CNNs to such small datasets. However, our meth-
ods also had several limitations, including the unstable data
generation quality and the existence of random processes in
GANs. We will conduct in-depth analyses of these problems
in the future. Finally, DL achieved excellent performance in
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fields such as style transfer, target detection, and few-shot
learning, and still has great development potential. Therefore,
we believe that DL has great application potential for seabed
acoustic image processing tasks, which is the main direction
of our future research.

REFERENCES
[1] J. T. Anderson, D. Van Holliday, R. Kloser, D. G. Reid, and Y. Simard,

‘‘Acoustic seabed classification: Current practice and future directions,’’
ICES J. Mar. Sci., vol. 65, no. 6, pp. 1004–1011, Apr. 2008.

[2] G. Shumway, ‘‘Sound speed and absorption studies of marine sediments by
a resonance method,’’ Geophysics, vol. 25, no. 2, pp. 451–467, Apr. 1960.

[3] D. R. Jackson, D. P. Winebrenner, and A. Ishimaru, ‘‘Application of the
composite roughness model to high-frequency bottom backscattering,’’
J. Acoust. Soc. Amer., vol. 86, no. 5, pp. 2029–2032, 1986.

[4] D. R. Parrott, D. J. Dodds, L. H. King, and P. G. Simpkin, ‘‘Measurement
and evaluation of the acoustic reflectivity of the seafloor,’’ Can J. Earth
Sci., vol. 17, pp. 722–737, Dec. 1980.

[5] A. Tolstoy, ‘‘Applications of matched-field processing to inverse problems
in underwater acoustics,’’ Inverse Problems, vol. 16, no. 6, pp. 1655–1666,
Dec. 2000.

[6] D. P. Knobles, R. A. Koch, L. A. Thompson, K. C. Focke, and P. E. Eisman,
‘‘Broadband sound propagation in shallow water and geoacoustic inver-
sion,’’ J. Acoust. Soc. Amer., vol. 113, no. 1, pp. 205–222, Jan. 2003.

[7] M. D. Collins, W. A. Kuperman, and H. Schmidt, ‘‘Nonlinear inver-
sion for ocean-bottom properties,’’ J. Acoust. Soc. Amer., vol. 92, no. 5,
pp. 2770–2783, Nov. 1992.

[8] Z.-H. Michalopoulou and U. Ghosh-Dastidar, ‘‘Tabu for matched-field
source localization and geoacoustic inversion,’’ J. Acoust. Soc. Amer.,
vol. 115, no. 1, pp. 135–145, Jan. 2004.

[9] J. A. Shorey, L. W. Nolte, and J. L. Krolik, ‘‘Computationally efficient
Monte Carlo estimation algorithms for matched field processing in uncer-
tain ocean environments,’’ J. Comput. Acoust., vol. 02, no. 03, pp. 285–314,
Sep. 1994.

[10] Z. Michalopoulou and D. Alexandrou, ‘‘Bayesian modeling of acoustic
signals for seafloor identification,’’ J. Acoust. Soc. Amer., vol. 99, no. 1,
pp. 223–233, Jan. 1996.

[11] Z. Michalopoulou, D. Alexandrou, and C. de Moustier, ‘‘Application of a
maximum likelihood processor to acoustic backscatter for the estimation
of seafloor roughness parameters,’’ J. Acoust. Soc. Amer., vol. 95, no. 5,
pp. 2467–2477, May 1994.

[12] B. Zou, J. Zhai, Z. Qi, and Z. Li, ‘‘A comparison of three sediment acoustic
models using Bayesian inversion and model selection techniques,’’ Remote
Sens., vol. 11, pp. 1–30, Mar. 2019.

[13] A. Caiti and S. M. Jesus, ‘‘Acoustic estimation of seafloor parameters:
A radial basis functions approach,’’ J. Acoust. Soc. Amer., vol. 100, no. 3,
pp. 1473–1481, Sep. 1996.

[14] C. Frederick, S. Villar, and Z.-H. Michalopoulou, ‘‘Seabed classifi-
cation using physics-based modeling and machine learning,’’ 2020,
arXiv:2003.11156. [Online]. Available: http://arxiv.org/abs/2003.11156

[15] J. S. Collier and C. J. Brown, ‘‘Correlation of sidescan backscatter with
grain size distribution of surficial seabed sediments,’’Mar. Geol., vol. 214,
no. 4, pp. 431–449, Feb. 2005.

[16] D. R. Carmichael, L. M. Linnett, S. J. Clarke, and B. R. Calder, ‘‘Seabed
classification through multifractal analysis of sidescan sonar imagery,’’
IEE Proc.—Radar, Sonar Navigat., vol. 143, no. 3, pp. 140–148, Jun. 1996.

[17] A. Bartholomä, ‘‘Acoustic bottom detection and seabed classification in
the german bight, southern north sea,’’ Geo-Marine Lett., vol. 26, no. 3,
pp. 177–184, Sep. 2006.

[18] L. Atallah and P. J. P. Smith, ‘‘Automatic seabed classification by the
analysis of sidescan sonar and bathymetric imagery,’’ IEE Proc.—Radar,
Sonar Navigat., vol. 151, no. 5, pp. 327–336, Oct. 2004.

[19] M. Wang, Z. Wu, F. Yang, Y. Ma, X. Wang, and D. Zhao, ‘‘Multifeature
extraction and seafloor classification combining LiDAR and MBES data
around Yuanzhi Island in the south China sea,’’ Sensors, vol. 18, no. 11,
p. 3828, Nov. 2018.

[20] H. Liu, K. Xu, B. Li, Y. Han, and G. Li, ‘‘Sediment identification
using machine learning classifiers in a mixed-texture dredge pit of
Louisiana shelf for coastal restoration,’’ Water, vol. 11, no. 6, p. 1257,
Jun. 2019.

[21] K. I. Ahmed, H. Caughey, P. Hung, P. Harris, U, Demsar, S, McLoone,
S. Fotheringham, X. Monteys, and R. O’Toole, ‘‘Classification and map-
ping of seabed type from deep water multibeam echosounder (MBES)
data,’’ in Proc. 6th Int. Conf. Geography Inf. Sci., Zürich, Switzerland,
2010, pp. 1–5.

[22] D. Vray, P. Delachartre, N. Andrieux, and G. Gimenez, ‘‘Bottom classifica-
tion using information in the spectral domain and time-frequency domain,’’
in Proc. OCEANS, vol. 2, Brest, France, 1994, pp. 659–664.

[23] J. Tgowski, J. Nowak, M. Moskalik, and K. Szefler, ‘‘Seabed classifica-
tion from multibeam echosounder backscatter data using wavelet trans-
formation and neural network approach,’’ in Proc. 4th Int. Conf. Exhib.
Underwater Acoustic Meas., Technol. Results, Kosisland, Greece, 2011,
pp. 1257–1264.

[24] W. K. Stewart, M. Jiang, and M. Marra, ‘‘A neural network approach to
classification of sidescan sonar imagery from a midocean ridge area,’’
IEEE J. Ocean. Eng., vol. 19, no. 2, pp. 214–224, Apr. 1994.

[25] X. Luo, X. Qin, Z. Wu, F. Yang, M. Wang, and J. Shang, ‘‘Sediment
classification of small-size seabed acoustic images using convolutional
neural networks,’’ IEEE Access, vol. 7, pp. 98331–98339, 2019.

[26] T. Berthold, A. Leichter, B. Rosenhahn, V. Berkhahn, and J. Valerius,
‘‘Seabed sediment classification of side-scan sonar data using convolu-
tional neural networks,’’ in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI),
Honolulu, HI, USA, Nov. 2017, pp. 1–8.

[27] I. Kvasic, N. Miskovic, and Z. Vukic, ‘‘Convolutional neural network
architectures for sonar-based diver detection and tracking,’’ in Proc.
OCEANS, Marseille, France, Jun. 2019, pp. 1–6.

[28] X. Wang, J. Jiao, J. Yin, W. Zhao, X. Han, and B. Sun, ‘‘Underwater sonar
image classification using adaptiveweights convolutional neural network,’’
Appl. Acoust., vol. 146, pp. 145–154, Mar. 2019.

[29] H. Henley, A. Berard, E. Lapisky, and M. Zimmerman, ‘‘Deep learning in
shallow water: CNN-based 3D-FLS target recognition,’’ in Proc. OCEANS
MTS/IEEE Charleston, Charleston, SC, USA, Oct. 2018, pp. 1–7.

[30] P. Zhu, J. Isaacs, B. Fu, and S. Ferrari, ‘‘Deep learning feature extraction for
target recognition and classification in underwater sonar images,’’ in Proc.
IEEE 56th Annu. Conf. Decis. Control (CDC), Melbourne, VIC, Australia,
Dec. 2017, pp. 2724–2731.

[31] M. Valdenegro-Toro, ‘‘End-to-end object detection and recognition in
forward-looking sonar images with convolutional neural networks,’’
in Proc. IEEE/OES Auto. Underwater Vehicles (AUV), Tokyo, Jpn,
Nov. 2016, pp. 144–150.

[32] Wu, Wang, Rigall, Li, Zhu, He, and Yan, ‘‘ECNet: Efficient convolutional
networks for side scan sonar image segmentation,’’ Sensors, vol. 19, no. 9,
p. 2009, Apr. 2019.

[33] P. Liu and Y. Song, ‘‘Segmentation of sonar imagery using convolutional
neural networks and Markov random field,’’ Multidimens. Syst. Signal
Process., vol. 31, no. 1, pp. 4–21, Jan. 2020.

[34] M. Rahnemoonfar and D. Dobbs, ‘‘Semantic segmentation of underwater
sonar imagery with deep learning,’’ in Proc. IEEE Sci., Geosci. Remote
Sens. Symp., Yokohama, Japan, Dec. 2019, pp. 9455–9458.

[35] Z. Zhu and Y. Hu, ‘‘Sonar image recognition based on fine-tuned con-
volutional neural network,’’ MATEC Web Conf., vol. 283, Dec. 2019,
Art. no. 04012.

[36] J. L. Chen and J. E. Summers, ‘‘Deep neural networks for learning classi-
fication features and generative models from synthetic aperture sonar big
data,’’ Proc. Meet. Acoust., vol. 29, no. 1, 2016, Art. no. 03200.

[37] L. Xu, X. Wang, and X. Wang, ‘‘Shipwrecks detection based on deep gen-
eration network and transfer learning with small amount of sonar images,’’
in Proc. IEEE 8th Data Driven Control Learn. Syst. Conf. (DDCLS), Dali,
China, May 2019, pp. 638–643.

[38] G. Huo, Z. Wu, and J. Li, ‘‘Underwater object classification in sidescan
sonar images using deep transfer learning and semisynthetic training data,’’
IEEE Access, vol. 8, pp. 47407–47418, 2020.

[39] A. Krizhevsky. (2009). Learning Multiple Layers of Features From Tiny
Images. [Online]. Available: http://www.cs.toronto.edu/ kriz/learning-
features-2009-TR.pdf

[40] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, and, ‘‘Generative
adversarial networks,’’ in Proc. Adv. Neural Inform. Process. Syst., vol. 27,
2014, pp. 2672–2680.

[41] A. Reed, I. Gerg, J. McKay, D. Brown, D. Williams, and S. Jayasuriya,
‘‘Coupling rendering and generative adversarial networks for artificial
SAS image generation,’’ 2019, arXiv:1909.06436. [Online]. Available:
http://arxiv.org/abs/1909.06436

VOLUME 9, 2021 29427



X. Qin et al.: Optimizing the Sediment Classification of Small SSS Images Based on DL

[42] X. Glorot, A. Bordes, and Y. Bengio, ‘‘Deep sparse rectifier neural net-
works,’’ in Proc. 14th Int. Conf. Artif. Intell. Statist., vol. 15, G. Gordon,
D. Dunson, M. Dudík, Eds., 2010, pp. 315–323.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[44] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 25, F. Pereira, C. J. C. Burges, L. Bottou, K. Q.Weinberger,
eds., 2012, pp. 1097–1105.

[46] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks
for large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[47] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[48] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 2261–2269.

[49] T.Miyato andM. Koyama, ‘‘CGANswith projection discriminator,’’ 2018,
arXiv:1802.05637. [Online]. Available: http://arxiv.org/abs/1802.05637

[50] S. Ioffe and C. Szegedy. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. [Online]. Avail-
able: https://arxiv.org/abs/1502.03167

[51] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein GAN,’’ 2017,
arXiv:1701.07875. [Online]. Available: http://arxiv.org/abs/1701.07875

[52] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
‘‘Improved training of Wasserstein GANs,’’ in Proc. Adv. Neural Inf.
Process. Syst. vol. 30, 2017, pp. 5767–5777.

[53] A. Odena, C. Olah, and J. Shlens, ‘‘Conditional image synthesis with
auxiliary classifier GANs,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70,
pp. 2642–2651, 2017.

[54] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[55] R. M. Haralick, K. Shanmugam, and I. Dinstein, ‘‘Textural features for
image classification,’’ IEEE Trans. Syst., Man, Cybern., vols. SMC–3,
no. 6, pp. 610–621, Nov. 1973.

[56] R. M. Haralick, ‘‘Statistical and structural approaches to texture,’’ Proc.
IEEE, vol. 67, no. 5, pp. 786–804, May 1979.

XIAOMING QIN received the B.E. degree from
the College of Geomatics, Shandong University of
Science and Technology, Qingdao, China, in 2018.
He is currently with the Key Laboratory of Sub-
marine Geosciences, Second Institute of Oceanog-
raphy, Ministry of Natural Resources. His current
research interests include underwater target detec-
tion and sediment classification based on deep
learning.

XIAOWEN LUO received the Ph.D. degree in
geodesy and geomatics from the Institute of
Geodesy and Geophysics, Chinese Academy of
Sciences, Hubei, China, in 2007. He is currently
an Associate Professor with the Second Institute of
Oceanography,Ministry of Natural Resources. His
primary research interests include seabed survey
and information systems.

ZIYIN WU received the Ph.D. degree in marine
geology from Zhejiang University, Zhejiang,
China, in 2008. He is currently a Professor with
the Second Institute of Oceanography, Ministry
of Natural Resources, and with the School of
Oceanography, Shanghai Jiao TongUniversity. His
primary research interests include seabed survey
and information systems.

JIHONG SHANG received the Ph.D. degree in
marine geology from the Institute of Oceanology,
Chinese Academy of Sciences, China, in 2008. He
is currently an Associate Research with the Sec-
ond Institute of Oceanography,Ministry of Natural
Resources, China. His research interests include
submarine topographic survey and morphotecton-
ics study.

29428 VOLUME 9, 2021


