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ABSTRACT This paper develops a novel equivalent input disturbance (EID)-based adaptive sliding mode
control (SMC) method for singularly perturbed systems (SPSs). Firstly, the block diagonalization approach
is introduced to decompose the full-order SPSs exactly, and slow and fast subsystems are obtained by
solving the upper and lower triangular matrices individually. Secondly, an EID is constructed to estimate
the unknown disturbances with the observer gain and error system convergence analyzed. Then, depending
on the decoupled reduced-order system models, a Lyapunov equation-based solution is adopted to construct
a composite sliding surface. Finally, combined with the EID estimation, an adaptive SMC law is proposed
to compensate the adverse effect of disturbances and the reachability condition is proven. The presented
control strategy is free of any priori disturbances information while the satisfactory system performance can
be guaranteed. Simulation results on two examples illustrate its superiority over the existing methods.

INDEX TERMS Singularly perturbed systems, equivalent input disturbance, adaptive sliding mode control,
block diagonalization approach.

I. INTRODUCTION
Multi-time-scale property widely exists in many large-scale
industrial applications, such as advanced heavy water reac-
tors, neuron systems, motor systems and electric circuits
[1]–[4]. In stability analysis and controller design for these
systems, there inevitably confront high dimensionality and
ill-conditioned numerical issues [5], which may be caused by
the existence of capacitances, inductances or other parasitic
small parameters. To deal with the above issues, the sys-
tems are usually modeled as singularly perturbed systems
(SPSs), where the separation degree between the fast and slow
modes is indicated by a singular perturbation parameter [6].
To analyze the SPSs, singular perturbation theory has been
extensively studied (see [1]–[6] and the references therein).

Unmodeled dynamics, external disturbances and parame-
ter perturbations characterized by the lumped disturbances
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existed in many practical situations may extremely deteri-
orate the system performance, which poses challenges to
the control for nonlinear systems [7]–[10]. Many researchers
have paid attention to explore new approaches to attenuate the
adverse effects of disturbances for a variety of systems, such
as networked switched systems [11], [12], robotic manipula-
tors [13], Markov jump systems [14], [15] and so on. Benefit-
ing from simple concept, fast response, powerful robustness
and especially insensitivity to the disturbances, sliding mode
control (SMC) has been extensively researched in nonlinear
control [16]–[19]. Generally speaking, the SMC design pro-
cedure is mainly comprised of two components [20]. A suit-
able sliding surface is required, and thus the system dynamics
are strictly restricted onto it during the sliding mode [21].
Meanwhile, during the reaching mode, the designed SMC
law should drive the sliding surface to zero in finite time,
and consistently maintain the system state variables on it
for all subsequent time [22]. The Lyapunov stability theo-
rem and linear matrix inequality technique was employed
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in [23] to design a SMC strategy. A considerable number
of disturbance-rejection approaches, such as the disturbance
observer (DO) [10] and the extended state observer (ESO)-
based method [24], implicitly generate an equivalent distur-
bance estimation through the same channel as the control
input [25]. Motivated by this, She et.al [26] proposed an
equivalent input disturbance (EID) approach and conducted
theoretical analysis. EID-based compensation method can
perfectly suppress any kind of disturbance [27], and only
the information of control input and the system output is
required to produce the EID estimation in this approach. It is
worth mentioning that the strong robustness against dis-
turbances can be guaranteed by incorporating the observer
estimation-based feedforward compensation into the conven-
tional SMC feedback, straightforwardly.

Although there have some excellent literatures about SMC
approaches for normal systems, directly applying these above
mentioned strategies to SPSs usually leads to ill-conditioned
numerical problems. Therefore, some scholars are dedi-
cated to investigating the SMC for SPSs (see [28]–[36] and
the references therein). According to singular perturbation
theory, the original full-order SPSs can be approximately
decoupled into a boundary layer system and a quasi-steady
equation [28], which individually correspond to the reaching
mode dynamics and sliding mode dynamics. A novel DO
was presented and the integral SMC gain was determined
by applying the classical H∞ control theory in [29]. The
passivity-based integral SMC for uncertain SPSs had been
addressed in [30], where the controller gain was determined
by solving a set of linear matrix inequalities (LMIs). Fur-
thermore, preserving the passivity and internally exponential
stability for SPSs, a less conservative ε-bound estimation
algorithm was derived in [31]. In addition, Liu et.al [32]
proposed a H∞ observer-based SMC for the SPSs with
input nonlinearity, and the resulting sliding mode dynam-
ics was input-to-state stable with respect to the observer
error. By employing a more general storage function [33],
an adaptive integral SMC incorporating the DO estimation
was designed for uncertain SPSs with disturbances. For
the nonlinear Takagi-Sugeno (T-S) fuzzy SPSs, Wang et.al
[34] proposed an integral fuzzy sliding surface in a convex
optimization framework [35]. Although the ill-conditioned
numerical problem is well solved in the aforementioned lit-
eratures without the system decomposition, the high dimen-
sionality still exists in the analysis and design process for
SPSs. To solve this issue, Zhou et.al [36] decomposed the
full-order SPSs into two redeced-order subsystems, then
provided a state feedback control method and a DO-based
integral SMC method for them respectively. SMC plays an
excellent role in suppressing the adverse effects of distur-
bances for SPSs, but these existing methods are usually based
on the prior information that the disturbances meet certain
boundedness condition.

Inspired by the discussion above, a novel SMC method
is proposed in this paper to suppress the adverse effects
of disturbances on SPSs. An EID is presented to estimate

the disturbances first. Then, the Lyapunov equation-based
composite sliding surface is derived and an adaptive SMC law
in combination with the EID estimation is designed. Finally,
the reachability condition is guaranteed and the system sta-
bility is analyzed. The main contributions of this paper can
be summarized as follows.

1) The singular perturbation parameter ε is fully taken into
account during the construction of state observer and
sliding surface to handle the ill-conditioned numerical
problems.

2) The block diagonalization approach for exactly decom-
posing the original SPSs into two subsystems is pre-
sented and the decoupled dynamics are incorporated in
the composite sliding surface.

3) Combined with EID estimation, the proposed adaptive
SMC can effectively compensate the disturbance effect
and guarantee satisfactory system performance.

4) The proposed control strategy is free of any priori
disturbances information and is applicable for different
disturbances.

The resting sections of this paper are arranged as fol-
lows. Section II gives problem statement and preliminaries.
Section III presents main results. Section IV shows simula-
tion results. Section V is a conclusion. The future research
prospect is presented in Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES
In this paper, the following linear time-invariant SPSs with
disturbances is studied{

E (ε) ψ̇(t) = Aψ(t) + Bu(t)+ Df (t)
y(t) = Cψ(t)

(1)

where

E (ε) =
[
In1 0
0 εIn2

]
, ψ(t) =

[
x(t)
z(t)

]
A =

[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
C = In1+n2 , D =

[
D1
D2

]
where I is the identity matrix, ε > 0 is the singular per-
turbation parameter, ψ(t) ∈ Rn is the system state vector
(n = n1 + n2), while x(t) ∈ Rn1 and z(t) ∈ Rn2 are the
slow-time and fast-time state variables, u(t) ∈ Rm is the
control input (m ≤ n), y(t) ∈ Rp is the output of plant,
f (t) ∈ Rq represents the unknown disturbances.
Assumption 1: Matrix A22 is invertible and B is of full

column rank, i.e., rank(A22) = n2 and rank(B) = m.
Assumption 2: The pairs (A0,B0) and (A22,B2) are

controllable, where A0 = A11 − A12A
−1
22 A21 and

B0 = B1 − A12A
−1
22 B2.

Remark 1:Although the ill-conditioned numerical problem
can be solved based on full-order SPSs, the high dimensional-
ity still exists in analysis and design of SPSs. According to the
singular perturbation theory [6], the full-order SPSs dynamics
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can be approximated by the dynamics of lower-order quasi-
steady-state (slow subsystem) and boundary layer system
(fast subsystem). Besides, Assumption 2 allows us to design
the control laws for two decomposed subsystems, separately.
By using the decomposition method, the high dimensional-
ity and ill-conditioned numerical problems can be avoided
simultaneously.
Definition 1 [26]: Let the control input be u(t) = 0. If the

output of the system (1) under the disturbance f (t) is the same
as that influenced by the disturbance fe(t). The disturbance
fe(t) is defined as an EID of the disturbance f (t), which enters
the system through the same channel as the control input.

Based on the eigenvalue placement technique andAssump-
tion 2, there exist state feedback gains K0 and K2 such that
slow and fast subsystems are stable by letting A0+B0K0 and
A22+B2K2 be both asymptotically stable. Thenwe can design
the following composite control law

u(t) =
[
K1 K2

] [ x(t)
z(t)

]
+ v(t) (2)

where K1 =

(
Im + K2A

−1
22 B2

)
K0 + K2A

−1
22 A21, and u(t) is

the virtual control input whose detailed expression will be
determined later.

Substituting the composite control law (2) into the
full-order system (1), we have[
ẋ(t)
εż(t)

]
=

[
A11 + B1K1 A12 + B1K2
A21 + B2K1 A22 + B2K2

]
·

[
x(t)
z(t)

]
+

[
B1
B2

]
v(t)+

[
D1
D2

]
f (t)

which indicates that[
ẋ(t)
ż(t)

]
=

[
T11 T12
T21
ε

T22
ε

] [
x(t)
z(t)

]
+

[
B1
B2
ε

]
v(t)+

[
D1
D2
ε

]
f (t) (3)

where

T11 = A11 + B1K1, T12 = A12 + B1K2

T21 = A21 + B2K1, T22 = A22 + B2K2

The following two steps are necessary to transform the
system (3) into the block diagonal form.

1) Upper triangular form
Introduce the following new state variables:

η(t) = Lx(t)+ z(t) (4)

where L ∈ Rn2×n1 is the upper transformation matrix.
Combining (3) with (4) yields[

ẋ(t)
η̇(t)

]
=

[
T11 − T12L

T21
ε
−

T22
ε
L + L(T11 − T12L)

T12
T22
ε
+ LT12

] [
x(t)
η(t)

]
+

[
B1

B2
ε
+ LB1

]
v(t)

+

[
D1

D2
ε
+ LD1

]
f (t) (5)

To obtain the upper triangular form, let

R(L) =
T21
ε
−
T22
ε
L + L(T11 − T12L) = 0 (6)

and system (5) can be reduced to[
ẋ(t)
η̇(t)

]
=

[
As T12
0 Af

ε

] [
x(t)
η(t)

]
+

[
B1
Bf
ε

]
v(t)+

[
D1
Df
ε

]
f (t) (7)

where

As = T11 − T12L, Af = T22 + εLT12
Bf = B2 + εLB1, Df = D2 + εLD1

2) Lower triangular form
Another transformation of variables is introduced

ξ (t) = x(t)− εHη(t) (8)

where H ∈ Rn1×n2 is the lower transformation matrix.
Substituting (8) into (7) yields[

ξ̇ (t)
η̇(t)

]
=

[
As εAsH − HAf + T12
0 Af

ε

]
·

[
ξ (t)
η(t)

]
+

[
B1 − HBf

Bf
ε

]
v(t)

+

[
D1 − HDf

Df
ε

]
f (t) (9)

To obtain the lower triangular form, let

R(H ) = εAsH − HAf + T12 = 0 (10)

and thus system (9) can be simplified as[
ξ̇ (t)
η̇(t)

]
=

[
As 0
0 Af

ε

] [
ξ (t)
η(t)

]
+

[
Bs
Bf
ε

]
v(t)+

[
Ds
Df
ε

]
f (t)

where

Bs = B1 − HBf , Ds = D1 − HDf

By combining (4) and (8), we introduce the following
Chang transformation [37]

ϕ(t) = M (ε)ψ(t)

where

ϕ(t) =
[
ξ (t)
η(t)

]
, M (ε) =

[
In1 − εHL −εH

L In2

]
and H , L are the solutions to the following algebraic equa-
tions

T21 − T22L + εLT11 − εLT12L = 0

ε(T11 − T12L)H − H (T22 + εLT12)+ T12 = 0 (11)
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According to the fixed-point recursive algorithm [36],
we can derive the solutions of the equation (11) and yield

L(i+1) = T−122

[
T21 + εL(i)T11 − εL(i)T12L(i)

]
H (j+1)

=

[
ε(T11 − T12L)H (j)

+ T12
]
(T22 + εLT12)−1

where L(0) = T−122 T21 and H
(0) = T12T

−1
22 .

Hence, the state equation of the SPS (1) can be approxi-
mated by the equations of the following exact reduced-order
subsystems

E (ε) ϕ̇(t) = Āϕ(t)+ B̄v(t)+ D̄f (t) (12)

where

Ā =
[
As 0
0 Af

]
, B̄ =

[
Bs
Bf

]
, D̄ =

[
Ds
Df

]
III. MAIN RESULTS
In this section, we will design an EID for SPS (1).
The resulting estimation is incorporated into the Lyapunov
approach-based adaptive SMC law. System stability and
reachability condition are also analyzed.

A. EID DESIGN AND ANALYSIS
Under Definition 1, the SPS (1) can be rewritten as{

E (ε) ψ̇(t) = Aψ(t)+ B [u(t)+ fe(t)]
y(t) = Cψ(t)

(13)

For the system (13), construct the following state observer{
E (ε) ˙̂ψ(t) = Aψ̂(t)+ Bu0(t)+ G

[
y(t)− ŷ(t)

]
ŷ(t) = Cψ̂(t)

(14)

where ψ̂(t) is the estimate value of ψ(t), u0(t) is the nominal
control input in the absence of disturbances, and G is the
observer gain to be determined later.
Remark 2: It is noticed that the state observer constructed

in (14) takes the singular perturbation structure E (ε) of SPSs
into account, which is obviously different from the ones for
normal systems. Such a consideration can effectively avoid
the ill-conditioned numerical problems that may occur in the
subsequent derivation of sliding surface and adaptive SMC
law.

Define the estimation error of the state variable

ψ̃(t) = ψ(t)− ψ̂(t) (15)

Substituting (15) into (13) yields

E (ε) ˙̂ψ(t) = Aψ̂(t)+ Bu(t)

+

[
Bfe(t)+ Aψ̃(t)− E (ε)

˙̃
ψ(t)

]
(16)

and it is reasonable to assume that there exists a control input
f̃e(t) that satisfies

Aψ̃(t)− E (ε) ˙̃ψ(t) = −Bf̃e(t) (17)

Meanwhile, we define the estimate error of the EID as

f̃e(t) = fe(t)− f̂e(t) (18)

where f̂e(t) is the estimation of fe(t).
Then, substituting (17) and (18) into (16) yields

E (ε) ˙̂ψ(t) = Aψ̂(t)+ B
[
u(t)+ f̂e(t)

]
(19)

By combining (14) and (19), the following equation can be
concluded

B
[
u(t)+ f̂e(t)

]
= Bu0(t)+ G

[
y(t)− ŷ(t)

]
then f̂e(t) can be obtained as

f̂e(t) = u0(t)− u(t)+ B+G
[
y(t)− ŷ(t)

]
(20)

where B+ is the Moore-Penrose pseudoinverse matrix of B,
B+ =

(
BTB

)−1BT .
Remark 3:By comparing the equation (15) with (18), it can

be concluded that the difference between the actual state
ψ(t) and the estimated state ψ̂(t) (i.e., ψ̃(t)) has the same
mechanism as f̃e(t). In addition, the EID is generated in real
time using the system output and its estimation, which can be
attributed to the effect of disturbances on system state.
Remark 4: It is worth mentioning that the EID estimator

(20) employs the information of state observer (14) rather
than the inverse dynamics of the plant. Besides, the realiza-
tion of estimation does not require the differential of system
outputs or priori information on the disturbances. Therefore,
the proposed method has a wider application scope.

From the equation (17), it is easy to understand that f̃e(t)
trends to zero as long as the dynamic of ψ̃(t) is stable. In order
to analyze the observer system stability, it is reasonable to
assume that f (t) = 0 and the system (13) is equivalent to{

E (ε) ψ̇(t) = Aψ(t)+ Bu0(t)
y(t) = Cψ(t)

(21)

Combining (14), (15) and (21) yields

E (ε) ˙̃ψ(t) = (A− GC) ψ̃(t)

Thus, the observer error system is stable as long as A−GC
is a Hurwitz matrix.

B. ADAPTIVE SMC DESIGN AND ANALYSIS
Under Assumption 2 and control law (2), it can be concluded
that the system matrix Ā in (12) is asymptotically stable. That
is to say, for given positive definite symmetric matrices Qs ∈
Rn1×n1 and Qf ∈ Rn2×n2 , there exist Ps ∈ Rn1×n1 and Pf ∈
Rn2×n2 such that the following algebraic Lyapunov equation
is satisfied

ĀTP+ PĀ = −Q

where Q = diag
{
Qs,Qf

}
, and P = diag

{
Ps,Pf

}
.

Then a novel sliding surface for the SPS (12) can be
designed as

S(t) = B̄TPE (ε) ϕ(t) (22)
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When the sliding mode is achieved, the equivalent control
method is usually adopted to analyze the slidingmotion equa-
tion [38]. The system stability is analyzed in the following
theorem.
Theorem 1: During the sliding mode, the system (12) is

asymptotically stable on the sliding surface (22).
Proof: It is well known that when the controlled system

enters sliding mode, we have

S(t) = B̄TPE (ε) ϕ(t) = 0

Choosing a Lyapunov function candidate as

V1(t) = ϕT (t)PE2 (ε) ϕ(t)

Taking the time-derivative of V1(t) along the system (12)
leads to

V̇1(t) = [E (ε) ϕ̇(t)]TPE (ε) ϕ(t)

+ϕT (t)PE (ε) [E (ε) ϕ̇(t)]

= ϕT (t)
[
ĀTPE (ε)+ PE (ε) Ā

]
ϕ(t)

+2[v(t)+ fe(t)]T B̄TPE (ε) ϕ(t)

= −ϕT (t)E (ε)Qϕ(t)+ 2[v(t)+ fe(t)]T S(t) < 0

where the EID relationship is D̄f (t) = B̄fe(t).
The above inequality indicates that the system (12) is

asymptotically stable when the state trajectory is restricted
to the sliding surface (22). This completes the proof. �
Remark 5: For the external disturbances, we can not explic-

itly extract the fast-time disturbance component aside from
the slow-time portion [28]. As a result, it is not reason-
able to achieve two individual sliding dynamics because the
time-scale attribute does not hold for disturbances. Therefore,
the Lyapunov approach is employed to construct the compos-
ite sliding surface (22), which dependents on the decoupled
reduced-order system models.

Transform the sliding surface (22) into the original coordi-
nates

S(t) = B̄TPE (ε) ϕ(t)

= B̄TPE (ε)M (ε)ψ(t)

=
[
S1 S2

]
E (ε) ψ(t)

where

S1 = BTs Ps
(
In1 − εHL

)
+ εBTf Pf L

S2 = BTf Pf − B
T
s PsH

By incorporating an appropriate reaching law, an adaptive
SMC law can be designed as

u0(t) =
{[
S1 S2

]
B
}−1 {

0S(t)− σ
S(t)
‖S(t)‖

−
∥∥[ S1 S2 ]B∥∥ χ̂ (t) S(t)

‖S(t)‖
−
[
S1 S2

]
Aψ(t)

}
where 0 is chosen as a negative constant, ‖·‖ denotes
Euclidean norm. The EID estimate error satisfies

∥∥∥f̃e(t)∥∥∥ ≤ χ , χ and σ are two positive constant, meanwhile

˙̂χ (t) = γ
∥∥[ S1 S2 ]B∥∥ ‖S(t)‖

where γ > 0 is a design parameter, and error value χ̃ (t) =
χ − χ̂ (t).
Thus, combined with the estimation of the EID, the SMC

control law can be derived as

u(t) = u0(t)− f̂e(t) (23)

Remark 6: Disturbances are usually required to satisfy
certain boundedness conditions in the existing disturbance
suppression results [11], [12], [14]. An integral SMC was
constructed in [15] for stochastic singular semi-Markov jump
systems, but the bound of nonlinearity is required to be
known. Our proposed adaptive SMC law u0(t) is free of
any priori disturbance information, and thus the constraints
on the upper bounds of disturbances and their derivatives
are completely released. The proposed SMC is available for
suppressing various kinds of disturbances.
Theorem 2:With the SMC law (23), the reachability condi-

tion can be guaranteed, that is, the system state variables will
be globally driven onto the sliding surface in finite time.
Proof: Taking the time-derivative of the sliding surface

yields

Ṡ(t) =
[
S1 S2

]
E (ε) ψ̇(t)

=
[
S1 S2

]
Aψ(t)

+
[
S1 S2

]
B
[
u0(t)+ f̃e(t)

]
(24)

Define the following Lyapunov function candidate

V2(t) =
1
2
ST (t)S(t)+

1
2γ
χ̃2(t) (25)

Then, taking the derivative of V2(t) with respect to t and
considering (23), (24) yield

V̇2(t) = ST (t)Ṡ(t)−
1
γ
χ̃ (t) ˙̂χ (t)

= ST (t)
{[
S1 S2

]
Aψ(t)

+
[
S1 S2

]
B
[
u0(t)+ f̃e(t)

]}
−χ̃ (t)

∥∥[ S1 S2 ]B∥∥ ‖S(t)‖
≤ 0‖S(t)‖2 − σ ‖S(t)‖ +

∥∥[ S1 S2 ]B∥∥
· ‖S(t)‖

{∥∥∥f̃e(t)∥∥∥− [χ̂ (t)+ χ̃ (t)]}
≤ −σ ‖S(t)‖ +

∥∥[ S1 S2 ]B∥∥ ‖S(t)‖
·

[∥∥∥f̃e(t)∥∥∥− χ]
≤ −σ ‖S(t)‖ (26)

where ‖S(t)‖2 = ST (t)S(t), and the above inequality implies
that V̇2(t) ≤ 0. Thus, the sliding surface (22) can be attained
in a finite time. This completes the proof. �
Due to the high frequency noise and switching mecha-

nism in u0(t), the EID estimation procedure may be affected.
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In view of this, we can introduce a low pass filter (LPF)

F̂e(t) =
ωf

s+ ωf
f̂e(t) (27)

where ωf is the cutoff angular frequency of LPF.
Thus, by combining (23) and (27), the synthesized adaptive

SMC law can be derived

u(t) = u0(t)− F̂e(t) (28)

The control block diagram of the proposed EID-based
adaptive SMC for SPSs with disturbances is shown in Fig. 1.

FIGURE 1. The EID-based adaptive SMC for SPSs with disturbances.

Remark 7: It can seen from Fig. 1 that the proposed control
strategy is mainly composed of adaptive SMC, LPF, EID and
state observer. The corresponding parameters are illustrated
as follows: G is the observer gain to be determined such that
A− GC is a Hurwitz matrix, 0 in the SMC law is a negative
constant which may influence the reaching speed of sliding
surface, σ is selected to guarantee reachability condition, γ
determines the convergence rate of the adaptive law and ωf is
the cutoff angular frequency of LPF. These parameters should
be designed so that satisfactory system performance can be
obtained.
Remark 8: The proposed adaptive SMC is able to guar-

antee the robustness against disturbances by combining the
SMC feedback with the EID based-feedforward compensa-
tion, which is different from the SMC strategy in [28]. As a
result, the systems under control possess better performance
such as less overshoot and steady-state error, which will be
illustrated in the next section.

IV. NUMERICAL EXAMPLE
In this section, we consider two examples to demonstrate the
advantages of the proposed method over the existing results.
Example 1 is borrowed from [28], and Example 2 is compared
with the fast terminal sliding mode control proposed in [13].

A. EXAMPLE 1
In this subsection, the magnetic tape control system with
disturbances is studied, whose mathematical model can be
found in [28]. The system matrices and parameters are as
follows.

A11 =
[
0 0.4
0 0

]
, A12 =

[
0 0

0.345 0

]
A21 =

[
0 −0.524
0 0

]
, A22 =

[
−0.465 0.262

0 −1

]
B1 = D1 =

[
0
0

]
, B2 = D2 =

[
0
1

]
C = I4, ε= 0.1, and ψ(0) =

[
−2 3 −4 1

]T .
The pairs (A0,B0) are calculated as

A0 =
[
0 0.4
0 −0.3888

]
, B0 =

[
0

0.1944

]
We can stabilize the slow and fast subsystems such that

eigenvalues are placed as eig(A0 + B0K0)={−0.5,−1} and
eig(A22+B2K2)={−2,−3} respectively. Thus, we can obtain
the following feedback gain matrices

K0 =
[
−6.4305 −5.7166

]
K1 =

[
−82.9738 −90.4985

]
K2 =

[
−14.852 −3.535

]
The evolutions of recursive algorithm for solving H and L

are shown in Figs. 2, where 4H and 4L denote the matrices
error between the current value and that in the last iteration,
respectively. It can be shown that the evolutions are uniformly
convergent to their actual values when the numbers of itera-
tions are i = 12 and j = 7. The corresponding calculation
results are presented as follows.

L =
[
4.1789 4.8593
4.7427 4.153

]
R(L) = 10−7 ×

[
−0.3712 −0.309
0.3707 0.3069

]
H =

[
0.0095 0.0007
−0.3399 −0.0204

]
R(H ) = 10−8 ×

[
−0.0823 −0.0074
0.2457 0.022

]
Set the expected eigenvalue as eig(A − GC) =

{−10,−22.9075 ± 2.4879j, − 41}, then G can be obtained
as

G =


10 4 0 0
0 20 3.45 0
0 −5.24 25.35 2.62
0 0 0 40


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FIGURE 2. The evolutions of recursive algorithm for solving H and L.

Choose Q = I4 and we can obtain the positive definite
symmetric P as

P =


2.8268 0.3468 0 0
0.3468 0.3810 0 0

0 0 4.8156 −0.0634
0 0 −0.0634 0.1066


which generates the parameters of the constructed sliding
surface as S1 =

[
0.030 0.0222

]
, S2 =

[
−0.0609 0.1067

]
.

The developed control strategy can be realized by setting
the parameters 0 = −0.5337, σ = 0.10674, γ = 0.001,
ωf = 100.
The following two cases are presented to demonstrate

the effectiveness of the EID-based adaptive SMC approach
developed in this paper. Case I shows the advantage of the
obtained method over the existing results given by [28].
Case II shows the wider applicability of the proposed con-
troller design method.

1) CASE I: SINUSOIDAL DISTURBANCE
In this case, the dominating slow dynamics approach pre-
sented in [28] is borrowed to compare with the proposed
method.
The sinusoidal disturbances f (t) is

f (t) = 2 sin(3t)

The Euclidean norms of slow-time and fast-time state vec-
tors are shown in Fig. 3 and Fig. 4, which implies that the
closed-loop system under the proposed EID-based adaptive
SMC possesses better performance than the results in [28],
such as less overshoots and superior steady-state dynamics.

2) CASE II: APERIODIC DISTURBANCE
Without any modification of the proposed EID-based adap-
tive SMC, we consider the following external disturbance

f (t) =
5

1+ t2

FIGURE 3. The norm of slow-time state variable.

FIGURE 4. The norm of fast-time state variable.

FIGURE 5. The estimate of the external disturbance.

The disturbance estimate is shown in Figs. 5, which indi-
cates that the presented EID can estimate the external dis-
turbance well. Finally, the evolutions of state vectors are pre-
sented in Fig. 6 and Fig. 7 respectively. It is easy to see that the
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FIGURE 6. The evolutions of slow-time state vector.

FIGURE 7. The variables of fast-time state vector.

closed-loop system is asymptotically stable and satisfactory
system performance is guaranteed under the proposed control
law.

B. EXAMPLE 2
In this subsection, we consider the following dynamic system{

q̇(t) = −2q(t)+ z(t)− 0.1u(t)
ż(t) = −20q(t)+ 2z(t)+ u(t)+ 10fL(t)

(29)

where q(0) = 0, z(0) = 0, and fL(t) = 0.1sin(20t). Then we
can obtain the following expression from (29)

q̈(t) = −16q(t)+ U (t)+ 10f (t)

where U (t) = 1.2u(t)− 0.1u̇(t).
In the following, we will present the fast terminal sliding

mode control (FTSMC) approach proposed in [13]. For con-
venience, we add subscripts ‘‘c’’ to the designed parameters
and variables in the design procedure of the FTSMC. In order
to construct the disturbance observer in [13], we need to
introduce the auxiliary variable

δc(t) = zc(t)− q̇c(t)

with zc(t) expressed as{
żc(t) = D̂(t)− 16qc(t)+ Uc(t)
D̂(t) = −ε0cδc(t)− ε1csign [δc(t)]

where D̂(t) is the lumped disturbance estimation.
For the desired position qd (t), the tracking error vector is

defined as

ec(t) = qc(t)− qd (t)

Then the surface variable and non-singular FTSMC mani-
fold are designed as{

sc(t) = ec(t)− ec(0)e−ϕct

σc(t) = sc + µ1cs
γc
c + µ2cṡ

ηc
c

where sc = sc(t). Thus, the FSTMC law is

Uc(t) = −
1

ηcµ2c
ṡ2−ηcc −

µ1cγc

ηcµ2c
sγc−1c ṡ2−ηcc + 16qc(t)

+q̈d (t)− D̂(t)+ ϕ2c ec(0)e
−ϕct + δ̇c(t)

−
1

ηcµ2c
ṡ1−ηcc {ε0cσc(t)− αcsign [σc(t)]}

and the parameters are selected as

ε0c = 10, ε1c = 1.5, ϕc = 2,µ1c = 0.1

µ2c = 1, ηc = 1, γc = 1.5,αc = 1.5

For the system (29), if we define the state variable as

x(t) = q(t)− qd (t)

then the system (29) can be rewritten as{
ẋ(t) = −2x(t)+ z(t)− 0.1u(t)− 2qd (t)− q̇d (t)
ż(t) = −20x(t)+ 2z(t)+ u(t)+ 10fL(t)− 20qd (t)

By setting the singular perturbation parameter ε = 1/20,
the above system can be modeled as the SPS (1) with the
following system matrices and parameters

A =
[
−2 1
−1 1/10

]
, B=

[
−1/10 0

0 1/20

]
C = −I2, D=

[
−1 0
0 1/2

]
f (t) =

[
f1(t)
f2(t)

]
=

[
2qd (t)+ q̇d (t)
fL(t)− 2qd (t)

]
Then we can calculate that eig(A0 + B0K0) = −1 and

eig(A22 + B2K2) = −9.9 by selecting feedback gains as
K0 =

[
15 15

]T ,K2 = −
[
200 200

]T , respectively. The evo-
lutions of recursive algorithm for solving H and L are shown
in Fig. 8, which illustrates the evolutions are convergent. The
corresponding calculation results are presented as follows

L = −2.51, R(L) = −2.1263× 10−4

H = −1.6805, R(H ) = −1.7212× 10−7
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FIGURE 8. The evolutions of recursive algorithm for solving H and L.

FIGURE 9. The evolutions of state variable.

By setting the expected eigenvalue eig(A − GC) =
{−19.8314,−14.0686} and Q = 10I2, we can obtain matri-
ces G and P as

G =
[
18 0
0 14

]
, P=

[
6.3312 0

0 0.3989

]
According to Remark 7, set the other parameters of the

EID-based adaptive SMC as 0 = −1.5, σ = 0.2, γ = 0.001,
ωf = 100.

When qd (t) = 5sin(3t), the evolutions of the proposed
method and the FSTMC approach are shown in Fig. 9,
which indicates that the controlled system under the proposed
EID-based adaptive SMC has better tracking performance
and stronger robustness against external disturbance than the
results in [13]. In addition, the presented approach in this
paper is free of the disturbance norm-bound information.

V. CONCLUSION
This paper desinged an EID-based adaptive SMC for SPSs.
The ε-dependent state observer and the Lyapunov-based
methods have been presented to construct the EID estimator
and design the composite sliding surface respectively. The

obtained adaptive SMC law can ensure that the closed-loop
SPSs are asymptotically stable and the effects of disturbances
can be effectively compensated without knowing any priori
disturbance information.

VI. FUTURE RECOMMENDATION
The robust controller design for nonlinear systems with
uncertainties will be more complex. It is worth trying to
extend the proposed approach to suppress the adverse effects
of the disturbances for nonlinear SPSs in the future.
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