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ABSTRACT Gas source localization tackles the problem of finding leakages of hazardous substances such
as poisonous gases or radiation in the event of a disaster. In order to avoid threats for human operators,
autonomous robots dispatched for localizing potential gas sources are preferable. This work investigates
a Reinforcement Learning framework that allows a robotic agent to learn how to localize gas sources. We
propose a solution that assists Reinforcement Learning with existing domain knowledge based on a model of
the gas dispersion process. In particular, we incorporate a priori domain knowledge by designing appropriate
rewards and observation inputs for the Reinforcement Learning algorithm.We show that a robot trained with
our proposed method outperforms state-of-the-art gas source localization strategies, as well as robots that
are trained without additional domain knowledge. Furthermore, the framework developed in this work can
also be generalized to a large variety of information gathering tasks.

INDEX TERMS Gas source localization, information gathering, reinforcement learning, mobile robot, deep
learning.

I. INTRODUCTION
In scenarios associated with high risks for human operators,
information gathering (IG) with autonomous mobile robots
has emerged as a safer alternative to human operated IG.
Such scenarios cover a wide range of different applications
like Chemical, Biological, Radiological and Nuclear (CBRN)
events [1], assisting first responders [2] as well as deep sea
and extraterrestrial exploration [3]. The objective of robotic
IG is to collect information efficiently about an unknown
environment, e.g. after a natural disaster. This requires the
robot – or mobile sensor – to decide on actions and on
sampling locations where to gather information, constrained
by limited resources, e.g. available energy or time consuming
measurements. This may be economically advantageous or
even life-critical in search and rescue missions. However,
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autonomous robots typically lack of expert knowledge that is
inherent to human operatedmissions. In this workwe propose
an algorithmic framework to solve robotic IG and enhance
it by exploiting a priori domain knowledge about the envi-
ronment. We develop and analyse the proposed framework
by means of a gas source localization (GSL) task. GSL tries
to localize sources that cause airborne trace substances to
spread into the environment. GSL tasks occur in different
fields of applications, for example in case of accidents, where
toxic or dangerous material is leaking [4], or in geophysics to
monitor volcanic emission sources [5] as well as for local-
izing methane leakages from landfill sides [6]. In our work
the objective of the robotic IG is to take spatially distributed
measurements of the gas concentration in the environment in
order to estimate the location of the sources. In this article,
we provide a fundamental framework to solve the GSL task
which can be applied and tailored to different, specific appli-
cations in the future.
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A. ROBOTIC INFORMATION GATHERING WITH
REINFORCEMENT LEARNING
Robotic IG has been widely researched in the context of
multiple applications such as exploration [7], robot naviga-
tion [8], [9] tracking and surveillance [10].

An IG task involves a robot interacting with an environ-
ment to accomplish a goal. This is in essence a sequential
decision-making problem, which is usually modelled as a
Markov Decision Process (MDP). Classical algorithms for
solving MDPs can be divided into planning and learning
algorithms. Planning methods use simulated experience from
an environment model, while learning algorithms use actual
(trial-and-error) experience. The definite advantage of learn-
ing algorithms is their flexibility, as they can easily be adapted
to new environments or ad-hoc environment changes without
incorporating them explicitly into the model. Furthermore,
they can be applied even in situations where no model of
the environment is available. In contrast, non-learning algo-
rithms heavily rely on heuristics, which need to be explicitly
implemented into the algorithm, e.g. [11], [12]. One such
class of learning algorithms is Reinforcement Learning (RL),
which has been the method of choice for solving a wide
spectrum of robotic decision-making problems, including
control of a quadcopter [13], robot navigation [14], or motion
planning [15]. RL comprises multiple techniques to learn a
mapping between robots’ observations and robots’ actions.
Inspired by the latest advances in the literature, we investigate
in this article the use of RL for complex IG tasks.

In practice, Reinforcement learning (RL) is a promising
solution to derive flexible strategies for IG. In [7] the authors
developed a Deep-RL IG algorithm that outperforms state-of-
the-art Gaussian-Processes-based benchmarks. The authors
in [7] use model-free RL. This has a definite advantage: it
does not make any assumption about the underlying physical
process. Model-free RL has been proven to be a solid and
flexible solution for tasks in which an agent tries to optimize
an objective over time by interacting with the environment
without relying on a priori infused knowledge. In particu-
lar, in [16] a single RL algorithm learned to play multiple
Atari games with widely different environments and action
spaces, and it even outperformed a human in some of the
games.

The most common approach to solve IG tasks is the
so-called model-based IG. This class of algorithms con-
strain the environment by introducing a model based on
domain knowledge about the target physical process. Thus,
the IG algorithm exploits the domain knowledge offered
by the model to derive intelligent strategies. Examples of
models used in IG include, but are not limited to, Gaus-
sian processes [7], [10], partially observable Markov deci-
sion processes [17] and partial differential equations (PDEs)
[18], [19]. Model-based IG achieves a superior performance
in tasks for which the model accurately describes the process
of interest. However, it fails if the model is not accurate
enough. Our goal is to design a flexible strategy that can be
used across a wide range of IG tasks.

For IG models can also be exploited in the context of a
RL framework to enhance the performance of the algorithm.
Model-free RL has been shown to offer outstanding results
for a wide variety of tasks. Nevertheless there are many
applications for which a model of the process of interest has
been well studied. This is the case in our target application
of gas source localization. For gas source localization, PDEs
have shown great potential to model the gas dispersion pro-
cess [18]–[20]. The question that we pose in this article is
the following: how can we introduce domain knowledge – a
model – of a physical process in RL to solve a robotic IG
task? Even as early as [21] the benefits of exploiting addi-
tional domain knowledge have been studied. In the literature,
the introduction of domain knowledge is typically done by
means of reward shaping [22]–[25].

Our key contribution is inspired by the model-based RL
idea proposed in [7]. Here, the authors modeled the process of
interest as a Gaussian Process and introduced this information
as reward shaping for model-based RL. In contrast to the
method in [7], which is purely data-driven, in our approach
we introduce domain knowledge available from physics to
assist the RL. This is done by means of a gas distribution
model used to aid the RL algorithm for the IG problem.
In particular, wewill show how tomake use of amathematical
model in order to (i) shape the reward and (ii) to enhance
the observation for the RL framework. We are motivated by
the hypothesis that it is of advantage to provide this a priori
information available to the robot which otherwise has to be
learned with high effort. Indeed, our results show that the
proposed approach is of advantage compared to model-free
RL.

B. ROBOTIC GAS SOURCE LOCALIZATION
Robotic gas source localization approaches are typically clas-
sified in three categories: chemotaxis, anemotaxis and info-
taxis. They all have in common the assumption that a robot
can measure certain quantities of the underlying gas disper-
sion process. Such parameters are the gas concentration, wind
strength, pressure, etc.

Chemotaxis refers to strategies that follow the gradi-
ent of the local gas concentration [26]–[28]. Chemotaxis
works under the assumption that the gas concentration rises
monotonously as the robot approaches the source. This
approach has the advantage that the strategy is easy to imple-
ment and requires little computational power. However, it has
two main drawbacks. First, it tends to get stuck around a
source, since sources are local maxima of the gas concen-
tration. This is problematic if we are searching for multiple
sources. Second, turbulent winds disturb the structure of
the local gradients and lead to a violation of the monotony
assumption. A solution to mitigate the latter problem is to
average multiple samples per iteration, which leads to a
decrease in the algorithm speed [29].

The most important mechanism causing a gas distribution
to disperse is the wind. Therefore, the wind direction gives an
important hint on where the gas is coming from. Anemotaxis
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strategies take into account the wind direction and drive the
agent to follow the gas concentration up-wind [30], [31].

Infotaxis refers to approaches that use information-
theoretic principles. These approaches exploit amathematical
model of the gas dispersion process to derive an exploration
strategy [11], [12]. In [18], [19] the authors proposed a prob-
abilistic Bayesian framework that builds a model of the gas
concentration and source locations from only a few measure-
ments. In [18] the authors proposed a greedy strategy that
drives robots towards neighbouring regions with the highest
uncertainty. Here we consider [18] as a benchmark to evaluate
the performance of our RL-based IG algorithm for a gas
source localization task.

C. PAPER OUTLINE
The rest of the paper is organized as follows. In Section II we
state our problem formally. There we introduce the notation
and define our gas source localization task as an IG problem.
Section III introduces the gas dispersion model employed
in this work. This is followed by a summary of the RL
algorithms used in this work, which is required to understand
the remaining of the paper. In Section IV we present our
IG algorithm, which uses RL assisted by domain knowl-
edge. Section V describes the simulation results, followed by
conclusions.

II. PROBLEM STATEMENT
A. ENVIRONMENT
We consider a gas dispersion process driven by an unknown
number of sources for the IG task at hand. For evaluation
and training purposes a real gas dispersion scenario will be
simulated in a two dimensional domain. This 2D assumption
is valid for a gas heavier than air, since it stays close to the
ground and can be sampled by ground-based robots which are
restricted to move in the horizontal 2D plane. Examples for
such gases are carbon dioxide, propane gas, chlorine gas,
sulfur dioxide and nitrogen oxides. We consider the domain
as obstacle free and bounded. We model the gas dispersion
process by the advection-diffusion PDE where we restrict
ourselves to the steady state [19]. This corresponds to the
following equation:

−∇
2f (x, y)+ Ev ∇f (x, y) = u(x, y), (1)

where function f (x, y) denotes the gas concentration at loca-
tion x, y. Furthermore, the gas source distribution is mod-
elled by function u(x, y). This function actually describes the
source strength (amount of material inflow) at location x, y.
The wind velocity field is represented by the vector field
Ev(x, y) = [vx(x, y), vy(x, y)], where vx(x, y) and vy(x, y) are
the wind strengths along the x and y axes at (x, y). We assume
the wind strength and directions as constant over the entire
domain.

Variational problems like Equation (1) are hard to
handle analytically in general. Therefore we approximate
Equation (1) with the Finite Element Method (FEM). This
discretizes the spatial domain. To this end, we divide the

domain into C cells arranged in a regular grid. By using FEM
the variational problem from Equation (1) turns into a series
of linear equations for each individual grid cell c = 1, . . . ,C .
For simplicity we use dimensionless cells of size 1 in our
simulation studies. Each grid cell c is indexed by xc, yc ∈ N
to define its position in the grid. For each individual cell c
we can define two values: fc and uc. Value fc ∈ R denotes
the gas concentration at xc, yc. Value uc ∈ R denotes the gas
source strength, which has a value of 0 for those cells that do
not contain a gas source. Note that the gas concentration fc is
measurable using a sensor. In contrast, gas source strength uc
is not directly measurable, and can only be inferred from gas
concentration measurements.

We aggregate the information of the individual cells in a
vector Ef that contains gas concentrations fc, and in a vector
Eu that contains source strengths uc, for all c = 1, . . . ,C .
Based on the system of equations obtained from Equa-
tion (1) we can simulate the gas concentration for a known
source distribution. The simulated gas concentration Ef is
used as a static environment for training and evaluating our
algorithms.

B. INFORMATION GATHERING TASK
The task of the robot is to localize an a priori unknown
number of gas sources as fast as possible. This is equivalent
to estimating the source strength uc of all cells. Essentially,
sources are those cells for which uc 6= 0.
At each discrete time step t ∈ N we define the robot’s

position as ca[t] = (xa[t], ya[t]). The robot can move one cell
↑,↓,←,→ at each time step. In addition, the robot samples
gas concentration fca[t] at ca using a sensor. Here, the goal
of IG is to collect a sufficient amount of measurements
so that we can accurately estimate the gas concentration Ef
and source distribution Eu based on an inverse model of the
gas dispersion process. This inverse model uses the same
probabilistic approach as in [19], which will be explained in
Section III-A. In other words, the source localization task
is turned into an estimation problem. Based on the inverse
model and the measurements, the source distribution is esti-
mated. This distribution can be considered as a map charting
the locations of the sources and their strength.

To measure the performance of our IG algorithm, the dis-
crepancy between the ground-truth Eu and the estimated source
distribution Êu is used. Both distributions Êu and Eu are inher-
ently sparse. To measure the discrepancy between sparse
distributions the Earth Mover’s Distance (EMD) [32] is the
method of choice. The EMD measures the distance between
two discrete distributions or histograms. It can be considered
as the discrete equivalent of the first Wasserstein metric. An
intuitive interpretation of the EMD is the following: provided
two probability distributions that describe two different ways
of piling up a certain probability mass (or earth), the EMD
measures the cost of turning one of them into the other. In
other words, it measures theminimum effort tomove themass
of the first distribution into the second distribution, where the
effort is the amount of mass times the distance by which the
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mass has to be moved. For example, it will assign a low cost
if the estimated source represented by the source distribution
Êu lies in the vicinity of the ground-truth source. In order to
calculate the EMD, the movement of mass can be considered
as a transportation problem from linear optimization, where
the first distribution plays the role of suppliers and the second
distribution the role of consumers. At each time step we can
compute an error based on the EMD between the estimated
source distribution Êu and the ground-truth source distribution
Eu. By summing up those errors for all time steps, we get a
total performance score. From an IG perspective the task of
the agent is to reduce this total score, which translates into
finding the sources as fast as possible in the context of gas
source localization.

III. THEORETICAL BACKGROUND
A. GAS DISPERSION MODEL
We summarize first the forward gas dispersion model that
generates a concentration map Ef from a source distribution
Eu given the wind velocity and boundary conditions. The for-
ward model is used to simulate the environment to train and
evaluate the RL algorithm. Then we summarize the inverse
dispersionmodel used to estimate both the source distribution
Êu and the gas concentration Êf from collected measurements.
The inverse model is used to design the reward and obser-
vations of the RL agent. For a detailed explanation on the
forward and inversemodels, we refer the reader to the original
publication [19].

1) FORWARD DISPERSION MODEL
Using the advection-diffusion PDE (1) the environment can
be simulated by modelling the gas concentration Ef based on
a fixed source distribution Eu and wind strength Ev(x, y). We
use FEM to decompose the PDE into a system of algebraic
equations for each cell c:

rc(Ef , Eu, Ev) = 0; c = 1, . . . ,C . (2)

The system of linear equations given by Equation (2) is ill
posed. To make it well posed we need additional boundary
conditions. Without loss of generality, for our environment
we consider a Dirichlet boundary condition and assume that
the concentration at the border of the environment is 0. This
would correspond to an open field scenario, where the gas
could escape over the border. Of course, other boundary
conditions could be considered appropriately to the specific
application (e.g. Neumann bound to model a wall).

By solving Equation (2) subject to the boundary condition,
we obtain the gas concentration Ef . Provided the gas concen-
tration, we can now define a robot’s measurement ot taken at
time stamp t as follows:

ot = M[t]Ef , (3)

where matrixM[t] selects the values from Ef that correspond
to positions ca[t] at which the measurement was taken by the
robot.

2) INVERSE DISPERSION MODEL
For the inverse model, Equations (2) and (3) are formulated
in a probabilistic fashion. This facilitates solving unknowns
Êf and Êu from collected measurements oi; i = 1 . . . t , as well
as calculating the uncertainty of the computed results. This is
done by relaxing the conditions for Equation (2) and allowing
deviations from 0 with a certain precision τs (see [19] for
more details):

p(Ef |Eu, Ev) ∼ e−
τs
2 ||Er||

2
=

C∏
c=1

e−
τs
2 rc

2
, (4)

with Er a vector that results after aggregating Equations (2)
for each cell c. Furthermore, Equation (4) assumes rc to be
statistically independent random variables, each following a
normal distribution.

The same assumption can be applied to the measurements
value, which results in the following expression:

p(ot |f ) ∼ e−
τm
2 ||M[t]f−ot ||2 . (5)

Unfortunately, the inverse problem is not well-posed even
given the boundary conditions. At the beginning of the IG
mission there are more unknown source values in Eu than
measurements. This requires an additional prior assumption
to make the problem invertible. Here we assume that we do
not know the number of sources (i.e. number of elements
in Eu that are not zero), but we assume that the sources are
sparsely distributed in the environment. This is a realistic
assumption for many future applications. For example, after
an earthquake that damaged the gas supply network of houses
multiple sparsely distributed leaks can be expected. Also
in geophysical applications gases are emitted from multiple
crevices similar to methane leaks on landfill sides [6]. To
enforce sparsity on the distribution of the sources, [19] uses
Sparse Bayesian Learning by imposing a hierarchical prior
on Eu:

p(uc|γc) ∼ N (0, γc), (6)

with p(γc) ∼ G(γc|0, 0) a random variable which has to be
estimated as well. By centering the distributions of uc around
0, uc will be 0 for most cells ensuring a sparse solution of Eu.

The objective of the inverse model is to estimate the
unknown variables Êf and Êu from knownmeasurements oi; i =
1 . . . t . By using the Bayes Theorem the posterior probability
density function can be computed as:

p(Ef , Evx , Evy, Eu, Eγ |o1 . . . ot ])

∝ p(o1 . . . ot |Ef )p(Ef |Evx , Evy, Eu)p(Evx , Evy)p(Eu| Eγ )p(γ ) (7)

We make use of the variational inference approach presented
in [19] to approximate the true source and gas distributions.
Based on this algorithm we calculate marginal distributions
p(fc) and p(uc). The maxima of these probability distributions
correspond to the desired gas concentration f̂c = argmax p(fc)
and source distribution ûc = argmax p(uc), respectively.
In addition, we calculate the variance of the concentration
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hc = Var(p(fc)) for each cell c, which can be seen as an
uncertainty of the estimate. Essentially, all values combined
can be seen as an uncertainty map. To represent this map,
we aggregated all hc, c = 1, . . . ,C in a vector Eh. The calcu-
lated quantities Êf , Êu, Eh are referred to as domain knowledge
and are used to design the RL reward and observation in the
next sections.

B. INFORMATION GATHERING WITH DEEP
REINFORCEMENT LEARNING
In general, a robotic IG task involves a robot interacting with
an environment to accomplish a goal. In our case the goal
is to collect enough information to estimate gas sources. We
formulate this as a RL problem [33]. Next we introduce basic
RL terminology that will be used in the remainder of the
paper. At each time step t the agent observes the environment
state st and chooses an action at from the action space A
according to a policy π (at |st ). Agent’s action at causes the
environment to transition from state st to st+1, as given by
transition probability p(st+1|st , at ). For each pair st , at the
agent receives feedback from the environment in terms of
a reward rt . A high reward implies that the chosen action
was good, e.g. the robot found a gas source. A low reward
punishes the robot for a bad action, e.g. colliding with a wall.
In RL, the agent tries to learn how tomaximize the discounted
sum of rewards over time: max

∑
t γ

trt . Here, the discount
factor γ ∈ (0, 1] decreases the relevance of future rewards.
This encourages the robot to collect the reward fast, i.e. at the
beginning of an episode.

We train our RL agent using a state-of-the-art actor-critic
Deep RL algorithm – A3C [34]. A3C has been established
as a successful framework for Deep RL applications because
of its efficiency used in this work, which is. We refer the
reader to the original A3C publication [34] for the details on
the method, and to [7] for the exact implementation used in
this work. The main focus of this article is to tailor RL for IG
tasks by designing the agent’s reward and observation. In fact,
we propose here a framework that permits the introduction of
different state-of-the-art Deep-RL algorithms like e.g. Proxi-
mal Policy Optimization [35] and deep Q-networks [16] just
to name a few. In the next section we explain our proposed
IG algorithm based on RL assisted by domain knowledge.

IV. REINFORCEMENT LEARNING ASSISTED BY DOMAIN
KNOWLEDGE
In this section we present how we address the gas source
localization problem with RL. Furthermore, we propose a
solution to introduce domain knowledge into our RL frame-
work. Subsection IV-A summarizes the proposed system.
Subsections IV-B and IV-C describe our proposed method for
assisting the learning process by incorporating prior knowl-
edge into the agent observation and reward design.

A. SYSTEM OVERVIEW
Figure 1 shows the system architecture of the developed
approach. It consists of four layers. First, the environment

model layer provides us with a model of the gas dispersion
process based on solving Equation (2). In the simulator layer,
the forward version of the model is used to generate a gas
concentration Ef based on a known source distribution Eu and
thewind strength Ev. This layer basically generates our training
data. In the agent layer the simulated gas concentration Ef
is sampled by a sensor module at the current location of
the agent. The agent stores the measurements denoted as{
(ca[ti], fca[ti])i

}
for i = 0 . . . t up to the current time step

t inside the information storage module. All gathered mea-
surements are fed to the inverse version of our environment
model F−1(

{
(ca[ti], fca[ti])i

}
). The inverse model provides us

with the estimated concentration Êf and source distribution Êu,
as well as the uncertainty map Eh by solving Equation (7).
The estimated outputs of the inverse model together with the
gathered measurements are used inside the RL layer to design
the reward and observation for the RL algorithm. Further,
the RL layer contains the movement policy, which is actually
the exploration strategy we are looking for. This policy is
continuously improving while training and outputs an action
at at each time step. The action will be carried out by the
actuator module that moves the robot to the next position
in the simulated environment. In our case the action is the
next cell that should be visited by the agent. By improving
the policy, i.e. the movement strategy, better sample locations
are selected by the agent over time. This means that the gas
concentration and the source distribution are better estimated,
since the measurements are taken at more favorable loca-
tions.

B. AGENT OBSERVATION
The received observation defines which information about
the environment is available to the agent. For gas source
localization in particular only previously sampled cells from
the entire grid are visible to the robot. The available gas
concentration information for each sampled cell is stored in
a measurements matrix represented by O and defined in the
following equation:

Oxc,yc =

{
fc if cell c is visited,
−0.5 if cell c is unvisited.

(8)

Here we introduce a bias of−0.5 to help the agent discrim-
inate between visited and unvisited cells.
In addition to the gas concentration sampled at each loca-

tion, the position of the agent in the grid together with the
boundaries of the grid have to be conveyed. For this reason
the final observation received by the agent will be an image
I1 with a higher resolution than O. Thus, multiple pixels
describe a single grid cell. The value of each individual pixel
of the observation image I1 ranges between [0, 255]. The
position of the agent will be marked by a horizontal line
(containing only values of 0) in the respective grid cell of the
observation image I1. The boundaries will also be marked
with pixel values of 0.

VOLUME 9, 2021 13163



T. Wiedemann et al.: Robotic IG With RL Assisted by Domain Knowledge: An Application to GSL

FIGURE 1. System Overview Diagram: The environment forward model simulates the gas concentration distribution from
the known sources and wind information. The simulated gas concentration is used to generate the measurements gathered
by the robot. The measurements are fed into the inverse model to estimate the whole gas concentration and source
distribution as well as the uncertainty map. The estimates are used to define the reward and the observation for the RL
algorithm which are used to train the movement policy. The policy outputs an action that is the next way-point of the robot.
(see more details in section IV-A).

For the assisted RL approach the information computed
by the environment model is also exploited. Thus, the con-
centration estimate Êf and the estimated source distribution
Êu are accumulated into individual images I2 and I3 in a
similar manner as for I1. I2 or I3 can be stacked on top of
I1 resulting in a two-channel image passed as an observation
to the agent. Using this additional information, the agent
could infer regions with high concentration or with sources
already detected by the processmodel. For example, the agent
might choose not to visit a certain neighbourhood if the
estimated gas concentration Êf [t] in that region is already high
and a source is already localized, preferring to explore other
previously unvisited areas instead.

C. REWARD DESIGN
The reward specifies the agent’s desired objective. There-
fore, the reward shall be as close as possible to the agent’s
objective stated in Section II-A such that no undesired bias is
introduced into the policy. Here our objective is to localize
gas sources that are sparsely located in the environment.
This yields a sparse reward distribution. That is, the total
reward accumulated during one episode is gained by the
agent after performing only a few actions, while most of
the actions do not incur a reward for the agent. A sparse
reward might, however, hinder the training process because
the agent cannot infer causality for long series of actions
over time [36]. The balance between correlating the reward
to the agent’s objective and reducing reward sparsity is thus

a fundamental aspect in the reward definitions that we pro-
pose next. First, we introduce a definition of reward that
does not require domain knowledge. We refer to this case as
model-free reward. Then we introduce several model-based
rewards that exploit domain knowledge.

1) MODEL-FREE REWARD
Our definition of the model-free reward relies on the assump-
tion that the gas concentration is higher in the vicinity of
the sources. By providing the agent a high reward when a
high value measurement is encountered, we can guide the
agent towards sources. The model-free reward is defined as
proportional to the difference between the measured value
at its current position and a predefined baseline b < 0 for
previously unvisited cells. A negative baseline ensures the
agent will gather at least−b amount of reward if it samples at
an unexplored cell and will encourage exploration. Formally,
this yields the following expression:

rMF [t] =

{
fca[t] − b if cell unvisited
0 if cell visited

(9)

where the position of the agent xa[t], ya[t] maps to the cell
ca[t].

2) MODEL-BASED REWARD
A model-based reward uses the process model to incorporate
domain knowledge into the reward definition. This results
in a more informative reward. Our definition of the reward
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uses the gas concentration estimate Êf , the source estimates
Êu, and the uncertainty map Eh, as computed by the model in
Section III-A, to assist the agent. First, we propose a reward
that encourages the agent to reduce the discrepancy between Êf
and ground-truth Ef . This intuitively drives the agent to gather
measurements which improve the gas concentration estimate
Êf of the process model and results in the following reward
definition:

r̃con[t] = −
d
dt
|Ef − Êf [t]|L1 , (10)

where | · |L1 is the L1 norm that computes the error between
the approximated concentration and the ground-truth. Note
that we calculate the negative derivative of the L1 norm with
respect to time. This rewards the agent proportionally to how
much the error has been reduced (negative time derivative)
compared to the previous time step. In doing so, we force
the RL algorithm to concentrate on the improvement of Êf
rather than on the current value of the error |Ef − Êf [t]|L1 .
This can be explained by assessing the following scenario
of two consecutive time steps t and t + 1 with respective
estimates Êf [t] and Êf [t+1]. It can be assumed that by gathering
a measurement at time t+1 the estimate improved relative to
the previous time step t: |Êf [t + 1] − Ef |L1 = |Êf [t] − Ef |L1 + e
with positive e > 0. It can easily be deduced that in practice
the value of |Êf [t+1]−Ef |L1 will be dominated by |Êf [t]−Ef |L1 .
However, we want to force the algorithm to rather concentrate
on e, which is defined as the time derivative of |Êf [t]− Ef |L1 .
The reward in Equation (10) can be negative (positive time

derivative) if a badly estimated concentration differs more
from the ground-truth than in the previous time step. This
might motivate the agent to reduce exploration in order to
avoid negative rewards, which would slow down the learning
process. To alleviate this issue, we introduced for Equa-
tion (10) a lower bound at 0.1 for unvisited cells and a reward
of 0 for already visited cells. This yields the following reward:

rcon[t] =

{
max {r̃con[t]+ 0.1, 0.1} if cell unvisited,
0 if cell visited.

(11)

This lower bound is chosen relatively small compared
to the average reward received by the agent such that no
significant bias is introduced in the exploration strategy.
Previous definitions of rewards use the gas concentration

as an implicit mechanism to localize sources. Next, we define
a class of rewards that explicitly encourages the agent to learn
how to localize sources. To this end we use the estimated
source distribution Êu. As for the gas concentration, an error
between the estimated Êu and the ground-truth sources Eu is
computed. Since distributions Êu and Eu are inherently sparse,
we employ the EMD [32], instead of the L1 norm, to calculate
this error. This results in the following expression:

r̃source[t] = −
d
dt
|Eu− Êu[t]|EMD. (12)

As stated in Subsection IV-A, EMD also accounts for
physical distance between non-overlapping estimated sources
and ground-truth sources and will assign a lower cost if
the estimated source lies in the vicinity of the ground-truth
source. This has the advantage of smoothing the discrep-
ancy measure between estimate Êu and Eu. This smooth reward
helps to circumvent problems arising from sparse reward in
RL [36]. As for the concentration reward in Equation (10),
the reward in Equation (12) will be changed in the same
manner by imposing a lower bound of 0.1 for unvisited cells
only:

rsource[t] =

{
max {r̃source[t]+ 0.1, 0.1} if cell unvisited,
0 if cell visited.

(13)

In addition, we investigated a strategy to reduce the overall
uncertainty Eh of the model, similar to the approach for gas
source localization in [18], which drives the robot towards
the cell with the highest uncertainty. Therefore, the agent
will receive a reward proportional to the decrease in the
uncertainty as follows:

r̃UN [t] = −
d
dt
|Eh[t]|L1 . (14)

Additionally, a lower bound of 0.1 will also be imposed
to the reward in Equation (14) as for the concentration in
Equation (11):

rUN [t] =

{
max

{
r̃UN [t]+ 0.1, 0.1

}
if cell unvisited

0 if cell visited

(15)

Last but not least, the reward must prevent the agent to
crash, i.e. leaving the grid �. Thus, for all the proposed
rewards rmethod [t] ∈ {rsource[t], rUN [t], rcon[t]} a penalty
of −1 will be provided every time the agent leaves the grid
environment:

rfinal[t]=

{
rmethod [t] if agent’s position is inside �,
−1 otherwise.

(16)

3) TRAINED AGENTS
To analyze the impact of the reward functions and the obser-
vation design we trained agents differently. The evaluation of
the performance of the different agents will be presented in
the next section. Before that, we would like to summarize the
proposed agents.

ConcentrationAgent:TheConcentrationAgent is trained
using the final form from Equation (16) of the concentration
reward in Equation (11) and aims at reducing the discrepancy
between the concentration estimate and the true concentra-
tion. The agent uses the measurements matrix O as described
by Equation (8) as observation.

Sources Agent: The Sources Agent aims at reducing the
EMD distance between the estimated and the true source
distributions and is trained using Equation (13) as a reward.
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Again, the measurements matrix O as described by Equa-
tion (8) is used as observation.

Uncertainty Agent: The Uncertainty Agent is trained
using Equation (15). Again, the measurements matrix O as
described by Equation (8) is used as observation.

Model-Free (MF) Agent: The Model-Free Agent makes
no use of prior knowledge, and is trained with the reward
defined in Equation (9) and the measurements matrix as
described by Equation (8).

Observation Agent A: This agent is trained similarly to
the Concentration Agent with the same reward. But for this
agent the observation is encoded into a two-channel image,
consisting of the measurements matrix O as the first channel
and the estimate of the sources Êu as the second channel.
Observation Agent B: Again, this agent is trained based

on the same reward as the Concentration Agent, but with a
modified observation. This time the observation is encoded
into a two-channel image, consisting of the measurements
matrix O as the first channel and the estimate of the concen-
tration Êf as the second channel.
Greedy Agent: The Greedy Agent is not a trained agent,

but an implementation of the approach presented in [18].
We use this agent as a benchmark in order to compare to our
trained agents.

Ground-Truth (GT) Agent: Furthermore, we compare
the aforementioned methods against an idealized best pos-
sible strategy. For this purpose we trained a RL agent by
providing the ground-truth concentration Ef as observation
for the agent. This agent receives a reward of 1 only when
a correct source from the ground-truth Eu is sampled and a
negative rewardwhen the agent leaves the grid. Consequently,
the agent will know at each time step the exact position of all
sources and will move directly towards them. This method
represents an idealized behavior as in practice no algorithm
will know the true source distribution beforehand.

Random Agent: In contrast to the GT Agent with the best
possible score potentially achievable, we use the Random
Agent as a benchmark for a bad performance. The Random
Agent is not a trained agent. It chooses randomly, if possible,
an unvisited cell from the current four neighbouring cells as
a new measurement.

It is important to remark that the Uncertainty Agent,
the Model-free Agent and the greedy approach do not need
ground-truth information for each cell to be trained and only
assume the agent can sample the gas concentration at the
current cell. This potentially allows us to train agents in real
world scenarios, where the ground-truth gas concentration
for each cell is not available. In next section, we analyze the
performance of each of the proposed agents.

V. EVALUATION
For evaluating the algorithm in the context of gas source
localization, an error will be computed at each time step
t by evaluating a discrepancy measurement between the
ground-truth source distribution and the estimate of the
source distribution: esource[t] = |Êu[t] − Eu|EMD. Further,

we evaluated the algorithm on improving the estimated gas
concentration Êf [t] relative to the ground-truth Ef : econt =

|Êf [t] − Ef |L2 . An episode is defined as the total number of
time steps until either the robot leaves the grid, manages
to sample all available locations or the maximum number
of time steps Tmax is reached. To compute the total episode
score, all error values esource[t] or econ[t] from the individual
time steps are summed up. If the agent reaches a terminal
state t ′ before Tmax e.g. leaving the grid, the last error e[t]
is extrapolated until Tmax . This will homogenize the error
across episodes with different total time steps. The final sum
of errors will be divided by the first error esource[0] and econ[0]
respectively to account for the environment variability in each
episode:

Esource =
(
∑t ′

i=0 e
source[i])+ esource[t ′] · (Tmax − t ′)

esource[0]
, (17)

Econ =
(
∑t ′

i=0 e
con[i])+ econ[t ′] · (Tmax − t ′)

econ[0]
. (18)

The task of localizing gas source translates thus to reducing
this episode score Esource by encouraging the agent to sample
at locations which highly improve the model estimate Êu.
Furthermore, the performance of the agent on reducing Econ

will also be presented in this section.

A. SIMULATIONS SETUP
The same environment simulation setup is used for both
training and evaluating the performance of the RL algo-
rithm. Here we restrict ourselves to a simplified setup as a
toy example, where we can fully control all environmental
parameters. Further, the setup allows us to carry out a statis-
tically sufficient number of experiments for evaluation and
the training is fast enough to examine different agents trained
by different rewards and observations. The environment grid
� ⊂ {0, 13} × {0, 13} is composed by 14 × 14 cells. The
number of sources ns is sampled randomly from [1, 5] for
each individual episode. Each source position is also chosen
uniformly from �′ ⊂ {2, 11} × {2, 11}, thus excluding
all four borders of � with a thickness of two cells. The
source strength is sampled uniformly as well from [0.1, 1]
for each individual source. At the start of each episode the
wind speed components in x and y direction are sampled
randomly from a uniform distribution between −1 and +1.
So, the wind condition shows a high variety in the training
set with respect to the wind speed and direction. The agent
starts in a random initial position from the grid � in each
episode.

The following parameters for the A3C algorithm [34] were
used for all experiments presented below: learning rate α =
0.0001, discount factor γ = 0.95, entropy loss coefficient
β = 0.01, value loss coefficient µ = 0.5, generalized
advantage estimation (GAE) τ = 1. The number of forward
steps in A3Cwas fixed to 20 and the maximum gradient norm
was capped at 50 (see details in [34]).
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FIGURE 2. This figure depicts the performance of different agents. In Figure 2a the EMD score is shown, whereas Figure 2b shows the error in the
estimated concentration. The other two plots show the mean of the sources error Esource in Figure 2c and the mean of the concentration error Econ

in Figure 2d received by each agent at individual time steps. The mean is calculated based on 1000 runs.

TABLE 1. Results for the introduced agents benchmarked against the
state of the art ‘‘greedy’’ algorithm.

B. ANALYSIS OF REWARDS
This subsection analyses the impact of the reward function
on the overall score Esource by comparing the performances
of the agents introduced in Section IV-C.

The performance results for all these agents are shown
in Table 1. The agents are ordered increasingly by their
sources score Esource, as this represents the performance
on the gas source localization task. The third column also
shows the concentration score Econ. For a better visual
comparison the same results are shown in Figures 2a
and 2b. All results were averaged over 1000 episodes,
each producing random source distributions as explained in
Subsection V-A.

As expected, the ground-truth agent (GT) having access to
all source positions at any time significantly reduces the error

FIGURE 3. This figure depicts the performance of the Concentration
Agent and the Greedy Agent on a grid with 20 × 20 cells.

compared to other methods. Nevertheless, this is an idealized
behavior impossible to attain in practice and acts as a lower
bound for the error. The performances of the agents are upper
bounded by a Random Agent (see Table 1), which chooses,
if possible, a random unvisited cell from its four available
neighbours. The Concentration Agent outperforms all other
algorithms on both evaluation scores, producing a significant
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FIGURE 4. The plots show the gas source localization score Esource in Figure 4a and the the gas concentration estimation Econ in Figure 4b. For both
we compare the agents with observation enhancement (Agent A and Agent B) to the best agent without observation enhancement (i.e.
Concentration Agent) and the benchmark greedy agent.

error reduction relative to the greedy gas source localiza-
tion strategy. The Model-free Agent and the Sources Agent
have similar performances compared to the greedy algo-
rithm. The only agent which performs significantly worse
than the others on both evaluation scores is the Uncertainty
Agent. This happens most likely due to the fact that the
problem of reducing the overall uncertainty is somewhat
decoupled from the gas source localization task. It may also
be the case that the uncertainty reward from Equation (15)
is less informative for the agent than other rewards presented
here.

The Concentration Agent outperforms the Sources Agent
on the gas source localization task, even though the Sources
Agent was trained specifically for localizing the sources.
In this sense the reward in Equation (13) uses the same EMD
distance as the gas source localization score introduced in
Equation (17). The reward for the Concentration Agent on
the other hand does not use the source estimate at all. In this
respect this behavior is peculiar and counter-intuitive. One
possible explanation for this is a delay in the sources reward
from Equation (13). As explained in Subsection III-A induc-
ing sparsity in the estimated source distribution Êu is achieved
by imposing a prior to the model. In practice this prior is
updated only once every 5 time steps to reduce computation
costs and to ensure that the final result is not too sparse. This
delay may cause the reward to be overall less informative,
as the agent can potentially not infer causality for good or
bad actions.

In the following we present the behavior graph shown
in Figures 2c and 2d. They indicate during which time inter-
vals there is room for improvement for each agent. For the
gas source localization task it can be observed that most of
the improvement happens at the start of the episode, which
correlates with the intuition that the agent should find the
gas sources fast. This is visible especially when comparing
our best method i.e. the Concentration Agent to the greedy
method in Figure 2c.

For the Figure 3 we slightly changed our simulation setup.
Here the agent operates on a environment grid� ⊂ {0, 19}×
{0, 19} that is composed of 20× 20 cells. The Concentration
Agent has been trained on this environment and is compared

FIGURE 5. Convergence graph for the Concentration Agent, Agent A and
Agent B.

to the Greedy Agent again. As expected also for a different
grid resolution the Concentration Agent is better (Concentra-
tion Agent EMD Score: 118.1; Greedy Agent EMD Score:
130.2). Note that the overall error in the EMD score is higher
compared to the previous case, since the EMD is sensitive to
the grid size.

Another important realization is the fact that RL achieves
at least state of the art performance even without making use
of a model; the Model-free Agent marginally outperforms
the greedy method on both evaluation scores. Model-free RL
has significant advantages in practice, as it is more flexible
and does not need specific algorithmic adaptations when the
environment changes slightly as it is the case for model-based
approaches. The Model-free Agent also offers the possibility
to train the algorithm without specific ground-truth concen-
tration estimate, and thus can be trained in a real world
scenario.

C. ANALYSIS OF OBSERVATIONS
In addition to reward-shaping, the effects on the perfor-
mance by modifying the observation of the agent using
domain knowledge are investigated. All previously intro-
duced agents only use the measurements matrix O as
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FIGURE 6. The figure depicts the results of the simulation in Gazebo, where the robot is following the trained policy. In (d) a screenshot of the
simulator and the robot is shown. The ground-truth source distribution is shown in (a) and the estimated source distribution as well as the robots
trajectory in (c) (after 800 seconds). The performance measured by the EMD between the estimate and ground-truth is plotted in (b). The experiment
is also visualized in the multimedia attachment.

described by Equation (8). In addition to this information
we also want to provide the estimates Êf , Êu, Eh to the robot
as described in Subsection IV-B. We call this observation
enhancement. The Uncertainty Agent performed worse than
the greedy agent and had overall the worst performance.
Therefore, experiments providing the uncertainty Eh as an
observationwill be skipped.Moreover, theUncertaintyAgent
is also not investigated further for observation enhancement.
The Sources Agent performed worse than the Concentra-
tion Agent on the gas source localization metric Esource.
This is hypothesized to happen due to the prior update
happening only once every 5 time steps as discussed in
Subsection V-B. Thus, modifying the observation for the
Sources Agent was also not further investigated, as early
experiments showed no significant improvement by doing
so. The effects from conducting observation enhancement
were only tested on the Concentration Agent, which currently

has the best performance for gas source localization in this
work.

The observation for the Concentration Agent was encoded
into a two-channel image, consisting of the measurements
matrix O as the first channel and one of the two estimates:
Êf , Êu as the second channel. The Concentration Agent with
the estimate of the sources Êu as the second channel is named
Agent A and the Concentration Agent with the estimate of
the concentration Êf is named Agent B. Their performances
relative to the other previously introduced agents are shown
in Figures 4a and 4b.

Both agents with observation enhancement behaved
overall slightly better than the Concentration Agent with-
out observation enhancement on both metrics. This shows
that providing the agent with additional domain knowledge
through the observation can result in an improved perfor-
mance. Additionally, Figure 5 depicts the convergence graphs

VOLUME 9, 2021 13169



T. Wiedemann et al.: Robotic IG With RL Assisted by Domain Knowledge: An Application to GSL

for the concentration based agents. All of them converged
before 1.500.000 episodes of training, demonstrating a stable
behavior on gas source localization.

D. APPLICATION IN A ROBOTIC SYSTEM
In this section we show how the trained exploration strategy
can be transferred to a robotic platform by means of an
example. In particular, we make use of a non-holonomic
ground-based robot. The robot and its environment are sim-
ulated using the Gazebo Simulator1 and its physics engine.
The robot is based on the Summit XL rover from Robotnik,2

while for the navigation and localization we make use of the
ROS navigation stack3 and the teb path planner [37]. We
consider a 50m × 50m environment with randomly placed
obstacles (trees), that are known to the robot’s path planner
(see Figure 6).We scaled our 14×14 grid of cells to the size of
the environment. We make use of the configuration of Agent
B as described in Section V-C. The trained policy generates
an action, which is basically the grid cell where the robot
should move next. The center of this cell is considered as the
next way-point of the robot and is further sent to the robot’s
path planner module. The path planner takes care of reach-
ing this way-point without colliding with obstacles. The gas
dispersion process is simulated as described in Section V-A.
Based on the simulated gas dispersion, a synthetic mea-
surement is generated for the robot whenever it reaches the
next way-point. In Figure 6 a simulation run is shown as
an example. Figure 6d shows the setup and the robot in
Gazebo and Figure 6a the ground-truth source distribution.
As can be seen for this example, four sources have been
placed at random positions with random source strengths.
Figure 6c depicts the robot’s trajectory and the estimated
source distribution after 800 seconds. The performance is
plotted in Figure 6b by means of the EMD between the
estimated source distribution and the ground-truth. As can
be seen already after 120 seconds the error is nearly zero
indicating a successful identification of the sources. Note
that the purpose of this experiment is not to provide results
on the performance with statistical significance (This has
been shown in the previous sections). Instead, the experiment
shows how the results of our proposed framework can be
applied to a robotic system that is constrained by dynamic
limitations. The experiment is also visualized in the multi-
media attachment.

VI. DISCUSSION AND FUTURE WORK
This article investigated the use of Reinforcement Learn-
ing (RL) to solve a gas source localization task with a mobile
robot. Specifically, it studied the impact of using a model of
the gas dispersion process to assist the RL solution. In order
to incorporate the model into the RL framework, we pro-
posed to design the reward and observation appropriately.

1http://gazebosim.org
2http://wiki.ros.org/Robots/SummitXL
3http://wiki.ros.org/navigation

In a wide variety of simulations, the performance of the
proposed RL solutions were analyzed empirically. We found
that a RL solution performs as least as good as the bench-
mark algorithm. Moreover, including domain knowledge in
the RL solution further improved the performance signifi-
cantly. Agents trained by appropriate rewards and observa-
tions showed a better overall exploration behavior and were
able to estimate the gas sources better. It is noteworthy that in
addition to the improved performance, RL is generally more
flexible than typical state-of-the-art solutions to this problem.
It is also remarkable that RL learning requires training under
a wide variety of different environmental conditions. In our
approach we can train robots efficiently based on simula-
tions of the gas dispersion where we have full control of
the environmental parameter. The simulations are essential,
since otherwise it would be impossible to conduct enough
training runs in real-world experiments under enough differ-
ent environmental conditions. However, for a future transfer
to real-world application, it has to be investigated how the
system reacts to a mismatch between the simulated gas dis-
persion during training and the real-world. In this respect a
more complex simulator might be necessary to reduce the
mismatch, or techniques like Domain Randomization [38],
[39] that rely onmany variations of simple simulations. These
can be used for training more robust agents which can handle
a mismatch. Nevertheless, our framework is flexible enough
to exchange the simulator, if required.

The results of this work show the great potential of model
assisted RL for gas source localization and justifies further
investigation. For example, the experiments conducted here
considered only a static environment without the dynamics
of gas dispersion. In the future, the proposed RL framework
could be extended to a dynamic gas environment. Further-
more, while this work only focused on assisting one particu-
lar standard RL solution with domain knowledge, in future
work a wider variety of RL solutions could be studied.
A possible extension in this context would be to consider
a multi-agent RL setting. In this sense the A3C algorithm
used here provides a nice foundation that can be adapted for
multiple agents acting at the same time. Another interest-
ing and important fact is that the GT agent performed best.
Somehow this is no surprise, since it is the best informed
agent. But it also implies that an accurate estimate close to
the ground-truth could have a significant improvement on
the performance of an agent. In this sense, Deep Learning
approaches could be investigated in the future in order to
produce better estimates of the ground-truth concentration.
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