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ABSTRACT The radiation generated by the current in an active region (ACT-R), specified by propagation
phase constant β, is investigated with special interest in its phase progression (PhasProg). The ACT-R is
modeled by circular and square loops, and classified into two types: a right-handed ACT-R with positive
β and a left-handed ACT-R with negative β. Firstly, a circular ACT-R of a length of n guided wavelengths
is formulated. It is found that, at any depression angle θ , the PhasProg with respect to azimuth angle φ
is downward-sloping for the right-handed ACT-R and upward-sloping for the left-handed ACT-R. These
PhasProgs have a perfectly linear change of 360n degrees (n = 1, 2) with respect to azimuth angle φ.
Secondly, a square ACT-R of a length of n guided wavelengths is formulated. When k0/|β| = 1 with k0
being free-space phase constant, the PhasProg is found to be downward-sloping for the right-handed ACT-R
and upward-sloping for the left-handed ACT-R, with a quasi-linear change of 360n degrees (n = 1, 2) with
respect to azimuth angle φ. Thirdly, the formulated numerical expressions are compared with simulated
results obtained using natural and metaloop antennas, and reasonable agreement between these is observed.
Fourthly, a comment is made on a singular phenomenon of the PhasProg for n = 2, with an example where
k0/β = 2.

INDEX TERMS Active region, radiation field, phase progression, natural loop, metaloop.

I. INTRODUCTION
Flat antennas are classified into two groups in reference to the
current distributed on the antenna conductors: resonant flat
antennas and non-resonant flat antennas, where the former
supports a resonant current (a standing wave current) and
the latter supports a non-resonant current (a traveling wave
current).

A patch antenna is a representative resonant flat antenna
[1], [2]. On the other hand, a spiral antenna [3]–[8] and a curl
antenna [9]–[11] are non-resonant flat antennas.

The region on the antenna conductors that is responsible
for the radiation is called the active region, ACT-R. An
Archimedean round (square) spiral antenna composed of two
arms [3] has a circular (square) ring-shaped ACT-R whose
length on the spiral conductor plane is one guided wavelength
(1λg). This happens when the spiral arms are excited in odd
mode. The current on the 1λg ACT-R generates a radiation
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beam in the direction normal to the antenna arm conductor
plane, called an axial beam.

A round curl antenna [9] and a rectangular curl
antenna [11] have amarginal structure derived from the round
and rectangular Archimedean spiral antenna [3], respectively,
where the number of spiral arms is reduced to one (Narn = 1).
A circular (square) ring-shaped region of length 1λg on
the antenna arm conductor plane, where a traveling wave
current is distributed, operates as the ACT-R for the round
(rectangular) curl antenna to radiate an axial beam.

Round and square loop antennas with perturbation ele-
ments have a traveling wave current and form an axial beam
when the loop length is 1λg [12], [13]. In other words, the
entire loop of length 1λg itself operates as the ACT-R for the
axial beam. Note that original round and square loop antennas
[14], [15], which do not have perturbation elements, have
a resonant current; this current can be changed into a non-
resonant current by adding the perturbation elements.

A common characteristic of the abovementioned spiral,
curl, and loop antennas is the following: an axial beam is
formed by a non-resonant current (a traveling wave current)
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distributed along the ACT-R of length 1λg on the antenna
conductor plane. It is qualitatively (without rigorous calcula-
tions) estimated that both of the radiation field components,
Eθ and Eφ , near the zenith (θ ≈ 0◦) in the spherical coor-
dinate system change their phase by 360◦ after one rotation
around the antenna axis normal to the antenna conductor
plane (z-axis).

Note that the two-arm spiral antenna [3] can have an
ACT-R of length 2λg when the antenna has a peripheral length
of more than 2λg and is excited in even mode. The radiation
from the 2λg ACT-R is qualitatively estimated to be small
near the antenna axis, i.e., the radiation field components, Eθ
and Eφ , near the zenith (θ ≈ 0◦) are small; the maximum
radiation appears off the z-axis, forming a conical beam. Sim-
ilarly, when the curl and loop antennas have a large antenna
conductor to support the 2λg ACT-R, these antennas form a
conical beam.

Recently, a technique for reducing the influence of inter-
ference waves directed toward an antenna radiating an axial
beam has been discussed [16], [17]. The technique is based
on transformation of the radiation pattern of the axial beam
such that the radiation pattern has a null field point in the
direction of the incoming interference waves. The null field
point within the radiation pattern for a square metaspiral
antenna [17] is realized by superimposing the conical beam
produced by a 2λg ACT-R onto the axial beam produced by
a 1λg ACT-R.

As mentioned above, the ACT-R for nλg lengths (n = 1, 2)
plays an important role in the formation of a radiation beam.
Nevertheless, little data based on theoretical/numerical anal-
ysis of the radiation from the nλg ACT-R are currently
available.

Responding to this situation, this paper presents the formu-
lated results for the radiation from the nλg ACT-R (n = 1, 2)
and focusses on the phase progression (PhasProg) of the
radiation field for two cases: one is the PhasProg for a right-
handed ACT-R, in which a traveling-wave current flows with
a positive propagation phase constant (β > 0) and the other is
the PhasProg for a left-handed ACT-R, in which a traveling-
wave current flows with a negative propagation phase con-
stant (β < 0).

This paper is composed of eight sections. Section II for-
mulates the radiation field from a circular ACT-R of length
nλg and clarifies the behavior of the PhasProg of the radia-
tion field. Section III formulates the radiation from a square
ACT-R of length nλg. Based on these formulated results,
Section IV discusses the phase of radiation field component
Eθ for n = 1 with β > 0 and β < 0, followed by a
discussion of the phase for the Eφ radiation field component.
The discussion continues in Section V, where the follow-
ing phases are clarified: Eθ for n = 2 with β > 0 and
β < 0 and Eφ for n = 2 with β > 0 and β < 0.
Section VI is devoted to a comparison of the formulated
results with the simulated results obtained using commer-
cially available solver CST [18]. Section VII makes a com-
ment on a singular behavior in the PhasProg for n = 2 and

FIGURE 1. Circular active region (ACT-R) modeled by a circular loop.
(a) Perspective view. (b) Top view.

k0/|β| = 2, with k0 (=2π/λ0) being the free-space phase
constant. Finally, the results obtained in this research are
summarized in Section VIII.

It is worthwhile emphasizing the following points as new
findings. The PhasProg of the radiation from a circular nλg
ACT-R (n = 1, 2) has a perfectly linear change of 360n
degrees at any depression angle θ , after one rotation around
the axis of the ACT-R (z-axis). Note that the PhasProg is
regressive for β > 0 and progressive for β < 0. On the other
hand, the PhasProg of the radiation from a square nλg ACT-R
(n = 1, 2) has a quasi-linear change. In addition, the square
ACT-R has a singular behavior when n = 2. As an example,
it is revealed that a change from a progressive (regressive)
PhasProg into a regressive (progressive) PhasProg under
k0/|β| = 2 (and hence, |β|/k0 = 0.5) occurs when θ exceeds
singular angle θS. Such behavior is not found in the radiation
from the circular 2λg ACT-R, and has not been revealed in
any open literature, to the authors’ best knowledge.

II. CIRCULAR ACTIVE REGION
Fig. 1 shows a circular active region (ACT-R) modeled by
a circular loop. We assume that a traveling current, I (s′),
flows around the coordinate origin without decay, having
amplitude I0;

I (s′) = I0e−jβs
′

(1)

where s′ is the distance measured along the loop from point F
to source point Q; β (≡ ± 2π/λg, with λg being the guided
wavelength) is the propagation phase constant of the current.
The ACT-R has a length of 2πa = nλg, where a is the radius
of ACT-R. Note that β takes positive and negative values and
n takes 1 and 2.
We specify a far-field point in space using spherical coor-

dinates (r , θ , φ). The radiation field from the loop, E(r , θ , φ),
is expressed as

E (r, θ, φ) = −
jωµ
4π
·
e−jk0r

r

∫ nλg

0
I
(
s′
)
ŝ′ejk0 r̂ ·r

′

ds′, (2)

where ω = 2π f , with f being the operating frequency; µ
is the permeability; k0 = 2π /λ0 is the wave number in free
space; r is the distance from the coordinate origin to the
far field point; ŝ′ is the unit vector tangential to the ACT-R
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at source point Q; r̂ is the unit vector directed toward the
far-field point; r′ is the position vector from the coordinate
origin to current source point Q. Note that the unit vectors
for spherical coordinates (r , θ , φ) are respectively denoted as
(r̂ , θ̂ , φ̂) throughout this paper.
Distance s′, tangential unit vector ŝ′, r-directed unit vector

r̂ , and source position vector r′ are

s′ = aφ′ (3)

ŝ′ = − sinφ′x̂ + cosφ′ŷ (4)

r̂ = sin θ (cosφx̂ + sinφŷ)+ cosθ ẑ (5)

r′ = a(cosφ′x̂ + sinφ′ŷ) (6)

where φ′ is the azimuth angle for current source point Q; and
x̂, ŷ, and ẑ are the unit vectors for rectangular coordinates x,
y and z, respectively.

Equation (2) is written using Eqs. (1) and (3) - (6) as

E (r, θ, φ)

= Ca
∫ 2nπ

0
e−jβaφ

′

· ejk0a sin θ cos(φ−φ
′)[−sinφ′x̂+ cosφ′ŷ]dφ′,

(7)

where C is defined as

C ≡
−jωµ
4πr

I0e−jk0r . (8)

We introduce a new variable of ψ ′ with a relationship of
φ′ = φ − ψ ′. Then, Eq. (7) is

E (r, θ, φ) = −Cae−jβaφ
∫ φ−2nπ

φ

ejβaψ
′

ejk0a sin θ cosψ
′

× [− sin
(
φ−ψ ′

)
x̂ + cos

(
φ−ψ ′)ŷ

]
dψ ′. (9)

The radiation field of Eq. (9) is decomposed into two compo-
nents: θ -directed component Eθ and φ-directed component
Eφ . Eθ is written as

Eθ = −Cae−jBaφ cos θ
∫ φ−2nπ

φ

hsin
(
ψ ′
)
dψ ′, (10)

where Ba ≡ βa = +n for β > 0 and −n for β < 0, and
hsin(ψ ′) is defined as

hsin
(
ψ ′
)
≡ ejBaψ

′

· ejk0a sin θcosψ ′ sinψ ′. (11)

Note that the following relationship is held for hsin(ψ ′)

hsin
(
ψ ′
)
= hsin

(
ψ ′ ± 2nπ

)
. (12)

Then, Eq. (10) is written as

Eθ = −Cae−jBaφ cos θ
∫
−2nπ

0
hsin

(
ψ ′
)
dψ ′

for n = 1 and 2, (13)

which is denoted as E rh,n
θ for the right-handed ACT-R

with β > 0 and E lh,n
θ for the left-handed ACT-R with β < 0.

FIGURE 2. Standardized phase for a circular ACT-R of length nλg.
(a) 6 E rh,n

θ
and 6 E rh,n

φ
for β > 0. (b) 6 E lh,n

θ
and 6 E lh,n

φ
for β < 0.

Similarly, φ-directed component Eφ is

Eφ = −Cae−jBaφ
∫
−2nπ

0
hcos

(
ψ ′
)
dψ ′

for n = 1 and 2, (14)

where

hcos
(
ψ ′
)
≡ ejBaψ

′

· ejk0a sin θcosψ ′ cosψ ′, (15)

and Eφ is denoted as E rh,n
φ for the right-handed ACT-R with

β > 0 and E lh,n
φ for the left-handed ACT-R with β < 0.

It should be emphasized that the results of the integration
term in Eqs. (13) and (14) do not include coordinate φ,
i.e., they are independent of azimuth angle φ. This means
that the phase for radiation field components Eθ and Eφ at
any azimuth angle φ is specified by e−jBaφ ; it follows that
the phase is delayed (regressive) for β > 0 and advanced
(progressive) for β < 0 with an increase in azimuth angle
φ. Fig. 2 shows perfectly linear PhasProgs of 360◦ for the
ACT-R of length 1λg and 720◦ for the ACT-R of length 2λg.
Note that the phase at φ is standardized using the phase at
φ = 0◦ throughout this paper: Standardized phase ≡ Phase
(φ)− Phase (0◦).

III. SQUARE ACTIVE REGION
As the counterpart of a circular ACT-R, Fig. 3 shows a square
ACT-R. We assume that the same current defined by Eq. (1)
flows on the square ACT-R, and denote the current at the
starting point for the mth (=1, 2, 3, 4) side of the ACT-R as

I0e−jβ(2l)(m−1) ≡ I0cm(m = 1, 2, 3, 4), (16)
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FIGURE 3. Square active region (ACT-R) modeled by a square loop.
(a) Perspective view. (b) Top view.

where 2l is the side length of the ACT-R, and 8l ≡ nλg
(n = 1, 2) is the total length of the ACT-R.

The radiation field generated by the current of Eq. (16) is

E (r, θ, φ) = C

2l∫
0

c1ŷe−jβs
′

· ejk0r
′

1·r̂ds′

+C

2l∫
0

c2(−x̂)e−jβs
′

· ejk0r
′

2·r̂ds′

+C

2l∫
0

c3(−ŷ)e−jβs
′

· ejk0r
′

3·r̂ds′

+C

2l∫
0

c4x̂e−jβs
′

· ejk0r
′

4·r̂ds′, (17)

where r′m (m = 1, 2, 3, 4) denotes the position vector for a
current source point located on the mth side of the ACT-R.
The inner products of (r′m · r̂) are

r′1 · r̂ = sin θ
{
lcosφ +

(
s′ − l

)
sinφ

}
(18)

r′2 · r̂ = sin θ
{(
l − s′

)
cosφ + lsinφ

}
(19)

r′3 · r̂ = sin θ
{
−lcosφ − (s′ − l)sinφ

}
(20)

r′4 · r̂ = sin θ
{
−
(
l − s′

)
cosφ − lsinφ

}
. (21)

Equation (17) is transformed into

E (r, θ, φ)

= ŷCc1
e−jβ2l · ejP − ejM

−jβ
(
1− k̄ sinφ

) − x̂Cc2 e−jβ2l · e−jM − ejP
−jβ

(
1+ k̄ cosφ

)
− ŷCc3

e−jβ2l · e−jP − e−jM

−jβ
(
1+ k̄ sinφ

) +x̂Cc4 e−jβ2l · ejM − e−jP
−jβ

(
1− k̄ cosφ

) ,
(22)

where

k̄ ≡
k0
β

sin θ (0 ≤ θ ≤ π) (23)

P = k0 l sin θ (cosφ + sinφ) (24)

M = k0 l sin θ (cosφ − sinφ) (25)

Note that, when β is positive, k̄ in Eq. (23) is positive and
denoted as k̃; when β is negative, k̄ is negative and denoted
as −k̃ .

IV. SQUARE ACTIVE REGION OF ONE GUIDED
WAVELENGTH
A. PHASE OF ERH,1

θ
WHERE β > 0 AND n = 1

We derive an equation for the θ -component of the radiation
field from an ACT-R of side length 2l = 1λg/4 and positive
β, i.e., a right-handed square ACT-R of length 1λg. This
radiation field component is denoted as ERH,1

θ . The values
for cm in Eq. (16) are

(c1, c2, c3, c4) = (1,−j,−1,+j) . (26)

Using x̂ · θ̂ = cos θ cosφ and ŷ · θ̂ = cos θ sinφ, we have
ERH,1
θ from Eq. (22)

−jβ
C cos θ

ERH,1
θ = sinφ

(−j) · ejP − ejM

1− k̃ sinφ

+ j cosφ
(−j) · e−jM − ejP

1+ k̃ cosφ

+ sinφ
(−j) ·e−jP − e−jM

1+ k̃ sinφ

+ j cosφ
(−j) ·ejM − e−jP

1− k̃ cosφ
. (27)

Equation (27) is transformed into

−jβ
C cos θ

ERH,1
θ = 1

RH,1
θ,A sinP+6RH,1

θ,B cosM

+ j[−6RH,1
θ,A cosP+1RH,1

θ,B sinM ] ,(28)

where

6
RH,1
θ,A =

2 (cosφ + sinφ) (1− k̃2 cosφ sinφ)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)
≡ 6

RH,1
θ,A

(
k̃(θ ), φ

)
(29)

1
RH,1
θ,A =

−2k̃(cos2 φ − sin2 φ)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)
≡ 1

RH,1
θ,A

(
k̃ (θ) , φ

)
(30)

6
RH,1
θ,B =

2 (cosφ − sinφ) (1+ k̃2 cosφ sinφ)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)
= 6

RH,1
θ,A

(
k̃(θ ), φ +

π

2

)
(31)

1
RH,1
θ,B =

2k̃(cos2 φ − sin2 φ)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)
= 1

RH,1
θ,A

(
k̃(θ ), φ +

π

2

)
(32)

The phase of Eq. (28) is

6

(
−jβ

C cos θ
ERH,1
θ

)
= tan−1

IRH,1θ

RRH,1θ

, (33)
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where

RRH,1θ = 2{−k̃
(
cos2 φ − sin2 φ

)
sinP

+ (cosφ − sinφ) (1+ k̃2 cosφ sinφ)

× cosM} /
{(

1− k̃2 sin2 φ
)

×

(
1− k̃2 cos2 φ

)}
≡ RRH,1θ

(
k̃(θ ), φ

)
(34)

IRH,1θ = 2{k̃
(
cos2 φ − sin2 φ

)
sinM

− (cosφ + sinφ) (1− k̃2 cosφ sinφ)

× cosP}/
{(

1− k̃2 sin2 φ
)

×

(
1− k̃2 cos2 φ

)}
≡ IRH,1θ

(
k̃(θ ), φ

)
= RRH,1θ

(
k̃(θ ), φ +

π

2

)
(35)

Fig. 4 shows the characteristics of ERH,1
θ as a function of

azimuth angle φ with depression angle θ as a parameter,
where k0/β is set to 1 (i.e., nλg = nλ0 with n = 1). It is
found that the standardized phase is regressive and changes
by 360◦ around the z-axis in an almost linear fashion.

B. PHASE OF ELH,1
θ

WHERE β < 0 AND n = 1
Next, we derive an equation for the θ-component, Eθ , from a
left-handed square ACT-R of length 1λg. This Eθ is denoted
as ELH,1

θ . The values for cm in Eq. (16) are set to

(c1, c2, c3, c4) = (1,+j,−1,−j) . (36)

Using a process similar to that used in subsection A leads to
a relationship of

j|β|
C cos θ

ELH,1
θ = −1

LH,1
θ,A sinP+6LH,1

θ,B cosM

+ j[6LH,1
θ,A cosP+1LH,1

θ,B sinM ], (37)

where

6
LH,1
θ,A = 6

RH,1
θ,A (38)

1
LH,1
θ,A = −1

RH,1
θ,A (39)

6
LH,1
θ,B = 6

RH,1
θ,B (40)

1
LH,1
θ,B = −1

RH,1
θ,B (41)

Using Eq. (38) through Eq. (41), Eq. (37) is written as

j|β|
C cos θ

ELH,1
θ = 1

RH,1
θ,A sinP+6RH,1

θ,B cosM

+ j[6RH,1
θ,A cosP−1RH,1

θ,B sinM ]. (42)

Note that the sign for the j-part in Eq. (42) is opposite to that
in Eq. (28). Hence, the phase for j|β|

C cos θ E
LH,1
θ is written as

6

(
j|β|

C cos θ
ELH,1
θ

)
= tan−1

−IRH,1θ

RRH,1θ

= − 6

(
−jβ

C cos θ
ERH,1
θ

)
. (43)

FIGURE 4. ERH,1
θ

from a right-handed square ACT-R of length 1λg.
(a) RRH,1

θ
cos θ . (b) IRH,1

θ
cos θ. (c) Standardized phase.

This means that the phase for ELH,1
θ has an inverse character-

istic to that for ERH,1
θ , i.e., it is progressive (upward-sloping),

as shown in Fig. 5.

C. PHASE OF ERH,1
φ

WHERE β > 0 AND n = 1
Sections A and B have clarified the phases of the θ-radiation
field component for β > 0 and β < 0, where the length of
the square ACT-R is set to be one guided wavelength (nλg
with n = 1). This subsection focuses on the φ-radiation field
component for β > 0 and n = 1, which is denoted as ERH,1

φ ,
and clarifies its phase.
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FIGURE 5. Standardized phase for the θ-component, ELH,1
θ

, of the
radiation field from a left-handed square ACT-R of length 1λg. The
deviation from the perfectly linear PhasProg is less than 1◦.

Using Eq. (22), we have

−jβ
C

ERH,1
φ = cosφ

(−j) · ejP − ejM

1− k̃ sinφ

− j sinφ
(−j) · e−jM − ejP

1+ k̃ cosφ

+ cosφ
(−j) ·e−jP − e−jM

1+ k̃ sinφ

− j sinφ
(−j) ·ejM − e−jP

1− k̃ cosφ
. (44)

where x̂ · φ̂ = − sinφ and ŷ · φ̂ = cosφ are used.
Eq. (44) is reduced to

−jβ
C

ERH,1
φ = −1

RH,1
φ,A sinP+6RH,1

φ,B cosM

+ j[6RH,1
φ,A cosP+1RH,1

φ,B sinM ], (45)

where

6
RH,1
φ,A =

−2(cosφ − sinφ)(1− k̃2 cosφ sinφ − k̃2)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)
≡ 6

RH,1
φ,A

(
k̃ (θ) , φ

)
(46)

1
RH,1
φ,A =

2k̃
(
−2+ k̃2

)
cosφ sinφ(

1− k̃2 sin2 φ
) (

1− k̃2 cos2 φ
)

≡ 1
RH,1
φ,A

(
k̃ (θ) , φ

)
(47)

6
RH,1
φ,B =

2 (cosφ + sinφ)
(
−1− k̃2 cosφ sinφ+k̃2

)
(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)
= −6

RH,1
φ,A

(
k̃ (θ) , φ +

π

2

)
(48)

1
RH,1
φ,B =

2k̃
(
−2+ k̃2

)
cosφ sinφ(

1− k̃2 sin2 φ
) (

1− k̃2 cos2 φ
)

= −1
RH,1
φ,A

(
k̃ (θ) , φ +

π

2

)
(49)

The phase of Eq. (45) is

6

(
−jβ
C

ERH,1
φ

)
= tan−1

IRH,1φ

RRH,1φ

, (50)

where

RRH,1φ = 2{−k̃(−2+ k̃2) cosφ sinφ sinP

+ (cosφ + sinφ)(−1−k̃2 cosφ sinφ+k̃2) cosM}/{(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)}
≡ RRH,1φ

(
k̃ (θ) , φ

)
(51)

IRH,1φ = 2{k̃(−2+ k̃2) cosφ sinφ sinM

− (cosφ − sinφ)(1− k̃2 cosφ sinφ − k̃2) cosP}/{(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)}
= RRH,1φ

(
k̃ (θ) , φ +

π

2

)
(52)

The RRH,1φ , IRH,1φ , and standardized phase for ERH,1
φ for

k0/β = 1 (i.e., nλg = nλ0 with n = 1) are shown in Fig. 6. It
is found that the standardized phase changes by 360◦ around
the z-axis in an almost linear fashion.

D. PHASE FOR ELH,1
φ

WHERE β < 0 AND n = 1

The phase of the φ-component, ERH,1
φ , has been clarified in

subsection C , where β is positive. This subsection inves-
tigates Eφ for negative β, denoted as ELH,1

φ . After some
manipulations, we obtain

j|β|
C

ELH,1
φ = −1

LH,1
φ,A sinP+6LH,1

φ,B cosM

+ j[6LH,1
φ,A cosP+1LH,1

φ,B sinM ], (53)

where

6
LH,1
φ,A = −6

RH,1
φ,A (54)

1
LH,1
φ,A = 1

RH,1
φ,A (55)

6
LH,1
φ,B = 6

RH,1
φ,B (56)

1
LH,1
φ,B = −1

RH,1
φ,B (57)

Therefore, Eq. (53) is written as

j|β|
C

ELH,1
φ = −1

RH,1
φ,A sinP+6RH,1

φ,B cosM

− j[6RH,1
φ,A cosP+1RH,1

φ,B sinM ], (58)

Comparing Eq. (58) with Eq. (45), we have the following
relationship for the phase.

6

(
j|β|
C

ELH,1
φ

)
= −6

(
−jβ
C

ERH,1
φ

)
(59)

It follows that the PhasProgs for ELH,1
φ and ERH,1

φ are the

same except for their gradient: upward-sloping for ELH,1
φ , as

shown in Fig. 7, and downward-sloping for ERH,1
φ , as shown

in Fig. 6(c).
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FIGURE 6. ERH,1
φ

from a right-handed square ACT-R of length 1λg.

(a) RRH,1
φ

. (b) IRH,1
φ

. (c) Standardized phase.

V. SQUARE ACTIVE REGION OF TWO GUIDED
WAVELENGTHS
A. PHASE FOR ERH,2

θ
WHERE β > 0 AND n = 2

In this subsection, the radiation field from a square ACT-R
whose length is two guided wavelengths (8l = nλg, with
n = 2) is formulated to reveal the phase around the z-axis,
where the propagation phase constant is set to be positive:
β > 0. The values of cm (m= 1, 2, 3, 4) in Eq. (16) are set to

(c1, c2, c3, c4) = (1,−1, 1,−1) . (60)

FIGURE 7. Standardized phase for ELH,1
φ

from a left-handed square ACT-R
of length 1λg.

The θ -component of the radiation field for n = 2, denoted as
ERH,2
θ , is obtained from Eq. (22).

−jβ
C cos θ

ERH,2
θ = 6

RH,2
θ,A cosP+6RH,2

θ,B cosM

+ j[1RH,2
θ,A sinP+1RH,2

θ,B sinM ], (61)

where

6
RH,2
θ,A =

2k̃
(
cos2 φ − sin2 φ

)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

) (62)

1
RH,2
θ,A =

−2 (cosφ + sinφ) (1− k̃2 cosφ sinφ)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

) (63)

6
RH,2
θ,B =

2k̃
(
cos2 φ − sin2 φ

)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

) (64)

1
RH,2
θ,B =

2 (cosφ − sinφ) (1+ k̃2 cosφ sinφ)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

) (65)

Therefore, the following phase relationship is obtained.

6

(
−jβ

C cos θ
ERH,2
θ

)
= tan−1

IRH,2θ

RRH,2θ

(66)

where

RRH,2θ = 2k̃
(
cos2 φ − sin2 φ

)
(cosP+ cosM )

/
{(

1− k̃2 sin2 φ
) (

1− k̃2 cos2 φ
)}

(67)

IRH,2θ = −2{(cosφ + sinφ) (1− k̃2 cosφ sinφ) sinP

− (cosφ − sinφ) (1+ k̃2 cosφ sinφ) sinM}

/
{(

1− k̃2 sin2 φ
) (

1− k̃2 cos2 φ
)}

(68)

Fig. 8 shows the characteristics of ERH,2
θ , where k0/β = 1

(and hence, loop length 2λg = 2λ0) is chosen as an example.
It is found that both real part RRH,2θ and imaginary part IRH,2θ

have two maximum values and two minimum values around
the z-axis. This brings a phase change of 720◦ around the
z-axis, as shown in Fig. 8(c), i.e., the change in the phase is
double of that for a square ACT-R of length 1λg. It is found

14716 VOLUME 9, 2021



H. Nakano et al.: Phase Progression of a Radiation Field From Circular and Square Active Regions

FIGURE 8. ERH,2
θ

from a right-handed square ACT-R of length 2λg.
(a) RRH,2

θ
cos θ . (b) IRH,2

θ
cos θ . (c) Standardized phase.

that the PhasProg does not have a perfectly linear change with
increase in azimuth angle φ.

B. PHASE OF ELH,2
θ

WHERE β < 0 AND n = 2
We denote radiation field component Eθ for n = 2 and
negative β as ELH,2

θ , which is formulated by starting from
Eq. (22), where cm (m = 1, 2, 3, 4) is

(c1, c2, c3, c4) = (1,−1, 1,−1) . (69)

FIGURE 9. Standardized phase for ELH,2
θ

from a left-handed square ACT-R
of length 2λg.

Eq. (69) is the same as Eq. (60). Eq. (22) is transformed into

j|β|
C cos θ

ELH,2
θ = 6

LH,2
θ,A cosP+6LH,2

θ,B cosM

+ j[1LH,2
θ,A sinP+1LH,2

θ,B sinM ], (70)

where

6
LH,2
θ,A = 6

RH,2
θ,A (71)

6
LH,2
θ,B = 6

RH,2
θ,B (72)

1
LH,2
θ,A = −1

RH,2
θ,A (73)

1
LH,2
θ,B = −1

RH,2
θ,B (74)

As a result, the phase relationship is

6

(
j|β|

C cos θ
ELH,2
θ

)
= tan−1

−IRH,2θ

RRH,2θ

= − 6

(
−jβ

C cos θ
ERH,2
θ

)
(75)

This means that the standardized phase for ELH,2
θ is obtained

by changing the downward-sloping curve for ERH,2
θ in

Fig. 8(c) into an upward-sloping curve, as shown in Fig. 9.

C. PHASE FOR ERH,2
φ

WHERE β > 0 AND n = 2
We derive φ-component Eφ from a square ACT-R of length
2λg and positive β, denoted as E

RH,2
φ , using the same process

as that used in subsection A.
−jβ
C

ERH,2
φ = 6

RH,2
φ,A cosP+6RH,2

φ,B cosM

+ j[1RH,2
φ,A sinP+1RH,2

φ,B sinM ], (76)

where

6
RH,2
φ,A =

−2k̃
(
2− k̃2

)
cosφ sinφ

(1− k̃2 sin2 φ)(1− k̃2cos2φ)
(77)

1
RH,2
φ,A =

−2(cosφ − sinφ)(1− k̃2 cosφ sinφ − k̃2)

(1− k̃2 sin2 φ)(1− k̃2 cos2 φ)

≡ 1
RH,2
φ,A

(
k̃ (θ) , φ

)
(78)
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6
RH,2
φ,B = 6

RH,2
φ,A (79)

1
RH,2
φ,B =

−2(cosφ + sinφ)(1+ k̃2 cosφ sinφ − k̃2)(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)
= −1

RH,2
φ,A

(
k̃ (θ) , φ +

π

2

)
(80)

Therefore, the phase relationship is

6

(
−jβ
C

ERH,2
φ

)
= tan−1

IRH,2φ

RRH,2φ

, (81)

where

RRH,2φ = −2k̃
(
2− k̃2

)
cosφ sinφ(cosP+ cosM )/{(

1− k̃2 sin2 φ
) (

1− k̃2 cos2 φ
)}

(82)

IRH,2φ = −2{(1− k̃2 cosφ sinφ − k̃2)(cosφ − sinφ) sinP

+ (1+ k̃2 cosφ sinφ − k̃2)(cosφ + sinφ) sinM}/{(
1− k̃2 sin2 φ

) (
1− k̃2 cos2 φ

)}
(83)

Fig. 10 shows radiation field component ERH,2
φ and its stan-

dardized phase for k0/β = 1. It is found that there is a non-
linear phase change of 720◦ with an azimuth angle change
of 360◦.

D. PHASE FOR ELH,2
φ

WHERE β < 0 AND n = 2
The φ-component of the radiation field from a square ACT-R
of length 2λg and negative β, E

LH,2
φ , is derived from Eq. (22).

j|β|
C

ELH,2
φ = −1

LH,2
φ,B cosP−1LH,2

φ,A cosM

+ j[−6LH,2
φ,B sinP−6LH,2

φ,A sinM ], (84)

where

6
LH,2
φ,A = −1

RH,2
φ,B (85)

1
LH,2
φ,A = 6

RH,2
φ,B (86)

6
LH,2
φ,B = −1

RH,2
φ,A (87)

1
LH,2
φ,B = 6

RH,2
φ,A (88)

Therefore, Eq. (84) is written as

j|β|
C

ELH,2
φ = −6

RH,2
φ,A cosP−6RH,2

φ,B cosM

+ j[1RH,2
φ,A sinP+1RH,2

φ,B sinM ], (89)

The phase relationship is

6

(
j|β|
C

ELH,2
φ

)
= tan−1

IRH,2φ

−RRH,2φ

= − 6

(
−jβ
C

ERH,2
φ

)
(90)

The gradient of the PhasProg for ELH,2
φ is the inverse of

that for ERH,2
φ . Fig. 11 shows standardized phase ELH,2

φ for
FIGURE 10. ERH,2

φ
from a right-handed square ACT-R of length 2λg.

(a) RRH,2
φ

. (b) IRH,2
φ

. (c) Standardized phase. (d) Partial expansion for (c).
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FIGURE 11. Standardized phase of ELH,2
φ

from a left-handed square
ACT-R of length 2λg.

FIGURE 12. Round natural loop antenna (model of a right-handed
circular ACT-R). (a) Perspective view. (b) Top view. (c) Side view.

k0/|β| = 1, which non-linearly changes by 720◦ around the
z-axis with an upward-sloping PhasProg.

Note that, as an example, the PhasProg in
Sections IV and V is presented for k0/|β| = 1 (and hence loop
length nλg = nλ0), which reveals a regressive PhasProg for
β > 0 and a progressive PhasProg for β < 0. This trend also
holds for k0/|β| = 2 (and hence loop length nλg = 2nλ0).
Later, in Section VII, a singular behavior in the PhasProg
will be discussed.

VI. COMPARISON
The numerical/formulated results obtained in Section II
through Section V are compared with simulated results
obtained using CST [18].

A. PHASE OF THE RADIATION FIELD FROM A CIRCULAR
ACT-R
For comparison with Eq. (13) and Eq. (14), i.e., Fig. 2, a
round conducting wire loop (natural loop with β > 0),
shown in Fig. 12, is used to approximate a circular ACT-R

FIGURE 13. Simulated standardized phase of the radiation field from the
round natural loop antenna (model of a right-handed circular ACT-R). The
simulation is performed at f = 2.0 GHz, where k0/β = 1 (and hence loop
length nλg = nλ0) is approximately realized. (a) 6 E rh,n

θ
, where n = 1 and

2 (b) 6 E rh,n
φ

, where n = 1 and 2.

of length nλg. The loop is excited at point F , at a height of
1h = 5.0 mm from a small conducting disc, and terminated
with a resistive load of RB = 200 ohms between the disc and
the bottom of point T . The diameter of the disc supporting
the feed and termination, DDSC, is chosen to be small to
minimize the effect on the current distribution of the round
loop: DDSC = 20 mm. Simulation is performed using a
frequency of f = 2.0 GHz, a wire diameter of 2awire = 0.5
mm, and a loop circumference of nλg ≈ nλ0 = 150n mm.
Fig. 13 shows simulation results for depression angles θ =

30◦ and 60◦. It is found that the simulation results for the
right-handed ACT-R (where β is positive) have a downward-
sloping phase change of 360◦ for n = 1, although a perfectly
linear change is not obtained due to the influence of the
small disc. It is also found that the simulation results have
a downward-sloping phase change of 720◦ for n = 2.
Note that a left-handed circular ACT-R, where a travel-

ling wave current flows with negative β, is not supported
by the natural loop antenna shown in Fig. 12. However,
the round metaloop antenna shown in Fig. 14, composed of
C-type metaatoms (CRLH transmission line cells [19], [20]),
approximately realizes a left-handed circular ACT-R, where
an infinitely extended ground plane at z = −B is removed
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FIGURE 14. Round metaloop antenna as a model of the left-handed
circular ACT-R. (a) Perspective view. (b) Top view. (c) Perspective view of
the C-type metaatom. (d) Side view of the C-type metaatom.

FIGURE 15. Dispersion diagram for the C-type metaatom.

TABLE 1. Parameters for the round metaloop.

using image theory. Using this model, the phase of the radi-
ation field from the round metaloop antenna is simulated.
The parameters used for the simulation are summarized in
Table 1 and the dispersion for the C-type metaatom is shown
in Fig. 15. Note that the standardized phase due to the upper
and lower currents is the same as that due to the upper current
(see Appendix A).

FIGURE 16. Simulated standardized phase of the radiation field from the
round metaloop antenna (model of a left-handed circular ACT-R). The
simulation is performed at f = 1.61 GHz, where k0/|β| = 1 (and hence
loop length nλg = nλ0) is approximately obtained in the dispersion
diagram. (a) 6 E lh,n

θ
, where n = 1 and 2. (b) 6 E lh,n

φ
, where n = 1 and 2.

Figs. 16 (a) and (b) show the phase of the radiation
from the left-handed circular ACT-R (β is negative) at
1.61 GHz, where k0/|β| = 1 (and hence loop length
nλg = nλ0) is approximately realized in Fig. 15. It is
found that simulation results provide the same behavior
shown in Fig. 2(b), where progressive phase changes of 360◦

for n = 1 and 720◦ for n = 2 around the z-axis are
produced.

B. PHASE OF THE RADIATION FIELD FROM A SQUARE
ACT-R
As a model of a right-handed square ACT-R, the square
natural loop shown in Fig. 17 is excited from point F using
a frequency f = 2.0 GHz. The parameters used are as
follows: wire diameter 2awire = 0.5 mm, resistive load
RB = 200 ohms, disc diameter DDSC = 20 mm, and height
1h = 5 mm. The loop length including the gap between
points F and T is set to be 150 mm for n = 1 and 300 mm
for n = 2. These parameters are the same as those used for
the round natural loop antenna.

Fig. 18 shows simulation results for θ = 30◦ and 60◦,
which are found to agree with the numerical results, having
regressive phase changes of 360◦ for n = 1 and 720◦ for
n = 2.
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FIGURE 17. Square natural loop antenna (model of a right-handed square
ACT-R). (a) Perspective view. (b) Top view. (c) Side view.

FIGURE 18. Simulated standardized phase of the radiation field from the
square natural loop antenna (model of a right-handed square ACT-R). The
simulation is performed at f = 2.0 GHz, where k0/β = 1 (and hence loop
length nλg = nλ0) is approximately realized. (a) 6 ERH,n

θ
, where n = 1

and 2. (b) 6 ERH,n
φ

, where n = 1 and 2.

The square natural loop antenna shown in Fig. 17 can-
not produce a left-handed square ACT-R, which has a trav-
elling wave current with negative β. Therefore, we use a

FIGURE 19. Square metaloop antenna as a model of the left-handed
square ACT-R. (a) Perspective view. (b) Top view.

FIGURE 20. Simulated standardized phase of the radiation field from the
square metaloop antenna (model of the left-handed square ACT-R). The
simulation is performed at f = 1.63 GHz, where k0/|β| = 1 (and hence
loop length nλg = nλ0) is approximately realized in the dispersion
diagram at β/k0 = −1. (a) ELH,n

θ
, where n = 1 and 2. (b) ELH,n

φ
, where

n = 1 and 2.

square metaloop antenna, shown in Fig. 19, which is com-
posed of C-type metaatoms. The parameters used for the
simulation are the same as those shown in Table 1. Note
that the conducting ground plane supporting the dielectric
substrate at z = −B (see Fig. 14) is removed using image
theory.

Fig. 20 shows the simulated phase of the radiation field
from the square metaloop antenna, where a negative β is
realized at a frequency of 1.63 GHz, where k0/|β| = 1
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FIGURE 21. The φ-component of the radiation field from the right-handed
square ACT-R for the square metaloop antenna with n = 2. The simulation
is performed using f = 2.32 GHz, where k0/β = 2 (and hence loop length
nλg = 2nλ0) is approximately realized in the dispersion diagram at β/k0
[=(k0/β)−1] = 0.5. (a) RRH,2

φ
. (b) IRH,2

φ
. (c) Standardized

phase 6 ERH,2
φ

.

(and hence loop length nλg = nλ0) is approximately
realized in the dispersion diagram of Fig. 15 at β/k0
[=(k0/β)−1] = −1. The simulation results reveal pro-
gressive phase changes of 360◦ for n = 1 and
720◦ for n = 2, which agree with the numerical
results.

VII. SINGULAR BEHAVIOR IN THE SQUARE ACTIVE
REGION OF TWO GUIDED WAVELENGTHS
The phase of the radiation field from the square ACT-R for
n = 2 in section IV is simulated under the condition that k0/β
is ±1 (and hence, k0/|β| = |β|/k0 = 1).
When k0/|β| is denoted as hpcr, the length of ACT-R

becomes nλg = nhpcrλ0; for instance, when k0/|β| = 2,
the length of ACT-R is larger than 2λ0, and it is 4λ0. This
means that an antenna has a large area and causes singular
behavior in the PhasProg. The large area is not desirable from
a practical viewpoint of realizing a small antenna structure.

Fig. 21 shows one example where n = 2 and k0/β = 2. In
agreement with the general trend for positive β, a regressive
PhasProg is obtained at θ = 30◦; however, a regressive
PhasProg is not obtained at θ = 60◦, despite β being positive,
and a progressive PhasProg appears, as shown in Fig. 21(c).
This happens before and after a depression angle of
θ = θS = sin−1(

√
2β /k0) = 45◦, which is derived from

(2 − k̃2) = 0 in Eq. (82). Note that k0/β = 2 (and hence
β/k0 = 0.5) is approximately realized at a frequency of
2.32 GHz in the dispersion diagram of Fig. 15.

VIII. CONCLUSION
The radiation field from circular and square ACT-Rs is for-
mulated, taking into account the sign of the propagation phase
constant, β, of the current flowing on the ACT-R. Based on
this formulation, the phase progression, PhasProg, of the radi-
ation field after one rotation around the ACT-R axis (z-axis)
is clarified.

The phase of the radiation field from the circular right-
handed ACT-R of length nλg (n = 1, 2) changes by 360n
degrees after one rotation around the z-axis; this is obtained
at any depression angle θ . The same holds true for the circular
left-handed ACT-R of length nλg (n = 1, 2). The right-
handed ACT-R has a regressive PhasProg and the left-handed
ACT-R has a progressive PhasProg. Both PhasProgs for any
depression angle θ form a perfectly straight line with respect
to azimuth angle φ.

Such a perfectly straight line is not found with a square
ACT-R of length nλg (n = 1, 2); the PhasProg forms a
quasi-straight line, although the same change of 360n degrees
(n = 1, 2) is produced, as with the circular ACT-R. Generally,
the square ACT-R has a regressive PhasProg for β > 0
and a progressive PhasProg for β < 0, as long as θ is not
equal to the singular angle of θS. An investigation finds that,
for the square ACT-R of length 2λg, θS is likely to exist
for both positive β and negative β. As an example where
k0/|β| = 2 (|β|/k0 = 0.5), it is revealed that a change
from a regressive (progressive) PhasProg into a progressive
(regressive) PhasProg in Eφ occurs when θ exceeds singular
angle θS.

The abovementioned findings are confirmed using sim-
ulated results, where natural loop and metaloop antennas
are used as models for the ACT-R for β > 0 and β < 0,
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FIGURE 22. Schematic experimental set up for measurement of the
radiation phase.

respectively. The simulated results are in good agreement
with the numerical/formulated results.

Note that the concept presented in this paper is applied
to a tilted beam-forming, which is realized by using sum-
mation of radiation fields generated from both 1λg and 2λg
ACT-Rs. Also, note that the proposed concept could be ver-
ified by measurement. As shown in schematic figure Fig. 22
(Appendix B), the radiation field from a transmitting loop
antenna (natural loop antenna for β > 0 and metamate-
rial loop antenna for β < 0) is sent to a power meter to
mix it and make a null power by a phase- and amplitude-
adjustable reference signal (field). A change in the phase of
the reference signal can provide the phase of the radiation
field.

APPENDIX A
We express the i-component (i = θ , φ) of the radi-
ation field generated by the current on the upper line
located at z = 0 as Ei(θ, φ) ≡ |Ei(θ, φ)|ej8Ui(θ,φ), where
Ei(θ, φ) is a complex number and 8Ui(θ, φ) is its argu-
ment (phase). Then, the radiation field generated by the
current on the lower line at z = −2B (image line) is
expressed as −Ei(θ, φ)e−jk0(2B) cos θ . The i-component of the
total radiation field generated by these two currents is given
as

ETi(θ, φ)

= |1− e−jk0(2B) cos θ |·|E i(θ, φ)|·e
j8Ui(θ,φ) · e

j8Li(θ ) (91)

where

8Li (θ) = tan−1
sin (2Bk0 cos θ )

1− cos (2Bk0 cos θ )
(92)

Therefore, the phase of the total radiation field is

6 ETi(θ, φ) = 8Ui(θ, φ)+8Li(θ ) (93)

Thus, the standardized phase is

[8Ui (θ, φ)+8Li(θ )]− [8Ui
(
θ, φ = 0◦

)
+8Li(θ )]

= 8Ui (θ, φ)−8Ui(θ, φ = 0◦) (94)

It follows that the standardized phase for the i-component due
to the upper and lower currents is the same as that due to the
upper current.

APPENDIX B
See Figure 22.
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