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ABSTRACT With the explosive growth of scientific data, significant challenges exist with respect to the
interaction of large volumetric datasets. To solve these problems, we propose a visualization algorithm
based on the Hilbert R-tree improved by the clustering algorithm using K-means (CUK) and a stacked
long short-term memory (LSTM) model to quickly display massive data. First, we use the Hilbert R-tree
optimized by the CUK to quickly store unevenly distributed data and build a fast index for the massive data.
Then, we determine the position of the current point of view and use the stacked LSTM model to predict the
next point of view. According to the location of two points, we divide the visible area. Finally, according to
the preloading strategy, we import the data into the cache area of the graphics processing unit (GPU), which
greatly realizes smoother rendering data and large-scale data interaction visualization. The experimental
results showed that the proposed algorithm can quickly and accurately draw large volumetric data with high

quality while guaranteeing rendering quality.

INDEX TERMS Large-scale datasets, prediction model based on a stacked LSTM model, Hilbert R-tree,

load in advance.

I. INTRODUCTION

The three-dimensional (3D) visualization technique is an
effective method to intuitively analyze data for researchers in
medicine, remote sensing, and geological exploration. Com-
pared with two-dimensional (2D) data visualization analysis,
3D data visualization analysis has an irreplaceable advantage.
Through a 3D display, inline information between scientific
data can be intuitively observed so that researchers can make
rapid and accurate judgments about the information repre-
sented by the data. However, with the continuous develop-
ment of advanced data acquisition technology, increasing
amounts of data are being obtained [1]-[3], and many 3D
visualization technologies are no longer suitable for their
intended purposes [4], [5] of fluency and clarity in 3D display.
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Although the graphics processing unit (GPU)-based [6]—[8]
application used in 3D volume rendering relieves the work-
load of the CPU when the latter handles many 3D data opera-
tions, the GPU is always limited by the size of its memory and
cannot directly process massive data that exceed the scale of
the memory. The traditional volume data rendering process
is used to completely load the volume data into memory in
one go. The rendering module only obtains the data from
memory, therefore, this method is invalid for large seismic
data that exceed the memory scale. To achieve an inter-
active visualization of large-volume data, researchers have
proposed many algorithms based on data compression [9] and
bricking [10], [11]. These schemes are designed to reduce
the amount of rendered data without reducing the quality.
However, they cannot effectively increase the speed of data
display. In addition, some algorithms that use spatial index
technology (such as octree [12], R-tree [13], [14], and Hilbert
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R-tree [15], [16]) to increase the query speed also have their
own disadvantages which are discussed below.

An octree (OCT) is a layered data organization that uses a
uniform partition. If the termination condition is not selected
properly, it will produce too many subblocks and the I/O
operation will rise sharply, resulting in the rendering get-
ting stuck. The OCT-based hierarchical indexing scheme
has many advantages in massive volumetric data rendering.
Lamar er al. [4] first proposed a multi-resolution layering
scheme based on an OCT for volume rendering, however,
the artificial selection of the minimum size of the OCT will
affect the efficiency of the OCT index. Weiler et al. [5] then
proposed an effective extension of the algorithm to avoid
discontinuities between different levels of detail. In addition,
wavelet representations are also used for volume rendering,
such as in the study by Muraki [17], who first introduced this
method. Then, Guthe ef al. [18] used a hierarchical wavelet
representation to transform their input data and implemented
real-time rendering of wavelet representation data through
hardware texture mapping. Some methods enable large data
visualization by compressing data to reduce the rendering
data. For example, Nguyen and Saupe [19] proposed a
block-wise compression algorithm that splits data into small
same size blocks and then compresses them separately. It is
believed that the most ideal process of data compression is
compressing the data during their generation and decom-
pressing them as needed during rendering [20]. The core
concept is to reduce the amount of data that must be processed
by the system each time and to realize large-volume data
visualization using efficient data streams. As for the out-
of-core methods [21], [22], the core of these algorithms is the
performance of the data access and pre-fetching. Recently,
Wang et al. [23] proposed an OCT-based convolutional neural
network (O-CNN) model for 3D shape recognition, which
is also based on voxel processing and the application of the
CNN enables a high recognition rate algorithm. Although
O-CNN can handle massive amounts of data, the algorithm
requires significant time and can hardly meet the real-time
interaction we desire to achieve. Some researchers have pro-
posed a purely CPU-based volume rendering algorithm to
avoid the limitation of GPU memory size. However, when
it renders a huge amount of data, the result is obviously not
ideal. Fuller et al. [24] proposed a CPU slicing + GPU ren-
dering algorithm based on an OCT data visualization method,
which realizes the real-time visualization of large-volume
data. The algorithm is based on the visibility test [25], which
uses the strategy of partitioning a block, divides the data into
small cubes of the same size in the preprocessing stage, and
processes the data according to their visibility.

The R-tree [26] can effectively process spatial data. In the
R-tree spatial index, the spatial object and each layer node are
represented by the smallest bounding box. The overlap of data
rectangles will inevitably affect the efficiency of the query. A
space-filling curve is a curve that reduces the dimensional-
ity of a high-dimensional space and maps high-dimensional
space data to a one-dimensional curve. Combining the Hilbert
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FIGURE 1. Distribution of tree node. (A) Hilbert R-tree. (B) Hilbert R-tree
improved by cluster.

curve with the R-tree can place the adjacent data blocks in the
space into the same parent node as much as possible, ensure
the spatial continuity of the data, and reduce a large number
of repeated operations and I/O operations. The storage utiliza-
tion of the Hilbert R-tree is close to 100% [27], [28], but the
node space is too large. When the spatial data are unevenly
distributed, the overlap showed by Figure 1 will increase and
the retrieval performance will be greatly reduced, therefore,
the aim of displaying massive 3D data in real time cannot
be achieved. The application of a clustering model in data
visualization [29] can improve retrieval efficiency. The com-
monly used clustering models include the K-means cluster, K-
medoids cluster, and CURE (Cluster Using REpresentatives).
Among them, the K-means algorithm is simple to implement
and has low time complexity; however, the clustering result
is sensitive to the initially selected center point and often fails
to reach the global optimum. K-medoids are not sensitive to
noise points and have good stability; however, the choice of
the initial value of K will affect the amount of data in the node
and, thus, is not suitable for processing large datasets and
irregular data, thereby affecting the efficiency of the R-tree.
The CURE algorithm has strong robustness to isolated points
and can better handle massive data; however, it has high time
complexity. Huan-Yu et al. [30] proposed the clustering algo-
rithm using K-means (CUK), which partially combines the
CURE algorithm with the K-means algorithm to compensate
for the shortcomings of existing methods, but does not use it
to improve the 3D display of massive data.

Although the development of indexing algorithms has
reached a very high level, there is still a problem of blurring
and stuck browsing images when displaying massive 3D
data. Wen et al. [31] proposed a rapid display algorithm
for massive data based on viewpoint motion that uses the
Lagrange interpolation algorithm to calculate the motion tra-
jectory of the viewpoint. However, when the viewpoint is at
a stationary or jumping state, the algorithm still predicts the
wrong viewpoint and, thus, there is a large deviation in the
predicted viewpoint, thereby increasing the consumption of
system resources.

With the aim of addressing the problems found in the
above methods, this paper proposes an index method based
on the Hilbert R-tree optimized by the CUK and a viewpoint
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FIGURE 2. Flow of proposed algorithm.

prediction method based on the stacked LSTM model to
improve the quality and browsing fluency of the 3D display
of massive data.

The rest of the paper is organized as follows. Section II
introduces the theoretical foundations of our method.
Section III presents the details, data, and results of the exper-
iment. Finally, Section IV presents the conclusion and future
work.

il. METHOD

The fast visualization of 3D massive data with our algorithm
is divided into three parts: index with the Hilbert R-tree
improved by the CUK, viewpoint prediction based on the
stacked LSTM model, and 3D visualization by preloading
data. The algorithm flow is shown in Figure 2.

We begin by reading the data in the seismic data file. First,
we use the Hilbert curve to reduce the dimensionality of
the 3D volume data, and then we use the CUK to cluster
the dimensionality-reduced data, recalculate the Hilbert code
value of the cluster center, and build the R-tree according
to the code value. In the next step, we determine the coor-
dinate position of the current viewpoint. Then, we process
information in two ways. One is to use the view frustum
model to divide the spatial data according to the current
coordinate position of the viewpoint and then obtain the
area to be displayed. The other is to input the old viewpoint
coordinate sequence information to the stacked LSTM model
and use it to predict the next position coordinates of the
viewpoint. We obtain the visual area, which is divided by
the view frustum model, for the predicted viewpoint. Finally,
by comparing the divided areas, we can divide the scope of
the visual, latent, and unloaded fields. Then, the data blocks
of the visual and latent fields are rendered and displayed, and
the data in the unloaded field are unloaded. Next, we redeter-

16268

mine the coordinates of the current viewpoint and draw the
next frame.

A. INDEX WITH THE HILBERT R-TREE IMPROVED

BY THE CUK

To establish an efficient 3D data index, we used the R-tree
based on the 3D Hilbert curve, K-means clustering algorithm,
and CURE algorithm. Next, we will introduce each in detail.

1) THREE-DIMENSIONAL HILBERT SPACE-FILLING CURVE
FOR VISUALIZING MASSIVE DATA
A space-filling curve is a type of curve that reduces the
dimensionality of high-dimensional space data. The curve
is used to map high-dimensional space data to a one-
dimensional curve, thereby improving the access and query
speed. Among many space-filling curves, the 3D Hilbert
curve has a better filling effect on the spatial data. The Hilbert
curve can preserve the spatial continuity of the data well, and
adjacent points in the space are also arranged continuously in
the sequence. Figure 3 shows the first-order 3D Hilbert curve
and the second-order 3D Hilbert curve, respectively, and the
3D Hilbert curve of order i can be deduced by analogy.

The process of generating the 3D Hilbert curve code value
as follows:
Step 1. Obtain the 3D coordinates H(x,y, z) of the target
point in the massive data volume.
Convert H(x, y, z) into binary coordinates
H(x1x2...XN, Y1Y2 - YN, 2122+ - - 2N)-
According to the binary coordinates, determine the
coordinates H (x;, y;, z;) of the point in the 3D Hilbert
curve of order i. Combining the filling order of the
3D Hilbert curve of order i and H (x;, y;, z;), calculate
the number k; of points before this point in the curve
of order i, and the Hilbert code of order i to obtain

Step 2.

Step 3.
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FIGURE 3. Different three-dimensional Hilbert curves. (A) First-order
three-dimensional Hilbert curve. (B) Second-order three-dimensional
Hilbert curve.

the value of m;.
mi =8 xk; 1)

Step 4. Summing the Hilbert code value of each order of the
target point, obtain the Hilbert code value M of point
H(x,y,2)

M=3" m @)

2) CLUSTERING ALGORITHM BASED ON K-MEANS

When the Hilbert curve maps high-dimensional data blocks to
a one-dimensional sequence, it is not completely guaranteed
that the corresponding Hilbert code values of adjacent objects
in space are also adjacent. Therefore, in the process of build-
ing a tree, layer-by-layer recursive filling of leaf nodes will
make the volume of the node too large and even generate a
large amount of overlapping space and empty space, thereby
affecting the performance of the index. Therefore, the clus-
tering algorithm is added to the process of building a Hilbert
R-tree, and spatially similar data are placed under the same
subtree to reduce the spatial overlap and further improve the
query efficiency. This method combines the CURE algorithm
and K-means clustering algorithm to form the CUK.

a: CURE ALGORITHM

First, the clustering algorithm selects a number of scattered
objects in a class. Then these objects are multiplied by an
appropriate shrinkage factor «, which is generally between
0.2 and 0.7, to achieve a better clustering effect in general,
so that it is closer to the center point of the class. The
algorithm is more effective in dealing with isolated points and
can identify clusters of arbitrary shapes. However the CURE
algorithm has the same shortcomings as those of the hierar-
chical clustering method. The time complexity (O(n*logn)) is
high and the efficiency is low when processing massive data.
This will lead to spend more time.

The algorithm flow is as follows:

Step 1. The original dataset should be sampled to reduce
the amount of data. Suppose that the original dataset
0 = A{(xi,yi,zpli = 1,2, ..., m} randomly selects n
samples W = {(x;, y;,z)|li = 0,1,...,n — 1}. The
minimum amount of sampling data » is determined
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by "Chernoff bounds"

1 1 1
Mmin = £k + klog(g) + \/108(5)2 + 25108(3)
3)

where ¢ is the number of data points included in the
smallest cluster, k is the specified number of clusters,
and § is the probability that the number of data points
belonging to the cluster is less than n/v.

Step 2. The sampled dataset W is divided to obtain f parti-
tions, each with a size of n/f. Then, every partition is
clustered until the number of clusters in the partition
is J:

n
fxq
Try to ensure that j is two to three times of k by
changing g (g > 1).

Step 3. In the clustering process, if a cluster grows very
slowly, it means that the cluster is a noise cluster.
Then, we delete the noise clusters.

Step 4. We obtain the cluster center C; of each newly gen-
erated cluster and use it as the representative of the
cluster to repeat the clustering operation, and at the
same time, we continuously eliminate the noise clus-
ters that may be generated each time in this process.

_ X roy; L]
center C; = (Zi=1 . Zi:l = Zi:l ?) (5)

where ¢ is number of point objects.

Step 5. By calculating the distance L between the remaining
data and each cluster center, we can classify each
data into the cluster with the closest distance to them,
thereby realizing global clustering.

J “

L=Ji =0+ 01—y + G —2P (6

b: K-MEANS CLUSTERING ALGORITHM

For a sample set, the algorithm divides the sample set into

k clusters according to the distance between the samples,

and attempts to ensure that the data points in the clusters

are compact and those between the clusters are scattered.

The algorithm has low time complexity, is efficient for pro-

cessing big data, and has a good clustering effect. Generally,

it processes spherical datasets. However, the initial clustering
center is unstable, falls easily into a local optimal solution,
and is sensitive to outliers. If there are abnormal points or
noise points, the center point may deviate and affect the final
clustering effect.

The algorithm flow is as follows:

Step 1. Randomly select k samples from the dataset Q =
{Ga,yivzli = 1,2,...,m} as the initial &
centroid vectors {(f1x, 1y, H1z)s (R2xs K2y, H27),
coes (Mo, Mkys ikz)}

Step 2. Initialize the cluster set C; = @G = 1,2,...,k).
Then, calculate the Euclidean distance of each point
(xi, yi, z)(i = 1,2, ..., m) in the sample set Q from
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each centroid (wjx, Wjy, njz)G = 1,2,...,k) by
using formula (6). Next, place point (x;, y;, z;) into
the category p; with the smallest distance d;;, and
update p; = p; U {x;, y;, z;}. Recalculate the centroid
of Cj .

1
Cj - a-(zxec,-x7 Z:yeC,- Y ZZEC,‘ Z) (7)

If none of the k centroids are changing, then go to
Step 3. Otherwise, repeat Step 2.
Step 3. Output the division result C = {Cy, Ca, ..., Ci}.

¢: CLUSTRING ALGORITHM BASED ON K-MEANS

Combining the CURE algorithm with the K-means algorithm

complements the advantages and disadvantages of the two

algorithms. The CUK first uses the CURE algorithm for
clustering and the shrinkage factor for moving the data points
closer to the cluster center, which can effectively handle
isolated points and identify clusters of arbitrary shapes. After
the initial clustering using the CURE algorithm, the center

point of each cluster is selected as the initial center of k-

means, which avoids the defect of randomly selecting the

centroid.
The algorithm flow is as follows:

Step 1. Extract n data samples from the original dataset
Q;divide the n data samples to obtain f regions, each
of which has a size of n/f; and treat each data sample
in the partition as a separate cluster

Step 2. Use the CURE algorithm for clustering to obtain new
sub-clusters until each partition cluster reaches n/f*g
new clusters. Then delete the noise points.

Step 3. Calculate the positions of the center points of the new
clusters, merge the data items closest to each center
point into the same cluster through the K-means
method, and obtain k clusters until the position of
the cluster center no longer changes.

3) BUILDING THE HILBERT R-TREE IMPROVED BY THE CUK
The Hilbert R-tree evolved on the basis of the R-tree. Each
leaf node of the R-tree corresponds to a minimum bounding
cube (MBC). From the leaf node upwards, a larger cube is
used to surround the existing cube until the entire space is
enclosed to complete the space division. The Hilbert R-tree
will mechanically fill the leaf nodes, which will cause some
spatial data to overlap, which, in turn, will affect the query
efficiency. The clustering algorithm can reduce the space
overlap and make the space allocation more reasonable,
thereby reducing the number of I/O access requests to the disk
and improving efficiency.
The building tree flow is as follows:
Step 1. Read the massive data volume, determine the range
of the data volume in space, and construct a 3D
Hilbert curve to map the 3D source volume data to a
one-dimensional sequence S.
Step 2. According to formula (3), sample sequence S to
obtain N data objects.
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Step 3. Divide the above N data objects to obtain F
partitions and perform the CUK operation in each
partition to obtain the center of the clusters.

Step 4. After completing the clustering in the partition, cal-
culate the Euclidean distance L between the center
of the MBC removed in the clustering process and
the center of the existing cluster by formula (6), and
merge it into the corresponding cluster according
to the closest distance criterion, then complete the
global clustering operation.

Step 5. If the amount of data contained in the current cluster
is less than or equal to the maximum capacity of the
Hilbert R-tree node, consider the current cluster as a
leaf node of the current layer of the Hilbert R-tree.
Otherwise, sort the Hilbert code value of all data
objects in the cluster in ascending order, and there
are several leaf nodes from small to large according
to the code value. Finally, according to the time
sequence of generating the leaf nodes, the middle
node and root node of the Hilbert R-tree are formed
layer by layer from top to bottom, thereby obtaining
an efficient Hilbert R-tree structure.

B. VIEWPOINT PREDICTION BASED ON A STACKED

LSTM MODEL

To reduce the amount of data loaded into memory in each
frame of the 3D display, it is necessary to load the partial data
in advance according to the range of 3D objects observable
from the viewpoint position. However, we observed that the
position of the viewpoint of the 3D object changes, therefore,
it is necessary to predict the expected position of the next
viewpoint based on the previous viewpoint motion trajectory.
Comparing the areas of two viewpoints, we load the data
that must be displayed in advance, to avoid the problem
of rendering getting stuck during 3D display when loading
very large data initially. This is a typical timing forecasting
problem. This study used the stacked LSTM model to predict
the trajectory of the moving viewpoint.

1) LONG SHORT-TERM MEMORY NETWORK
In practice, neural networks that process time-series informa-
tion include the RNN and LSTM. The gradient disappears
when the sequence is too long because the RNN [32] can only
solve some simple timing problems. In contrast, LSTM [33],
which is one of the variants of the RNN, can solve this
problem well. It is a cyclic neural network that can effectively
solve long-term dependence problems. It can remove or add
information to the unit state through the gate mechanism.
A common LSTM cell consists of a unit, an input gate,
an output gate, and a forget gate, as shown in Figure 4(A).
The unit can recall the value at any time interval, and the
three gates control the information flowing in and out of the
unit.
1. The forget gate is used to control the ratio of the cell
state C;_1 of the neural network at the previous time

VOLUME 9, 2021
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FIGURE 4. Different structures of LSTM. (A) Long short-term memory cell. (B) Long short-term memory network. (C) Stacked long short-term memory

network.

t-1 to the cell state C; at the current time .
fo =owrx; +urhi 1 + by) (8

2. The input gate is used to control the ratio of the input
x; at the current time ¢ to the cell state C; at the current
time 7.

it = o(Wixy + uihy—1 + b;) 9
C;” = tanh(w x x; +u X hy_1 +b) (10)
C[ZﬁXC[_]‘Fl.[“r‘i[XC[N (11)

3. The output gate is used to control the ratio of the unit
state C; at the current time ¢ to the output value A; of
the LSTM neural network.

Or = o(Wo X ht—1 + W X X; + by) (12)
ht l‘anh(C,) X 0[ (13)

2) STACKED LSTM
The shallower neural network model may have difficulty
achieving the desired effect of prediction, and the prediction
ability of a single-layer LSTM structure is limited. In recent
years, deep learning has performed well. Therefore, increas-
ing the depth of the neural network model can improve
performance.

A standard LSTM unit completes all functions and has
three parts:

1. Mapping from the input layer to the hidden layer. The
input information of each time step will be matrix-
mapped, and then the mapped content will be used as
the input of the forget gate, input gate, unit state and
output gate.

VOLUME 9, 2021

2. Mapping from the hidden layer to the hidden layer,
including the calculation of the forget gate, input gate,
output gate, and unit state updates.

3. Mapping from the hidden layer to the output layer.

To increase the depth of the LSTM neural network model,
on the basis of the original LSTM network, we use the output
of the previous LSTM and the mapping from the input layer of
the previous LSTM to the hidden layer as the input of the next
layer. Multi-layer LSTM network stacking (stacked LSTM)
increases the depth of the model and improves performance.
Figure 4(B) and (C) shows the structure of the LSTM and the
stacked LSTM [34], respectively.

C. THREE-DIMENSIONAL VISUALIZATION BY
PRELOADING DATA

According to the location of the viewpoint, the data domain
is divided using the frustum [35] clipping method. The data
in the current display area are loaded into memory, and the
GPU is used for rendering and display. Because the viewpoint
changes in motion, we must use the position of the predicted
viewpoint combined with the frustum clipping method to
divide the potential area and the unloading area, load the
potential area in advance, and unload the data blocks in the
unloading area to reduce the feeling of freezing.

In the process of establishing the viewpoint motion model,
it is necessary to use the viewing cone to judge the visual
field. Knowing the coordinates Py (x;, y», z,) of the viewpoint
at the current moment, combined with the constraints «, 8
and dp (where « is the opening angle of the viewing cone
along the x direction, B is the viewing angle of the viewing
cone along the y direction, and dj is the distance from the
viewpoint to the viewing plane EFGH), we can construct the
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view cone ABCDEFGH, Figure 5 shows a schematic view
of the frustum. Thus, the spatial plane equations of the six
planes, namely ABCD, ADHE, BFGC, EFGH, CDHG and
ABFE of the viewing cone are obtained. Each plane can be
represented by A;x + B;y + Ciz+ D; = 0.

It is specified that pointing to the inside of the viewing
cone is the positive direction. The coordinates of each MBC
center are divided into six equations. If the obtained results
are all positive, the MBC is divided into the visible domain
and imported into memory. For an MBC block, if more than
half of the vertices are located inside the viewing frustum, it is
considered that most of the MBC data are located inside the
viewing frustum, and must be rendered and displayed.

According to the Figure 6, the model dynamically divides
the entire data volume into the visible domain, potential
domain, and offload domain as the viewpoint moves from A to
B. The visible domain is the visible data domain (areas 1 and
2) from the current viewpoint, which must be rendered and
displayed in time for the user to browse; the potential domain
is the visible data domain (areas 2 and 3) under the predicted
angle of view at the next moment. The data block in this area
is loaded into memory in advance, which makes it convenient
for the user to read and display directly during continuous
browsing. Assuming that the visible domain data block is
N, the potential domain data block is P, and the unloading
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domain data block is D, then we have
D=N-NNP (14)

When viewpoint A moves to B, data domain 1 changes from
the visible domain to the offload domain, and data domain 3
becomes the visible domain simultaneously.

Ill. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental details. Figure 6
shows the entire experimental procedure divided into four
parts. First, we introduce some basic experimental settings,
and then we analyze the performance of the index method and
viewpoint prediction method according to the experimental
data. Finally, we analyze the experimental results of the 3D
display using our method.

A. EXPERIMENT SETTING

1) EXPERIMENTAL PLATFORM AND DATASET

The hardware configurations used in the experiment were
as follows: an Intel Core i5-7300 processor, 8 GB of mem-
ory, and an NVIDIA GTX 1050 GPU with a memory size
of 4 GB. The software systems were Windows 10, an inde-
pendently developed 3D seismic data visualization system
developed by PyCharm, Visual C4+, and OpenGL using the
cross-platform development tool QTS.

This study tested the 3D scientific data visualization sys-
tem, as shown in Figure 6. The 3D data tested were the
seismic data obtained from the work area in Huabei Oilfield,
China, which are stored in the SEG-Y file format. We had
three groups of test data with different sizes: Group A data
were 469.9 MB, Group B data were 3348.48MB, and Group
C data were 14643.2 MB. The size of every voxel was
4 bytes. The data included information such as the buried
depth, extent, thickness, top-bottom interface, and extension
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TABLE 1. Comparison of number of sub-blocks of the multiple algorithms for the given three sets of data.

Number of sub-blocks

Data x—j x—j x—:
OCT(N;) HRT(N,) KHRT(N5) CKHRT(N,)
Group A 540 382 354 316 58.5% 82.7% 89.2%
Group B 3329 2266 2073 1831 55.0% 80.8% 88.3%
Group C 14581 10538 9959 8915 61.1% 84.6% 89.5%

TABLE 2. Comparison of query time of the multiple algorithms for the given three sets of data.

Data Method

Query the percentage of seismic data blocks

2% 4% 6%

OCT query time(s) 242 5.82 8.80

HRT query time(s) 1.84 4.48 7.03
Group A .

KHRT query time(s) 1.41 3.42 5.64

CKHRT query time(s) 0.88 2.13 3.25

OCT query time(s) 28.21 69.18 115.19

HRT query time(s) 26.72 66.44 108.73
Group B

KHRT query time(s) 17.08 46.79 76.35

CKHRT query time(s) 9.69 26.76 41.70

OCT query time(s) 50.10 147.06 216.38

HRT query time(s) 41.79 121.47 194.99
Group C

KHRT query time(s) 32.15 92.61 152.33

CKHRT query time(s) 16.02 46.67 75.86

trend of the geological body. The dataset for training the
stacked LSTM model was a large number of 3D coordinate
sequences. These sequences were equally spaced sampling
points of the motion trajectory of the viewpoint. These sam-
pling points are the viewpoint coordinates derived by the soft-
ware when professionals continue to browse the 3D display
of seismic data.
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2) STACKED LSTM MODEL SETTING

We select some continuous motion trajectory viewpoint coor-
dinates from the dataset, each of which has three dimensions
(x, ¥, z), which we use as the inputs to the model. We connect
the LSTM layer behind the input layer, where the number of
LSTM units will have a different values (10, 32, 64, 100, 128,
160 and 256). We select a parameter dropout of 0.2. A dropout
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FIGURE 8. Comparison of frame rate of the multiple algorithms by selecting 60 sets of continuous FPS values in experiment of different data. (A) is group

A data. (B) is group B data. (C) is group C data.

layer [36], [37] is connected after the LSTM layer with a
parameter of 0.5. Then, the LSTM layer, the dropout layer,
the LSTM layer, the dropout layer, the dense layer and the
output layer are continuously connected behind the network.
The output layer outputs a 3D vector, which is the coordinate
of the next viewpoint.

B. ANALYSIS OF THE PERFORMANCE OF THE INDEX

1) COMPARISON OF NUMBER OF SUB-BLOCKS

In the 3D data visualization method based on a data block,
the number of sub-blocks determines the efficiency of the
data query in the 3D display process. The test methods were
as follows: the OCT, Hilbert R-tree (HRT), Hilbert R-tree
based on k-means clustering (KHRT), and Hilbert R-tree
based on the CUK (CKHRT), which were used to establish
the indexes. To prove the advantages of this method in data
indexing efficiency, we used the above methods and our
method to index three groups of different sized data. The
results are shown in Table 1.

It can be observed from the comparison results in the table
that, compared with the OCT index, the CKHRT index can
reduce the number of sub-blocks by 38.9% to 45%. Com-
pared with the traditional HRT index, this method reduces the
number of sub-blocks by 15.4% to 19.2%. Compared with the
KHRT index, the method reduces the amount of sub-block
data by 10.5% to 11.7%. The reason this method is more
effective in reducing the number of sub-blocks is that the
Hilbert R-tree used here has high space utilization, and the use
of the CUK will have the same or similar voxel values, which
are divided into the same sub-block to achieve this effect.

2) COMPARISON OF QUERY TIME
The access efficiency of the tree determines the performance
of the data index during the display process. From the three
groups of seismic data (A, B, and C), the data blocks with
the same proportion were selected by four methods to make
multiple queries, record the query results, and calculate the
average query time, as shown in Table 2.

The group B data are 3D volume data with a relatively
uniform distribution, and the group C data contain data with
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FIGURE 9. Average accuracy curve for LSTM and stacked LSTM with
different LSTM units.

a scattered distribution. As can be observed from Table 1,
for the group B data, compared with those obtained by KHRT,
the time of the query sub-block of the Hilbert R-tree based on
the CUK was reduced by 42.8% to 45.3%, and for the group C
data, their query time was reduced by 49.6% to 50.2%. The
sub-block index method proposed in this paper performs a
CUK operation on the original data, so that data objects with
close distances are gathered together to generate adjacent leaf
nodes and then stored in adjacent locations, thus effectively
reducing disk I/O access time and increasing index speed.
Especially in the case of scattered 3D data volume, the spatial
retrieval efficiency of the proposed method is more obvious.

C. ANALYSIS OF VIEWPOINT PREDICTION

Figure 9 shows the average accuracy curves for the
single-layer LSTM network, two-layer LSTM network, and
three-layer LSTM network with different numbers of hidden
units. The following characteristics were observed. (1) The
average accuracy may decrease when the number of hidden
units is either very small or many. (2) The average accuracy
may decrease when the number of LSTM layers increases
slightly. If the LSTM layer is very large, the accuracy will
decrease.(3) The accuracy of 128 LSTM units is the high-
est. However, we choose 32 LSTM units. Compared with
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TABLE 3. Comparison of correct rate of the multiple algorithms for the given three sets of data.

Data Method Correct rate (%)
1 (min) 5 (min) 10 (min)
Lagrange interpolation 82.53 7545 70.81
Group A Proposed method 92.37 88.96 87.57
Lagrange interpolation 80.49 72.18 66.93
Group B Proposed method 90.24 87.41 85.71
Lagrange interpolation 71.33 65.97 61.66
Group C Proposed method 87.55 84.67 80.02

FIGURE 10. The slice of depth side line profile of seismic data.

TABLE 4. The data is sliced using four algorithms, compare the time that the sliced data fully rendering.

Slice number (No.)

Method 252 272 282 292 302 312
OCT+SLSTM Time(s) 2.15 2.10 212 1.95 2.03 2.13
HRT+SLSTM Time(s) 1.09 1.07 1.02 1.05 1.19 1.17 1.10

KHRT+SLSTM Time (s) 1.01 1.04 1.06 1.03 1.05 1.00 1.03
CKHRT+SLSTM Time (s) 0.45 0.44 0.45 0.47 0.46 0.45 0.45

128 LSTM units, the accuracy of the three-layer LSTM
network is not much different, but the amount of network
parameters is reduced a lot, which makes the real-time effect
of our system better.

To verify the effect of the viewpoint motion model,
we tested the three sets of data with the method without
viewpoint prediction, the Lagrangian viewpoint prediction
method and the stacked LSTM viewpoint prediction method.
We selected 60 sets of continuous FPS values from the exper-
iment and compared them.

The statistics are shown in Figure 8. As can be observed
from the figure, although the motion trajectory becomes com-
plicated, our algorithm can still maintain a relatively stable
frame rate. In addition, the stability is better than Lagrange
algorithms. The experimental results also showed that the
frame rate obtained by the motion prediction algorithm is
more stable than that obtained without prediction. Therefore,
our algorithm preloads data blocks that are smaller and ren-
ders them smoother.
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In addition, we selected the X-axis component of the
sampling point for comparison, and evaluate the prediction
accuracy of the piecewise quadratic Barycentric Lagrange
interpolation prediction algorithm and the Lagrange
interpolation algorithm. The results are shown in
Table 3.

Table 3 shows that the prediction accuracy of the pro-
posed algorithm is 9.75% to 18.78% higher than that of the
Lagrange interpolation algorithm, which has better prediction
performance. When the accuracy of the prediction increases,
the higher the proportion of data in the correct range loaded
by the computer in advance, the smaller the amount of data
that the computer needs to reload into the memory before
displaying the screen. Therefore, this reduces consumption
of system resource. The method of motion prediction effec-
tively reduces the fluctuation of the frame rate, avoids the
stuck phenomenon during viewpoint motion, and provides
the possibility for real-time visualization of large-volume 3D
data.
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FIGURE 11. The 3D display of seismic data of group B (3.27G).

D. THREE-DIMENSIONAL DISPLAY OF SEISMIC DATA

1) COMPARISON OF INTERACTION QUALITY

In this experiment, we combined the four indexing strate-
gies with the stacked LSTM model to test the interactive
performance of our algorithm. Taking the B group data as
an example, we sliced seismic data is at intervals of 10.
The depth side line profiles of the seismic data are shown
in Figure 10. We recorded the time spent by the four sets
of algorithms displaying the slice results, shown in Table 4.
It can be clearly observed from the table that our algorithm
has the best interactive performance, and its display speed
increased by about 3.58, 1.43 and 1.27 times compared with
those of the other three algorithms.

2) QUALITY OF 3D DISPLAY

The following figure 11 shows the result of the 3D display
of the experimental data of group B using the experimental
method. It can be observed from the figure that the quality of
our 3D display is high, the texture is clear, the picture reso-
lution is high, and the relationship between the stratigraphic
structures can be displayed more clearly.

IV. CONCLUSION AND FUTURE WORK

In this study, we used the optimized Hilbert R-tree to establish
a fast indexing of data and used a deep learning network
model to predict the viewpoint to realize the pre-loaded data
function and the fast 3D display of massive seismic data.
In the indexing process, we establish an efficient index struc-
ture using the Hilbert R-tree improved by the CUK based
on the data in the file. Compared with traditional indexing
methods, the proposed method can prevent leaf nodes from
overlapping greatly. In the display process, the frequent I/O
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operations between the internal memory and the disk are
reduced, and the aim to improve display efficiency is
achieved. In the pre-loading method based on viewpoint
prediction, we use the stacked LSTM model to predict the
viewpoint, crop the 3D volume data according to the current
viewpoint and the predicted viewpoint, divide the unloading
domain and the potential domain, preload the data to be
displayed in advance, and start unloading from memory the
data that will not be displayed. This method utilizes the char-
acteristics of high prediction accuracy of the deep learning
network model, reduces the error rate of the preload area
and the size of the loaded data block, and realizes smoother
rendering and real-time interactive display.

However, our proposed method also has some limitations.
If the view point moves too fast or moves irregularly when
viewing a 3D display, it is likely to increase error rate in
the point of view prediction and cause browsing pauses.
In addition, the number of Stacked LSTM layers and the
number of units is too large, which leads to an increase in
the number of parameters and in model calculations. This
will result in frozen display. Therefore, we need to make
an appropriate adjustment to its setting, which compromise
the amount of calculation and the accuracy of prediction,
according to different application conditions.

With the development of visualization research, many
fields have begun to shift from the study of two-dimensional
(2D) visualization to 3D visualization. Three-dimensional
visualization has good visual effects and rich expressive
power, which can intuitively convey more information and
overcome some limitations of 2D visualization. Meanwhile,
with the development of data acquisition technology, 3D data
are becoming increasingly abundant and the amount of data
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is also increasing. Therefore, we must continuously study the
3D visualization method to optimize the data index method
and the accuracy of preloading.
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