
Received December 26, 2020, accepted January 11, 2021, date of publication January 18, 2021, date of current version January 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051982

Semantic-SCA: Semantic Structure Image
Inpainting With the Spatial-Channel Attention
JINGJUN QIU 1, YAN GAO2, AND MEISHENG SHEN1
1Software Engineering Institute, East China Normal University, Shanghai 200062, China
2School of Computer Science and Technology, East China Normal University, Shanghai 200062, China

Corresponding author: Yan Gao (ygao@cs.ecnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62072183.

ABSTRACT Deep learning has brought unprecedented progress to image inpainting. However, the existing
methods often generate images with blurry textures and distorted structures because they may either fail
to maintain semantic consistency or restore fine-grained textures. In this paper, we propose a two-stage
adversarial model to further improve the accuracy of the structure and details of image inpainting. Our model
splits the inpainting task into two parts: semantic structure reconstructor and texture generator. In the first
stage, we first utilize the semantic structuremap based on the unsupervised segmentation to train the semantic
structure reconstructor, which completes the missing structures of the inputs and maintains consistency
between the missing part and the overall image. In the second stage, we introduce the spatial-channel
attention (SCA) module to obtain the fine-grained textures. The SCA module strengthens the capability
to obtain information from the long-distance pixel and different channels of the model. Furthermore,
we propose a spatial-channel loss to stabilize the network training process and improve visual effects. Finally,
we evaluate our model over the publicly available datasets CelebA, Places2, and Paris StreetView. When the
inpainting tasks involved in large-area defects or heavy structure, the experimental results show that our
method has a higher inpainting quality than the existing state-of-the-art approaches.

INDEX TERMS Artificial neural networks, deep learning, generative model, image generation, image
inpainting.

I. INTRODUCTION
Image inpainting, aim to restoring missing regions according
to the rest of the image in image processing, has been widely
used in image editing, such as removing unwanted objects
and editing contents of images. Recently, deep learning has
succeeded in the field of image inpainting. However, how
to reasonably extract semantic and structural information of
images to obtain accurate and detailed image is still a difficult
problem and hot issue in image inpainting.

Early researchers focus on the reconstruction by texture
synthesis techniques [1]–[5]. These methods utilize nearest-
neighbor searching and copy relevant patches to fill in the
missing region with image patches from existing regions.
However, these methods have poor performance when there
is no repetitive texture available in the undamaged area due
to ineffective capturing high-level semantics from the image.
In contrast, recent inpainting [6]–[10] research utilize deep
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convolution neural networks to generate the miss region, and
some recent studies treat the inpainting task as a conditional
generation problem. Although these methods can achieve
plausible inpainting results, they lack correct boundary infor-
mation to generate the contents of holes, thus the results
contain noise patterns and incomplete objects, as shown
in Fig. 1. Simultaneously, the range of information extracted
by a single convolution layer is too small due to the limitation
of the size of the convolution kernel; thus this limitation is not
conducive to capturing the global structure information from
the long-distance pixel.

The creative process of paintings inspires us. and the
artist usually first determines the area of the object and
then further fills in the details of different areas in the cre-
ative process of painting. Thus, to solve these problems of
the over-smoothed boundaries and texture artifacts, we pro-
pose a novel method to accurately extract semantic structure
information of images. Our model splits the inpainting task
into two parts: semantic structure reconstructor and texture
generator. The semantic structure reconstructor focuses on
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FIGURE 1. When the missing area is large, the results of these
methods [9], [11] of inpainting cannot well maintain the integrity of the
semantic structure.

generating the semantic structure map in the missing areas,
and the texture generator uses semantic structure map to gen-
erate the final image. Inspired by the previous method [12],
we transform semantic segmentation results of this method
into a semantic structure extractor to make it satisfy the
requirements of image inpainting. The texture difference and
spatial distance are taken into account, thus, our method
has achieved excellent performance in efficiency and effect.
In our method, we can input the original image Iin and mask
M into the semantic structure reconstructor to obtain the
complete semantic structure map as the image structure. Our
method takes the texture difference and spatial distance into
consideration in the representation of the image structure.
In this way, our model will have more advantages in the
reproduction of image details because the semantic structure
has more details with enriched types and quantity of labels.

To solve the problem of difficulty in obtaining information
from distant pixels result from the limitation of the receptive
fields of the convolution kernel and make full use of the
feature information of different channels, we introduce the
SCAmodules tomake each pixel is calculated by the element-
wise sum in the spatial and channel information in texture
generator. In addition, we propose the spatial-channel loss to
guide the image generation, which ensures the accuracy of
the information of the spatial-channel module.

We conduct experiments on standard datasets CelebA [13],
Places2 [14], and Pairs StreetView [15], qualitative and quan-
titative comparisons show that: when the inpainting tasks
involved in large-area defects or heavy structure, our method
has a higher repair quality than the existing state-of-the-art
approaches. Our paper makes the following contributions:

• We first propose a semantic structure reconstructor
based on the unsupervised segmentation to generate the
semantic structure map as the global semantic structure
information. Meanwhile, we have improved the effect
and efficiency of the semantic structure extraction to
adapt to image inpainting.

• We introduce the spatial-channel module to strengthen
capabilities of obtaining the long-range contextual infor-
mation and fusing the multi-scale context informa-
tion of the model in the image inpainting. Meanwhile,
to enhance the performance of the spatial-channel mod-
ule, we introduce the spatial-channel loss to guide the
texture generator to generate result.

• A trainable network that combines semantic structure
reconstructor and texture generator to fill in missing
regions exhibiting fine details.

II. RELATED WORK
A. IMAGE INPAINTING BY TRADITIONAL METHODS
At present, the image inpainting methods can be roughly
divided into two categories: traditional methods and deep
learning methods. Traditional methods [1]–[5], [16], [17]
include diffusion-based and patch-based techniques; these
methods mainly use low-level features to repair images.
Diffusion-based methods [3], [4] utilize the texture around
the missing area to fill the missing region by propagation.
Therefore, these can only be used to repair small holes. Patch-
based methods [2], [17], [18] can search for similar patches
from the remaining areas and copy the patches to the missing
areas. Patch-based methods can use remote information to
recover the missing region due to not limited by distance;
thus, Patch-based methods can recover the image with the
large missing area. Patch-based methods usually consume a
great number of computing resources in calculating the simi-
larity of patches. Therefore, a fast nearest neighbor searching
algorithm is proposed in PatchMatch [2] to reduce computa-
tional cost. Furthermore, Hays and Efros [17] propose a data-
driven inpainting method, which fills the holes of images by
finding the closest image patch in a huge database of pho-
tographs gathered from the Web. In summary, the diffusion-
based and patch-based methods assume missing patches can
be found somewhere in the known regions; thus, they cannot
produce novel image contents with meaningful structures.

B. IMAGE INPAINTING BY DEEP GENERATIVE MODELS
About the deep learningmethods, after the Generative Adver-
sarial Networks [19], Context Encoders [6] firstly utilizes
deep neural networks to generate the missing area. Context
Encoders fills the holes by extracting the features from the
original image. However, the disadvantage of this method is
that the resulting image contains too many visual artifacts.
And then, to obtain a more realistic inpainting effect, dif-
ferent people proposed different solutions. Iizuka et al. [7]
extend the work of Context Encoders and propose local
and global discriminators to make the image more realis-
tic. The Shift-Net [9] uses a U-Net architecture with a spe-
cial shift-connection layer to guide the image generation.
Zhang et al. [20] regard the semantic image inpainting task
as a curriculum learning problem, thus propose a step-by-step
repair strategy from outside to inside. This method is able to
shrink the corrupted regions in original images progressively.
Li et al. [21] propose a Recurrent Feature Reasoning module;
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FIGURE 2. Overview of our inpainting framework(including the framework details of the SCA module). The incomplete image Iin and the mask M are fed
into the Gs to predict the full semantic segmentation map Spred . The generator Gt takes the mask M and incomplete image Iin as input to generate the
final result, guided by the semantic structure map Spred .

the module recurrently infers the hole boundaries of the
convolutional feature maps and then uses them as clues for
further inference. As the attention mechanism is proposed
and applied [22], [23], Liu et al. [24] introduce the coherent
semantic attention layer to improve the continuity of adjacent
pixels. Wang et al. [25] introduce a special multistage atten-
tion module that considers structure consistency and detail
fineness. To generating fine-grained textures, Xie et al. [26]
and Yu et al. [10] introduce the attention mechanism in image
inpainting. Xie et al. introduce learnable attention maps to
update the mask dynamically. Yu et al. propose the reason for
the image with distorted structures and blurry textures is the
ineffectiveness of convolutional neural networks in explicitly
borrowing or copying information from distant spatial loca-
tions. Therefore they introduce the contextual mechanism to
enhance the model of long-term correlations.

To make full use of the mask information, different
researchers propose different novel convolution methods [8],
[27], [28]. Liu et al. [8] propose a partial convolution to distin-
guish the effective area of the original image. Ma et al. [28]
propose region-wise convolutions to deal with effective and
ineffective regions. To further extract the information from
the original image, those methods [29]–[31] introduce the
multi-scale mechanism. Reference [30] used two kinds of
patches with different sizes to calculate the features sepa-
rately, and the method combines different features to repair
the image. Wang et al. [31] propose a network to further
extract image features by combining information from dif-
ferent receptive fields.

In network structure, these papers [11], [32]–[34] have
introduced the two-stage network. Nazeri et al. [11] propose
a method named EdgeConnect that recovers the edge of the
missing region in the first stage and fills in the missing
regions using edge as a priori in the second stage. How-
ever, the edge is not an ideal semantic structure because it

lost much area information and color information. More-
over, the unclear subordinative relationship between the edge
and object will mislead subsequent texture generation, thus
edges cannot provide global semantic information. (e.g., It is
hard to determine whether those edges belong to a specific
object.). In SPG-Net [34], Song et al. introduce additional
manual labels but this is not available in the practical appli-
cation, thus, this method can not be used in image inpainting.
On the other hand, there are few types of manual labels
in the supervised dataset (e.g., The dataset Cityscapes [35]
used in SPG-Net [34] has only 33 types of labels, and an
image may only contain 6-7 kinds of labels), and coarse
labels cannot satisfy the demands of image inpainting to
generate fine-grained textures. Furthermore, the area with
the same semantic labels may have different textures in
image inpainting(e.g., continuous but different windows),
thus the same label will mislead the process of inpainting
in these areas. And then, Liao et al. [36] propose a self-
evaluation mechanism for image inpainting through segmen-
tation confidence scoring to localize the predicted pixels in
the supervised dataset. Recently, some researchers utilize
explicit image structure knowledge for inpainting. Structure-
Flow [37] applies a two-stage model that splits the inpainting
task into two stages: structure reconstruction and texture
generation. Yang et al. [38] introduce a structure embedding
scheme which can explicitly provide structure preconditions
for image completion.

At the same time, some people think that the result of image
inpainting should not be unique; thus, Cai and Wei [39] and
Zheng et al. [40] proposed those methods that can obtain
multiple reasonable results from one original image.

III. OUR APPROACH
The framework for our inpainting network is shown in Fig. 2.
Our model consists of two stages: the semantic structure
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Algorithm 1 Semantic Structure Extractor

Input: I = {in ∈ R3
}
N
n=1

Output: J {jn ∈ Z}Nn=1
Net.parameter = Init(Xaiver)
{Sk}Kk=1 = PreSeg({in}Nn=1)
for t = 1 to T do
{xn}Nn=1 = Net({in}Nn=1)
for k = 1 to K do
jmax = argmax|jn|n∈Sk
c′n = cmax for n ∈ Sk

end for
end for
L = Softmax(xn, c′n)
Net.SDG(L )

reconstructor Gs and the texture generator Gt . The semantic
structure reconstructor Gs is responsible for generating the
complete semantic structure map of the image. The texture
generator uses Gs output as a global structure to guide the
texture generator Gt to generate fine-grained texture and
output the final image.

A. SEMANTIC STRUCTURE RECONSTRUCTOR
The goal of segmentation is to make the image simplified and
meaningful, and its results can represent the global semantic
structure in image inpainting well. To deal with the resulting
image with incomplete objects, we introduce the semantic
segmentation map as global semantic structure guidance to
generate realistic images.

1) SEMANTIC STRUCTURE EXTRACTOR
Our semantic structure extracting algorithm is as shown in
Algorithm 1. Firstly, according to the texture similarity and
spatial distance, we pre-classify different areas of the image
by the pre-classification. Then, the deep neural network is
trained to approximate the result of the pre-classification [41]
and merge similar regions.

We compared several different pre-classification algo-
rithms(the experimental detail as shown in Section IV-B4),
and finally we employ Felzenszwalb [41] as the pre-
classification algorithm.

The autoencoder network structure of semantic structure
extractor is shown in Fig. 3. Inspired by SENet [42], we pro-
pose a three-layer segmentation network with alternating
3 × 3 convolution kernels and 1 × 1 convolution kernels.
To make the picture input to ReLU close to the normal
distributionN (0, 1), we put batch normalization before ReLU
by referring [43].

2) THE ENCODER-DECODER OF GENERATOR
Let Igt be the ground truth image, and the Sgt is the
semantic structure map (form semantic structure extractor)
of Igt . Image mask will be denoted by M, and image
mask M as a pre-condition (1 for the missing region, 0 for

FIGURE 3. Overview of our CNN network framework in the semantic
structure extractor, we use alternating 3 × 3 convolution kernels and 1 × 1
convolution kernels in our network.

background). Therefore, the input of the incomplete image
is Iin = Igt � (1−M), and Sin = Sgt � (1−M) denotes the
input of the incomplete semantic structure map. Here, �
denotes the Hadamard product. The process of our semantic
structure reconstructor Gs can be expressed as

Spred = Gs(Iin,Sin,M) (1)

where Spred is the predicted semantic structure map of the Igt ,
and Spred is obtained from Iin andM by Gs.

We use the reconstruction lossLs`1 of theGs to measure the
`1 distance between Spred and Sgt .

Ls`1 =
∥∥Spred − Sgt

∥∥
1 (2)

To make the distribution of Spred close to the distribution
of Sgt , we adopt the generative adversarial framework [19] in
the generator Gs. Thus, the adversarial loss Lsadv is defined
as:

Lsadv = E[log(1− Ds(Gs(Iin,Sin,M)))]

+E[logDs(Sgt )] (3)

whereDs is the discriminator of the semantic structure recon-
structor. Therefore, the complete loss of the semantic struc-
ture reconstructor is:

min
Gs

max
Ds

Ls(Gs,Ds) = λs`1L
s
`1
+ λsadvL

s
adv (4)

where λs`1 and λ
s
adv are hyperparameters.

B. TEXTURE GENERATOR
The framework for our texture generator network is shown
in Fig. 2. Unlike the traditional methods that mainly rely on
copying, the deep learning method extracts features through
convolution for image inpainting. However, the receptive
field in each layer of convolution is limited by the size of
the convolution kernel. It is difficult to establish a strong
relationship between pixels that are far apart. Furthermore,
after multiple layers of convolution and pooling, it is impos-
sible to reconstruct fine-grained objects from a theoretical
level due to the loss of information. To solve the above
problems, we introduce the SCA modules to make each pixel
is calculated by the element-wise sum in the spatial and
channel information in image completion. Inspired by [44],
to establish the connection between distant pixels, we extend
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FIGURE 4. Qualitative comparisons on Paris StreetView dataset. Results of Shift-Net [9], EdgeConnect [11] and Ours. By comparison, we can conclude
that our method has obvious advantages in maintaining the integrity of objects.

the self-attention mechanism in the task of image inpainting.
In order to establish the relationship between channels and
obtain the different features of different channels, we extend
a self-attention mechanism for channels in image inpainting
by referring [42], [45].

The texture generator network Gt employs Spred as the
global semantic structure from Gs, the mask M and Iin as
input to yield realistic result results. The processing ofGt can
be defined as:

Ipred = Gt (Iin,Spred ,M) (5)

where Ipred denotes the final image output.We use a joint loss
to ensure that the generated image is realistic enough. The
joint loss consists of reconstruction loss Lt`1 , spatial-channel
loss Ltpc, and adversarial loss Ltadv. The reconstruction loss
Lt`1 of Gt is:

Lt`1 =
∥∥Ipred − Igt

∥∥
1 (6)

and the adversarial loss of Gt is:

Ltadv = E[log(1− Dt (Gt (Iin,Spred ,M)))]

+E[logDt (Igt )] (7)

In our work, we introduce the spatial-channel loss Ltsc in
texture generator; we will explain this loss in detail in
Section III-B2. Finally, taking reconstruction loss, spatial-
channel loss, adversarial loss into account, our overall loss
of Gt is:

min
Gt

max
Dt

Lt (Gt ,Dt ) = λt`1L
t
`1
+ λt`scL

t
sc

+λtadvL
t
adv (8)

where λt`1 , λ
t
`sc
, λtadv are hyperparameters.

1) SCA MODULE
In the SCAmodule, we calculate spatial attention and channel
attention separately, and integrate these two kinds of attention
together by 3× 3 convolution.

a: SPATIAL ATTENTION CALCULATION
As shown in Fig. 2, we first feed F ∈ RC×H×W into a 1 × 1
convolution layer to obtain

{
Fpq,F

p
k ,F

p
v
}
∈ RC×H×W . The

purpose of using 1 × 1 convolution is to reduce the number
of channels in spatial attention to reduce the computational
burden, therefore we use Fpv · Sp to restore the number of
channels to the value input by this module. Next, we reshape
the Fpq,F

p
k to R

C×N , where N = H ×W is the number of the
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FIGURE 5. Qualitative comparisons on Place2 dataset. Results of EdgeConnect [11], StructureFlow [37] and Ours. By comparison, we can conclude that
our method has obvious advantages in restoring the edges of objects in the image inpainting.

pixels. And then we feed Fpq · F
p
k
T into a softmax layer to get

the spatial attention map Sp ∈ RN×N .

spji =
exp(Fpq i × F

p
k j)∑N

i=1 exp(F
p
q i · F

p
k j)

(9)

where spji represents similarity of the i’th position and j’th
position. Meanwhile, after reshaping the Fpv toRC×N , we per-
form a matrix multiplication between Fpv and the transpose
of Sp, and reshape the result to RC×H×W , we multiply the
result by α, and then perform an element-wise sum to get
Ep ∈ RC×H×W :

Epj = α
N∑
i=1

(spjiF
p
v i)+ Fj (10)

where α is initialized as 0 and gradually learns to assign more
weight [23]. Therefore, this means that each pixel position
information is weighted by all pixel information. The purpose
of the above operation is to use the learned long-distance
dependency to act on the original map F to strengthen the
global dependency of local features selectively.

b: CHANNEL ATTENTION CALCULATION
Each channel map represents different high-level features of
the image, so we introduce the channel attention to explicitly

model interdependencies between channels. Becausewe need
to calculate the correlation between channels, we design a
different network structure for the channel attention calcu-
lation than spatial attention calculation. We remove the 1× 1
convolution that reduces the number of channels, and we
prove the effectiveness of this operation through experiments
(the experiment details are shown in in Section IV-B5).

The framework for channel attention module is shown
in Fig. 2. We reshape the F ∈ RC×H×W to RC×N , then after
performing a matrix multiplication between F and the trans-
pose of F, the results Fp · FpT through softmax layer to get
the channel attention map Sc ∈ RC×C :

scji =
exp(Fi · Fj)∑N
i=1 exp(Fi · Fj)

(11)

where scji represents the similarity of the i’th channel and
j’th channel. Then, we perform a matrix multiplication of
F and the transpose of Sc. After multiplying F and Sc with
the parameter β, the result performs an element-wise sum
operation with F to get the Ec ∈ RC×H×W :

Ecj = β
C∑
i=1

(scjiFi)+ Fj (12)

13002 VOLUME 9, 2021



J. Qiu et al.: Semantic-SCA: Semantic Structure Image Inpainting With the SCA

FIGURE 6. Qualitative comparisons in centering masks cases. Results of CA [10], Shift-Net [9] and our method on the Celeba dataset. The experiments
show that our method can obtain competitive results in centering inpainting tasks.

where β gradually learns a weight from 0. The final feature
map is weighted by all channel information, thus the texture
generator can achieve better results in cross-channel informa-
tion integration capability.

2) SPATIAL-CHANNEL LOSS
To correctly guide the network to obtain the spatial informa-
tion and channel information, we propose the loss Lsc for the
texture generator.We set the spatial feature space and channel
feature space as the target for Igt and Ipred to compute the L2
distance.

Ltsc =
∑
y∈M

‖Ss(Ipred )− Ss(Igt )‖2

+
∥∥Sc(Ipred )− Sc(Igt )∥∥2 (13)

where Ss and Sc denote the spatial attention map and the
channel attention map separately in SCA module(as shown
in Fig 2).

IV. EXPERIMENTS
In our work, we evaluate our method on three pub-
lic datasets: Paris StreetView [15], Celeba [13], and
Places2 [14]. Places2 has 1.6 million training images from
365 scene categories, and the scene categories selected from

Places2 are butte, canyon, field-road , field-cultivated , field-
wild , synagogue-outdoor , tundra, valley.

A. IMPLEMENTATION DETAILS AND TRAINING
We use the original partition rules of the three datasets to
divide the training set, validation set, and test set. The Paris
StreetView contains 14,900 training images and 100 test
images.We have selected eight categories from Places2. Each
category has 5,000 training images, 900 test images, and
100 validation images. The CelebA contains 202599 images.
We divide 162770 training images, 19867 validation images,
and 19962 test images. And all the dataset image size is
256×256.We obtain irregular masks from thework of PC [8].
These masks are classified based on different hole-to-image
area ratios (e.g., 0-10(%), 10-20(%), etc.). The irregular
mask dataset includes 55,116 training images and 12,000 test
images.

Generators Gs, Gt are trained separately until the losses
converge. Several residual blocks [49] are added to further
process the features. For semantic structure reconstructor
training, given the ground truth image Igt , the incomplete
image Iin, and the mask M, they were input to the generator
Gs to obtain an image Spred of the predicted semantic struc-
ture map. Furthermore, the semantic structure reconstructor
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FIGURE 7. Semantic structure Effect Comparisons. Compared with Canny
Edges Detection Algorithm [47] in EdgeConnect [11], our method can
retain more color and area information. And comparative experimental
results between manual labels in SPG-Net [34] and our method show that
our method can retain more detailed semantic information. Experimental
results show that our method can get a clearer semantic structure map
than RTV smooth method [48] in StructureFlow [37]. Relative to the [12],
our method can extract more accurate semantic structure information.

appliesLs`1 andL
s
adv as the guide to update the parameters and

weights of the generator Gs to make the predicted semantic
structure map Spred of the image as close to semantic structure
map Sgt of the ground truth as possible.When training texture
generator, taking the ground truth image Igt , the incomplete
image Iin, the semantic structure map Spred , and the mask M
as input, the generator Gt outputs the final result. After that,
we finally perform joint training on Gs and Gt .
Like other deep learning methods, we only use the mask

M and the incomplete image Iin to generate the semantic
structure map Spred completely during the testing time. Then,
we use the semantic structure map Spred , the maskM, and the
incomplete image Iin to complete the final image repair and
get the final repair result Ipred .
Our model was trained on a single NVIDIA GTX

1080Ti(11GB) with a batch size of 16. We used the Adam
algorithm [50] to optimize our model with a learning rate of
1×10−4 and β1 = 0.5, β2 = 0.9. The training of CelebA [13]

FIGURE 8. The impact of different pre-classification methods on semantic
structure map. (a) Felzenszwalb [41] (b) SLIC [51] (c) Quick Shift [52]
(d) Compact Watershed [53].

model, Places2 [14] model, and Pairs StreetView [15] model
took roughly four days, six days, and three days respectively.

B. COMPARISONS
For better evaluation, we conducted experiments on both
settings of centering and irregular masks, and we get the
irregular mask from the work of [8]. The inpainting results
of the comparison come from the public pre-trained model
from these methods [9]–[11].

1) QUALITATIVE COMPARISONS
The irregular inpainting results of the qualitative comparison
are shown in Fig. 4 and Fig. 5. We can find that compared
with Shift-Net [9], EdgeConnect [11] can get better texture
details. However, we also find that these methods cannot
maintain the semantic integrity of the object. For example,
in the comparison result of the first row and the second row
in Fig. 4, our method can better maintain the integrity of the
object and achieve better results. In the comparison results of
the third row and the fourth row in Fig. 4, our method has less
distortion and achieves clearer results (e.g., the repair results
of windows). In Fig. 5, compared with EdgeConnect [11] and
StructureFlow [37], we can clearly find that our method has
the advantages of maintaining object integrity and restoring
the edges of the object.

The centering inpainting results of the comparison are
shown in Fig. 6. Compared with the CA [10], the Shift-
Net [9] has achieved very realistic results, and the results
of the Shift-Net are smoother than ours. In the comparison
of results, our model can get clearer and sharper inpainting
results.
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TABLE 1. Comparison results with the random hole between CA [10], PConv [8], EdgeConnect [11], StructureFlow [37] and ours in the Places2 dataset. We
use structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and Fréchet Inception Distance (FID) [46] as the quantitative indicators of the
model.

TABLE 2. Comparison results with centering hole between CA [10],
SH [9], CSA [24] and ours in the CelebA dataset. We use structural
similarity index (SSIM) and peak signal-to-noise ratio (PSNR) as the
quantitative indicators of the model.

TABLE 3. Comparison results with centering hole between SH [9],
EdgeConnect [11], StructureFlow [37] and ours in the the Paris StreetView
dataset [15]. We use structural similarity index (SSIM) and peak
signal-to-noise ratio (PSNR) as the quantitative indicators of the model.

2) QUANTITATIVE COMPARISONS
The results of the quantitative comparison are shown
in Table 1, Table 2 and Table 3. For the irregular mask,
as shown in Table 1, when the inpainting tasks involved in
large-area defects or heavy structure, we can find that our
model outperforms all the methods on these measurements
with large missing areas (e.g., when the missing area reaches
40-60%). As shown in Table 2 and Table 3, our method
can also obtain competitive results compared with existing
methods for the centering mask.

3) USER STUDY
Besides, The user study is conducted on Celeba, Paris
StreetView, and Places2 for subjective visual quality evalu-
ation. We randomly select 100 images from the test set cov-
ering different irregular holes, and the inpainting results are
generated by Shift-Net, EdgeConnect, and ours. We invited
30 volunteers to vote for the most visually plausible inpaint-
ing result. For each test image, the five inpainting results are
randomly arranged and presented to the user along with the
input image. The evaluation results are shown in Table 4. Our
approach has a better repair effect in repair tasks with obvious
boundaries, such as in Paris StreetView and Places2.

4) DIFFERENT STRUCTURE COMPARISONS
As the semantic structure information guiding image gener-
ation, the semantic structure map plays an important role in

FIGURE 9. The comparison of the time between our approach and [12] for
processing an image. The image size is 256 × 256 in on Paris StreetView
[15] and Places2 [14], the image size is 500 × 375 in ImageNet [54], and
the image size is 2048 × 1024 in Cityscapes [35].

image inpainting. We compared several different structural
representations in image inpainting, as shown in Fig. 7. In the
generated semantic structure effect, compared with Edge-
Connect [11], our method retains more color information and
boundary information. Furthermore, our method can better
retain the details of semantic structure than SPG-Net [34].
And the structure obtained by our method is more accurate
than the method proposed by Kanezaki [12]. Simultaneously,
the experimental results of the fourth line in Fig. 7 show that
our method can get a clearer structure map than RTV smooth
method [48] used in StructureFlow [37]; moreover, as Fig. 9
shows, our method also has a great advantage over themethod
proposed by AsakoKanezaki et al. in the efficiency compari-
son. Therefore, these prove that our method is more suitable
for image inpainting tasks.

At the same time, we also conducted experiments on the
impact of different pre-classification methods. As shown in
the experimental results in Fig 8, compared with SLIC [51],
Quick Shift [52] and Compact watershed [53], we can find
that semantic structure extractor with Felzenszwalb [41] can
hit more correct edges and get a more precise semantic struc-
ture map.

5) THE NETWORK FRAMEWORK IMPROVEMENTS IN THE
CHANNEL ATTENTION CALCULATION
In the channel attention calculation, we use a different net-
work structure from the spatial attention calculation. Since
we need to calculate the relationship between each channel,
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FIGURE 10. The effect of the semantic structure reconstructor. The (a) is
the input of this ablation study, and (b),(c) are results of the model
without semantic structure reconstructor or with semantic structure
reconstructor.

TABLE 4. The evaluation results of the user study. The fooling rate is
provided in this table.

FIGURE 11. The effect of the semantic structure reconstructor. The (a) is
the input of this ablation study, and (b),(c) are results of the model
without semantic structure reconstructor or with semantic structure
reconstructor.

we removed the 1×1 convolution used to reduce the number
of channels in spatial attention calculation. As shown in the
experimental results in Fig 10, we prove that removing the
1×1 convolutional can eliminate artifacts generated in image
inpainting.

C. ABLATION STUDIES
In this section, we analyze how each component of our model
contributes to the final performance from three perspectives:
semantic structure, SCAmodule and the spatial-channel loss.

FIGURE 12. The effect of the SCA Module. (b),(c) are results of our model
without or with SCA module by input (a).

FIGURE 13. The effect of the spatial-channel loss. Given the input (a),
the images (b),(c) are the results when using spatial-channel loss and
without using the spatial-channel loss, respectively.

TABLE 5. The evaluation results of ablation studies. We use SSIM and
PSNR as our criteria.

1) SEMANTIC STRUCTURE ABLATION
In our method, we assume that the integrity of the semantic
structure is very significant, so in this ablation study, we only
use the later stageGt without the semantic structuremap Spred
to complete the repair work. The results of this ablation study
are shown in Fig 11 and Table 5. And the results present that
our semantic structure reconstructor is effective in maintain-
ing the integrity of the semantic structure information in the
image inpainting.

2) SCA MODULE ABLATION
To verify the effect of SCA module, we design such an abla-
tion experiment: Remove the spatial and channel module and
only keep a single Encoder-Decoder structure in the texture
generator Gt . The experimental results are shown in Fig 12
and Table 5. In Fig 12, we found that the results of using
SCA module have better performance at the guardrail in
generated image than without SCA modules, thus, we prove
that the SCA module has certain advantages in generating
fine-grained resulting images.

3) SPATIAL-CHANNEL LOSS ABLATION
We conduct further experiments to evaluate the effect of
spatial-channel loss. We add and drop out the spatial-channel
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loss to train the inpainting model. The experimental results
are shown in Fig 13 and Table 5. When the model does not
have the spatial-channel loss, the generated image presents
obvious artifacts. The obvious artifacts may be caused by
the lack of guidance of the spatial-channel loss in the image
generation process. The spatial-channel loss helps to deal
with these issues.

V. CONCLUSION
In this paper, we present a novel deep learning model for
image inpainting tasks. We first introduce a new method to
restore the semantic structure map based on the unsupervised
segmentation and the spatial and channel attention module
(SCA module) to complete the image repair. Our model is
divided into two stages: semantic structure reconstructor and
texture generator. First, the semantic structure reconstructor
restores the semantic structure map by the incomplete image
and the mask. Experiments demonstrate that the improved
semantic structure extractor can well represent the global
structure information, and we proved that semantic structure
map plays an important role in inpainting tasks by experi-
ments. Then, the texture generator restores the texture detail
by SCA module. Furthermore, the spatial-channel loss is
introduced in the texture generator to enhance the SCA mod-
ule learning ability for the ground truth feature distribution
and training stability. Finally, we verify that our proposed
methods can bring stable performance gain to the final results.
Especially when the inpainting tasks involved in large-area
defects or heavy structure, the experimental results show that
our method has a higher repair quality than the existing state-
of-the-art approaches.
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