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ABSTRACT The traditional financial models used in bond default mainly focus on the analysis and
prediction of bonds issued by listed companies, and they lack early warning abilities for a large number
of bonds of nonlisted companies. At the same time, there is a great deal of relational data and category
data in bond data. It is of great significance for bond default prediction to use these data reasonably, which
may bring considerable revenue to companies in the near future. Therefore, this paper uses multisource
information from bonds and issuers as well as macroeconomic data to predict bond defaults based on a
knowledge graph and deep learning technology. On the basis of constructing a bond knowledge graph,
knowledge representation learning technology is used to vectorize the knowledge in the graph, and the
extracted vectors are inputted into the deep learning model as features to forecast bond default. The applied
model is the deep factorization machine model, and good prediction results are obtained.

INDEX TERMS Default prediction, deep learning, DeepFM, knowledge graph, knowledge representation
learning.

I. INTRODUCTION
With the recent epidemic of credit risk in the bond market,
bond defaults have occurred frequently in China, especially
in 2018. Thus, it is of great significance for bond investors
and practitioners to use computer technology to predict bond
default based on objective data.

Scientists have done more research on default predic-
tion and credit risk measurement. Altman [1] uses mul-
tiple discriminant method and proposes a Z-score credit
scoring model to analyze the probability of bankruptcy or
bank default. Ohlson [2] applies a logistic function to the
calculation of default probability. KMV puts forward the
KMV model, which uses stock price and the public financial
data of listed companies to measure the expected default rate
of loans and bonds [3]. Morgan [4] introduced the Credit
Metrics model to quantify credit risk.

At present, the traditional financial model KMV model is
mainly used to predict bond defaults in China [5], [6]. Wei [7]
combines the KMV model and the Logit regression model to
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study 12 listed companies and 115 control companies that
have bond defaults. The results shows the validity of the
classical model and predicts their default risk without relying
on the actual sample default data. Hu [8] uses stochastic
forest to analyze the default characteristics of bonds and
concludes that the types of major shareholders and proportion
of shareholders play important roles in default prediction.
KMV is more effective for bonds issued by listed companies,
but it lacks early warning ability for a large number of bonds
issued by nonlisted companies.

With the development of machine learning, neural net-
works, support vector machines and other models have grad-
ually begun to be used in credit risk prediction. Dutta and
Shekhar [9] used a neural network to forecast bond credit
rating, which proved the effectiveness of the neural network.
Lee [10] uses a support vector machine to predict enterprise
credit rating.

Bond default prediction is a data mining problem. In the
field of data mining, deep learning has been successfully
applied in recommendation systems, including in Click
Through Rate (CTR) and Click Value Rate (CVR) pre-
diction. The Wide&Deep model [11] was proposed by
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Google in 2016. The model integrates linear model Logis-
tic Regression (LR) and Deep Neural Networks (DNN),
which gives the model memory and generalization abil-
ity. On this basis, scholars have proposed a series of
CTR prediction models combined with in-depth learning,
such as Factorization-machine supported Neural Network
(FNN) [12], Product-based Neural Network (PNN) [13],
and Deep Factorization Machines (DeepFM) [14] and have
achieved good results for CTR problems.

With the rapid development of the knowledge atlas,
researchers have realized that knowledge graphs can be used
as a feature supplement and input into in-depth learning to
improve the effect of the model. Zhang et al. [15] proposed
the CollaborativeKnowledge Base Embedding (CKE)model,
which embeds the structured knowledgemap into the network
through the TransR model based on Bayesian improvement.
The film vectorization representation is obtained, which is
fused with the text knowledge features and image knowl-
edge features. The representation is inputted into the col-
laborative integrated learning framework, and a personalized
recommendation is made by the fusion of this knowledge.
Experiments show that film vectorization representation
can effectively improve the performance of the model.
Wang et al. [16] constructed four medical knowledge maps
with medical data, used TransR and the LINE model [17] to
express the knowledge graph, generated expression vectors,
and finally recommended drugs for patients through joint
learning. Wang et al. [18] applied a knowledge map to news
recommendations. A content-based deep knowledge percep-
tion network (DKN) was proposed, and the given knowledge
map was embedded to improve the performance of news
recommendations.

Although the application of knowledge representation
learning in deep learning models is still in the exploratory
stage, existing models prove that a knowledge graph, as a
constraint of prior knowledge, can improve the performance
of the model to a certain extent.

Because there are many types of characteristics of bond
information, including data, text, and some implied holding
relationships, the use of a deep learning model alone cannot
well reflect the complex relationship in the bond market,
while the importance of the time series data characteristics
cannot be reflected directly and simply through the estab-
lishment of a knowledge graph for classification prediction.
In the bond prediction experiment, the relationship between
the hidden layer and the historical time series data is equally
important.

Therefore, in order to improve the accuracy and rationality
of prediction, we build a hybrid model based on a knowledge
graph and deep learning. According to the characteristics of
bond information, including multiple relationships, we build
a bond knowledge graph. We use the knowledge to represent
the learning model to learn the semantic and structural infor-
mation of the knowledge graph, as prior knowledge of bond
default and supplementary input to the deep learning model
to improve the effect of the hybrid prediction model.

The rest of this paper is organized as follows: In Section 2,
data acquisition and preprocessing are introduced in detail.
Section 3 and 4 present the knowledge vector representation
of the bond knowledge graph and bond default prediction
model based on optimized DeepFM. The detailed experi-
ments and results analysis are given in Section 5. Finally,
the conclusion and future studies are given in Section 6.

II. DATA ACQUISITIONAND PREPROCESSING
This paper mainly uses the credit bonds of the interbank
and exchange market as the research object to forecast bond
default.

A. DATA ACQUISITION
We classify bond related data into four acquisition categories.

1) BOND BASIC DATA
Bond data mainly includes the following three types: bond
information, bond issuer information and credit analysis indi-
cators. We obtain bond data from the Wind information
platform. The specific indicators of each part are shown
in Table 1.

TABLE 1. Bond basic data from Wind.

We use Comma-Separated Values (CSV) format to store
the information. Since the first bond default occurred in 2014,
we choose bonds that are issued after January 1, 2010, and
maturity between January 1, 2014, and September 1, 2018.

The financial information of a bond issuer can well reflect
a company’s operating situation. The company’s earning abil-
ity and debt situation will affect whether the company has the
ability to pay bonds. This paper obtains financial data such as
net asset yield, net sales interest rate, liability growth rate, and
current liabilities/total liabilities of bond issuers through a
Python quantization interface provided by theWind platform.

2) MACROECONOMIC DATA
Macroeconomic factors also have a great impact on bond
default. Currently, relevant studies have shown that bond
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default has a greater relationship with the growth of Gross
Domestic Product (GDP) and Clock cycle Per Instruc-
tion (CPI) in the macroeconomy [8]. This paper uses the
Python quantitative interface provided by Wind to obtain
GDP growth rate, regional GDP growth rate, CPI growth
rate and industry index from January 2010 to August 2018.
Among these, the GDP growth rate is the cumulative year-on-
year constant price of GDP, and the data frequency is quar-
terly. CPI growth rate is cumulative year-on-year, the data
frequency is monthly; and the industry index frequency is
daily. Specific indicator information is shown in Table 2.

TABLE 2. Macroeconomic indicators.

3) BOND ANNOUNCEMENT
Issuer announcement information is also helpful to the pre-
diction of bond default. The obtained bond announcement
information is mainly used for data verification, because
the basic bond information and issuing company informa-
tion are from the interface provided by the Wind terminal,
which is needed to extract the important features of bond
announcements to verify the accuracy of the data obtained.
In addition, by consulting the announcement, we can further
understand the major bond issues and the latest operating
financial situation of the issuer, which is helpful informa-
tion for verifying and analyzing our experimental predic-
tion results. We obtain the bond announcement information
through aweb crawler that stores the information in aMySQL
database. For exchange bonds, there are also various bond
market data. We obtain these market data through the finan-
cial data interface and data providers.

B. DATA PREPROCESSING
We regard the prediction of bond default as a two-class prob-
lem. For the bonds we analyze, we mark the bonds that have
substantive default as 1 and the bonds that have not defaulted
as 0, with a total of 118 defaulted bonds. For defaulted bonds,
there are twomain types. One is bonds that cannot pay interest
or principal and interest at maturity and have a default time
as the day of maturity or the next 1-2 days; the other is
substantive default caused by failure to pay interest on the
annual or designated interest date during the bond life, which
is prior to the maturity date of the bond. For the obtained
macro data, we take the corresponding index value of the
half year before the maturity or default of the bond as the
characteristic value. Taking the growth rate of regional GDP
as an example, for each bond, first the region is matched,
and then the corresponding index value is obtained before the

bond maturity date. As the GDP growth rate is released once
a quarter, it can be obtained by pushing the GDP growth rate
from half a year ago forward by two quarters.

To avoid the influence of data format, missing data and
value range on subsequent experiments, we cleaned the bond
data.We normalize the numerical data as shown in Formula 1.

xnorm =
x − xmin

xmax − xmin
(1)

In the formula, xnorm represents the normalized result
of the data, x represents the value before normalization,
xmin and xmax represent the minimum and maximum values
of samples in this feature, respectively.

After pretreatment, we find that bond-related data contains
more relational data, for example, shareholder relationship,
actual controller relationship, industry relationship and so
on. To make full use of these relationship data, we use a
knowledge graph to mine the implicit relationship between
bonds. At the same time, there are many kinds of bond data
characteristics, and the feature correlation on the surface is
low. Therefore, we use deep learning to discover low-order
and high-order characteristics and predict bond defaults.

III. KNOWLEDGE VECTOR REPRESENTATION OF THE
BOND KNOWLEDGE GRAPH
The whole process of knowledge vector representation based
on a bond knowledgemap is shown in Fig. 1, which is divided
into the following steps.

FIGURE 1. Knowledge vector representation based on a bond knowledge
graph.

• Construct a bond knowledge graph based on existing
data.

• For the constructed knowledge map, the knowledge rep-
resentation learningmodel is used to learn, and the entity
matrix and the relation matrix are obtained.

• Correspond the entity matrix with the entity to obtain the
required bond knowledge representation.

We use the structured data in Wind database as the
data source to construct the knowledge graph, and use the
top-down method to build the graph. We extract entities,
entity attributes and the relationship between entities, gener-
ate the data format required by the knowledge representation
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FIGURE 2. Bond knowledge graph.

model, and train the entity vector through the knowledge rep-
resentationmodel. The bond vector representation is obtained
from the trained entity matrix.

A. CONSTRUCTION OF THE BOND KNOWLEDGE GRAPH
There are two main ways to construct a knowledge graph:
top-down and bottom-up. Since the ultimate goal of con-
structing a bond knowledge map is to provide knowledge for
bond default prediction, we adopt a top-down approach to
build the graph. We use structured data obtained from Wind
as the source of the knowledge graph to construct the bond
knowledge graph.

In the graph, entities are represented by nodes, and the
edges connecting nodes represent the relationships between
entities. The relationship is directed, and the final result
is a directed graph. We take bonds, companies, provinces,
industries, people, and bond types as entities, including the
relationship between the issuance of bonds between compa-
nies, legal persons, chairmen, general managers and other
positions, shareholders, actual controllers and so on. At the
same time, the bond code, bond issuance time, maturity
time, company registered capital and so on are taken as the
attributes of the corresponding entities. Specific entities and
relationship information are shown in Table 3.

After this process, we extract the entity, entity attributes
and the relationship between entities and complete construc-
tion of the bond knowledge map. The Neo4j graph database
is selected as the storage database to store the constructed
bond knowledge map. Fig. 2 shows the knowledge map
we finally constructed, which contains 25242 nodes and
11 relationships.

TABLE 3. Entity, relation and attribute statistics.

Taking the bond ‘‘15 Le Shi 01’’ as an example,
Fig. 3 shows the query results of the bond. Different types
of entities are represented by nodes of different colors.

The corresponding node and the specific attributes of the
node are shown below, including the corresponding coupon
interest rate, total issuance, bond rating and other attributes.

B. KNOWLEDGE VECTOR REPRESENTATION OF THE
BOND KNOWLEDGE GRAPH
The knowledge map represented by symbols is difficult to
be directly used by computers. However, knowledge rep-
resentation learning can embed entities and relationships
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FIGURE 3. Bond knowledge graph query.

in a knowledge graph into vector space, express them in the
form of vectors, and input them into machine learning and
deep learning models as features. The training vectors retain
the semantic information and structure of the original graph.

We preprocess the bond knowledge map to generate
the data format needed for the knowledge representation
model. First, we numbered all entities; each entity was given
a unique id, and each relationship number was given a
unique ID. Then, according to the labeled entity ID and
relationship id, each pair of triples (h, t , r) is mapped with ID
to get triples in the form of head entity ID, tail entity ID and
relationship ID, where h is the head vector, t is the tail vector,
and r is the relationship vector. The knowledge representation
of learning document generated from the knowledge graph
after the above processing is shown in Table 4.

TABLE 4. Knowledge representation learning documents.

The core idea of the knowledge representation model is to
embed the entities and relationships in the knowledge graph
into the m-dimensional space and learn a low-dimensional
dense vector for each entity. The vector contains the similarity
between entities and the network structure information of
the graph. Knowledge representation learning reduces the
high dimension and heterogeneity of the knowledge graph
and reduces the extra computational burden caused by the

introduction of the knowledge graph. At the same time,
the continuous low-dimensional vector can also be easily
inputted into machine learning, deep learning and other mod-
els, so that the model can make better use of the symbolic
knowledge in the knowledge graph and further improve the
performance of the model. The commonly used knowledge
representation models include the TransE model, which was
proposed by Borders in 2013 [19]. It is a knowledge repre-
sentation learning model based on translation. Wang et al.
proposed the TransH model in 2014 [20]. TransH maps the
relationship to a hyperplane, which balances the complexity
of the model and the ability to express it. Lin et al. proposed
the TransR model [21]. The TransE and TransH models
embed entities and relationships in the same vector space,
without considering that they are essentially different objects
that may not be well represented in the same vector space.
At the same time, an entity may have multiple semantic
attributes, which may correspond to different relationships.
Although TransH maps relationships to hyperplanes, it still
cannot break the constraints on entities and relationships in
the same space.

Therefore, for the preprocessed knowledge graph, we use
TransR as the training entity vector of the knowledge repre-
sentation model [21]. This model embeds entities and rela-
tionships into two different spaces, and the entities in the
entity space are projected into the relational space through
the entity-relational projection matrixMr . For triples (h, t , r),
head vectors h and tail vectors t are projected by projection
matrix Mr to obtain the projected head vectors hr and tail
vectors tr .

hr = hMr

tr = tMr (2)

hr and tr are connected by relational vectors r . Those
entities that were previously close to each other in physical
space would be far away from each other in some specific
relational space, as shown in Fig. 4.

The corresponding scoring function is defined as follows.

fr (h, t) = ‖hr + r − tr‖22 (3)

The loss function is defined as follows.

L =
∑

(h,r,t)∈S

∑
(h′,r,t ′)∈S ′(h,r,t)

[γ + fr (h, t)− fr (h′, t ′)]+ (4)

Here, γ is a marginal parameter, [x]+ is a hinge loss
function, and S ′(h,r,t) is a constructed error tuple.

When generating negative samples in the training process,
we choose the Bern negative sampling method in the TransH
model to generate negative samples, because this sampling
method is more reasonable than others. The sampling method
proposed in TransE is called the Unif sampling method,
and the sampling method proposed in TransH is called the
Bern sampling method. There is a many-to-one relationship
and a one-to-many relationship in the knowledge graph we
build. Taking many-to-one as an example, for bond-to-bond
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FIGURE 4. TransR model.

types, multiple bonds may correspond to the same bond type.
‘‘15 Le Shi 01,’’ ‘‘13 Xin Tian Yang,’’ and ‘‘13 Bai Chuan’’
bonds are all private placement bonds. In the case of many-
to-one, if the Unif sampling method is used to replace the
head and tail entities with the same probability, when entities
are randomly selected from the entity set to replace the tail
entities, the negative examples that are easy to generate are
not actually negative examples but are still correct triples.
Specifically, the known triples (15 Le Shi 01, bond type,
private placement bond) and (13 Xin Tian Yang, bond type,
private placement bond) are both correct triples. When only
Le Shi is present in the training set and generates a negative
example for the triple, it is possible to replace the header
entity ‘‘15 Le Shi 01’’ with ‘‘13 Xin Tian Yang’’ to generate a
triple (13 Xin Tian Yang, bond type, private placement bond)
that can be considered a negative example.

The Bern sampling method uses different probabilities to
replace the head and tail entities for many-to-one, one-to-
many, and many-to-many relation triplets. For many-to-one
relations, a larger probability replaces the tail nodes, and for
one-to-many relations, a larger probability replaces the head
nodes. This sampling method is more reasonable, so we use
this method to generate negative samples.

For relation r, tph represents the average number of head
entities corresponding to tail entities, and hpt represents the
average number of head entities corresponding to tail enti-
ties. In the construction of negative cases, the head node
is replaced by the probability tph

tph+hpt , and the end node is

replaced by the probability hpt
tph+hpt . That is, for many-to-one

relationships, a larger probability replaces the tail node, and
for one-to-many relationship, a larger probability replaces the
head node.

After model training, the following three matrices are gen-
erated: the entitymatrix, the relationmatrix and the projection
matrix. The bond vector from the entity matrix is shown
in Fig. 5.

FIGURE 5. Bond vector representation.

As shown in the figure above, the first column is the ID of
the bond, the second column is the name of the bond, and the
third column is the vector representation of the bond.

IV. BOND DEFAULT PREDICTION MODEL BASED ON
OPTIMIZED DeepFM
The Factorization Machines (FM) was proposed by Steffen
Rendle in 2010 [22]. It considers the correlation between
features and can learn from a sparse matrix very well. It is a
general model that can be used in any case where the feature
is a real value. In the general linear model, the features are
considered separately, without considering their relationship.
However, in fact, many of the features are related.

The general linear model is as follows:

y = w0 +

n∑
i=1

wixi (5)

It does not consider the association between features. The
FM model is proposed to solve the problem of how to com-
bine features. For simplicity, the second-order polynomial
model is generally discussed.

y = w0 +

n∑
i=1

wixi +
n−1∑
i=1

n∑
j=i+1

wijxixj (6)

Among them, n represents the number of features after one
hot, xi represents features i, and wo,wi, and wij are model
parameters. It can be seen that this model has more polyno-
mial parts than the general linear model, and xixj represents a
combination of features xi and xj. However, due to the sparse
sample data, the nonzero term of xixj will be few, and the lack
of training samples will lead to wij inaccuracy.

To find wij, a hidden vector vi = (vi1, vi2, · · · , vik) is
introduced for each feature xi. Parameter wij constitutes a
symmetric matrix W , which can be decomposed into W =
V TV , that is to say, each parameter wij = 〈vi, vj〉, so we can
get the following:

y = w0 +

n∑
i=1

wixi +
n−1∑
i=1

n∑
j=i+1

〈vi, vj〉xixj (7)

Among them,

〈vi, vj〉 =
k∑

f=1

vi,f · vj,f (8)

Finally, the second term of FM is simplified:

n−1∑
i=1

n∑
j=i+1

〈vi, vj〉xixj =
1
2

k∑
f=1

( n∑
i=1

vi,f xi

)2

−

n∑
i=1

v2i,f x
2
i


(9)

After simplification, the complexity of FM is optimized to
O (kn), that is, its time complexity is linear.

The FM algorithm extracts feature combination by the
implicit variable inner product of each one-dimensional fea-
ture. Although in theory, FM can model high-order feature
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combination, in fact, only second-order feature combination
is used because of the complexity of calculation.

Then, for the high-order feature combination, it can
be solved by the neural network of multilayer structure,
namely, DNN.

The concept of DNN comes from a typical multilayer
structure Multilayer Perception (MLP) in traditional neural
network, which consists of input layer, output layer and hid-
den layer. DNN can be understood as a neural network with
many hidden layers, and all layers are connected.

Although DNN can implicitly reflect the combination of
low-order and high-order features in the hidden layer, at this
time, the combination of low-order features cannot be mod-
eled separately. To solve this problem, Guo et al. [14] and
others at the Harbin University of Technology have integrated
DNN and FM model and proposed DeepFM model.

DeepFM [23], as a deep learning model in the field of
CTR prediction, can well learn low-order and high-order
combinatorial features without manual feature extraction and
has a strong ability to learn from sparse data. In the sample of
bond default prediction in this paper, there are many types of
features, which become sparse after one-hot encoding. At the
same time, these types of features have low correlation on
the surface. We need to use deep neural network to further
mine the association features. Therefore, the DeepFM model
is used to better learn the correlation characteristics between
bonds. Based on the DeepFM model, this paper introduces
the knowledge graph as feature embedding of the model and
proposes an optimized DeepFM model that integrates the
knowledge graph information.

A. CONSTRUCTION OF THE OPTIMIZED DeepFM MODEL
1) CONSTRUCTION OF DeepFM
For default forecasting, we hope to learn the characteristic
combination behind bond default. Low-order combination
features or high-order combination features may have an
impact on the final prediction results. DeepFM is composed
of factor decomposer FM and neural network DNN. Its model
structure is shown in Fig. 6.

As shown in the figure above, it is a parallel structure with
the same input shared at the bottom. DeepFM model solves
the problem of learning low-order and high-order features
at the same time. Its mainmodels can be expressed as follows:

ŷ = sigmoid(yFM + yDNN) (10)

In Formula 10, yFM is the output of FM, and yDNN is the
output of DNN. FM is responsible for extracting low-order
features, and DNN is responsible for extracting high-order
features. Finally, FM and DNN results are combined to acti-
vate the output.The model structure of the FM part is shown
in Fig. 7.

The Deep part is a fully connected DNN, which is used to
learn higher-order feature combinations. The network struc-
ture of the Deep section is shown in Fig. 8.

Unlike the input of image or voice classes, some of
the features of bond classes are very sparse after one-hot

FIGURE 6. Structure of the DeepFM model.

FIGURE 7. The model structure of the FM part.

FIGURE 8. Deep partial network structure.

encoding. Therefore, DeepFM adds an embedded layer
before the first hidden layer to convert the input vector into a
dense low-dimensional vector. The structure of the embedded
layer is shown in Fig. 9.

First, the feature is divided into different fields, and the
same field represents the same feature. For each input record,
only one neuron in a field has a value of 1, and the others
are all 0. That is, for the embedding process, only one neuron
in each field works. Suppose that k = 5, and the weights
Vi1,Vi2,Vi3,Vi4 and Vi5 of the five lines from the input layer
to the embedding layer connected with the neuron are the
hidden vectors Vi introduced in FM. DNN takes the hidden
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FIGURE 9. Structure of embedded layer.

vector Vi from FM as the weight of the embedded layer
network, which shares the weight.

The output of the embedded layer is:

a(0) = [e1, e2, · · · , em] (11)

In the formula, ei represents the embedding of the ith field,
and m is the number of fields. Then, a(0) is passed into DNN,
and the output of the next layer is:

a(l+1) = σ
(
W (l)al + bl

)
(12)

In the formula, a(l) represents the output, l represents the
number of layers, σ is the activation function, W (l) is the
weight of the model, and b(l) is the bias of the l layer. Finally,
DNN outputs a dense real-valued vector and combines a
SIGMOD function with FM output to get the final prediction
result. The DNN output is:

yDNN = σ
(
W |H |+1 · aH + b|H |+1

)
(13)

In this formula, |H | is the number of hidden layers.
FM and Deep share the same feature embedding, which

enables the model to learn low-order and high-order feature
interactions from the original features.

2) OPTIMIZED DeepFM
Based on DeepFM, this paper proposes a Deep Factorization
Machines-Knowledge Graph (DeepFM-KG) model that inte-
grates the semantic information of the knowledge graph. The
knowledge graph is embedded in the n-dimensional space by
representation learning, and the bond vector representation is
obtained. The model is combined with the results of FM and
DNN and output through the sigmoid layer. In the actual mod-
eling process, we use DeepFM’s idea of concurrent integra-
tion of FM and DNN to further design the network structure
for bond default prediction. At the same time, bond vectors
obtained from knowledge representation learning training are
added to the model training process, and the final training
output is obtained. The structure of the DeepFM model with
knowledge representation is shown in Fig. 10.

B. MODEL TRAINING AND OPTIMIZATION
1) TRAINING INPUT AND OUTPUT
The DeepFM model is a supervised learning model, so it is
necessary to design the corresponding training set. We input

FIGURE 10. Structure of the DeepFM-KG model.

embedding encoded discrete features such as provinces and
industries into FM as features. The DNN part of the neural
network accepts continuous data input and normalizes the
continuous features, such as the coupon rate at the time
of bond issuance and the proportion of large shareholders’
shareholding, and then inputs them into the DNN structure.
Finally, the output of FM, DNN and the corresponding bond
vectors from knowledge representation learning are put into
the sigmoid activation function for training, and the final
output results are obtained. The input of the model is shown
in Formula 14.

y = sigmoid(yFM + yDNN + yKG) (14)

In the formula, yFM represents FM output, yDNN represents
DNN output, and yKG represents vectors trained from the
bond knowledge graph.

2) NETWORK DESIGN
In construction of the DNN network, batch-normalization
is applied to the input of each layer, so the values of each
layer are passed down in an effective range, thus improving
the learning efficiency. The Rectified Linear Unit (ReLU)
function is selected as the activation function. The function
schematic is shown in Fig. 11. In the positive interval, its
derivative is constant, so the problem of gradient disappear-
ance is avoided, and the convergence speed of the model is
faster.

FIGURE 11. Diagram of the ReLU function.

3) OPTIMIZATION OF TRAINING METHOD
When training themodel, it is necessary to select the best opti-
mizer so the model can converge quickly and learn correctly,
while minimizing the loss function to the greatest extent.
Adaptive moment estimation (Adam) works well in practical
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application, so this paper uses Adam as an optimizer to train
the model in the construction of the DeepFM model.

The essence of the Adam algorithm is that the current gra-
dient updating utilizes the exponential decay mean m̂t of the
gradientmt at the previousmoment and the exponential decay
mean v̂t of the square gradient vt at the previous moment.
gt represents the first derivative of the objective function to
the parameters at time t. mt and vt can be obtained by the
following formulas.

mt = β1mt−1 + (1− β1) gt
vt = β2vt−1 + (1− β2) g2t (15)

According to the above formula, we can calculate:

m̂t =
mt

1− β t1
v̂t =

vt
1− β t2

(16)

Finally, the gradient updating method is:

θt+1 = θt − η ·
m̂t

√
n̂t + ε

(17)

In the formula, mt represents the gradient, m̂t represents
the corresponding exponential decay mean, vt represents the
square gradient, v̂t represents the corresponding exponen-
tial decay mean, β1 represents the exponential decay rate
of mt , β2 represents the exponential decay rate of vt , and
η represents the learning step.

V. EXPERIMENTS AND RESULTS ANALYSIS
A. EXPERIMENTAL DATA
This paper chooses bonds in the interbank and exchange mar-
kets as the experimental data. Taking January 1, 2010, as the
start date and September 1, 2018, as the end date, the govern-
ment bond data were excluded, and a total of 17624 matured
bonds were finally obtained as the experimental subjects;
the defaulted bonds were labeled. The defaulted sample is
marked as positive sample 1, and the remaining bonds are
marked as 0. A total of 118 defaulted bonds are marked.

The bond default forecasting samples are out of balance,
so we randomly sampled negative samples and retained all
positive samples before training. When dividing the training
set and the test set, 5-fold cross validation is used.

In each training, for samples in the training set, a positive
sample is duplicated by the upsampling method, so the ratio
of positive and negative samples in the final training set is
approximately 1:15. Precision Recall Curve (PRC) is used as
the evaluation index to evaluate the predicted results of the
classifier.

B. EXPERIMENTAL SETUP
By constructing a bond knowledge map and training bond
knowledge representation, an optimized deep learning model
based on the knowledge graph is designed. The knowledge
representation of bonds is taken as part of the model input,
and the default prediction of bonds is realized by model

training. The model is implemented with the Keras frame-
work. After several groups of comparative experiments, the
optimal parameters of the model are obtained. The specific
parameters are shown in Table 5.

TABLE 5. Optimized DeepFM model parameters.

When the distribution of positive and negative samples is
very uneven, that is, when the number of negative samples
is much larger than that of positive samples, the PRC can
be used to measure the classifier more effectively [24]. The
samples are not in balance in this paper, so we finally choose
PRC as the evaluation criterion to evaluate the model by
comparing the area under the PRC curve. PRC is sensitive
to unbalanced data and can evaluate whether the classifier is
good or bad for overall classification. The abscissa of PRC is
recall rate, and the ordinate is precision.

Recall =
TP

TP+ FN
(18)

Precision =
TP

TP+ FP
(19)

TP represents the number of samples predicted to be 1 and
actually 1. FP represents the number of samples predicted to
be 1 and actually 0. FN represents the number of samples
predicted to be 0 and actually 1.

C. EXPERIMENTAL RESULTS
In this paper, five groups of experiments are compared and
analyzed from different angles on the issue of bond default.

1) CONTRAST EXPERIMENT OF DeepFM AND THE
TRADITIONAL MACHINE LEARNING MODEL
This experiment explores the effects of DeepFM and tradi-
tional machine learning models on bond default prediction.
The LR, Support Vector Machine (SVM), Support Vector
Regression (SVR), eXtreme Gradient Boosting (Xgboost)
and DeepFM models are compared under the same input
characteristics. The experimental results are shown in Table 6.

TABLE 6. Prediction results of DeepFM and the traditional machine
learning model.
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From Table 6, we can see that DeepFM is superior to other
traditional machine learning models in model performance.
This shows that the deep learning model has a strong ability
to learn higher-order cross-features. It also proves the impor-
tance of learning high-order cross-features in bond default
prediction.

2) CONTRAST EXPERIMENT OF DNN WITH DIFFERENT
LINEAR LAYERS
This experiment explores the effects of DNN with different
linear layers on bond default prediction results. In the case of
the same input characteristics, DNN, LR + DNN, DeepFM
and the results of knowledge graph embedding are added
to each model. The model name has + KG, which means
that the knowledge map embedding information is added.
The knowledge representation learning model of knowledge
graph adopts TransR model. The results are shown in the
following table.

It is obvious from Table 7 that adding knowledge graph
semantic information can improve the performance of the
model. By learning the representation of the knowledge
graph, the semantic and structural information contained in
knowledge graph can be used to the greatest extent. At the
same time, the experimental results also prove the influence
of the first-order features and the second-order features on the
model.

TABLE 7. Prediction results of DNN with different linear layers and KG.

3) CONTRAST EXPERIMENT OF KNOWLEDGE
REPRESENTATION MODEL
This experiment explores the influence of different knowl-
edge representation models on the experimental results. For
the constructed bond knowledge graph, the TransE, TransH,
and TransR models are trained, from which the bond repre-
sentation is obtained and input into the subsequent model as a
feature. The Bern sampling method was used in training, and
the training dimension was 80 dimensions. The experimental
results are shown in Table 8.

From the above table, it can be seen that the TransR
model, as the embedding of knowledge representation learn-
ing model, improves the model results most obviously. The
results may occur because the entities in the knowledge
graph have a variety of semantic attributes, corresponding to
different relationships. The TransR model considers that an
entity has multiple semantic attributes and embeds entities
and relationships into different spaces. It also proves that

TABLE 8. Results of DeepFM with different knowledge representation
models.

considering heterogeneous information can improve the
effect of knowledge embedding.

4) CONTRAST EXPERIMENT OF DIFFERENT EMBEDDING
DIMENSIONS IN TransR MODEL
This experiment explores the influence of different embed-
ding dimensions of the knowledge representation model on
the final results. Entity and relationship embedding dimen-
sions D are selected in {20, 50, 80, 100, 200}, respectively.
The TransR model is selected in the model. The experimental
results are shown in Table 9.

TABLE 9. Prediction results of different embedding dimensions in TransR
model.

Fig. 12 shows the results of bond default prediction models
with different embedding dimensions. As seen from the fig-
ure, when the dimension is low, the value of PRC increases
with the increase in the dimension.When the dimension is 80,
PRC reaches the highest value. After that, with the increase
of dimension, PRC value has a downward trend. The reason
for this phenomenon may be that the model cannot learn the
representation of knowledge well when the dimension is low.
However, when the dimension is too high, a certain amount
of noise is introduced.

5) BOND DEFAULT PREDICTION BASED ON AN OPTIMIZED
DeepFM MODEL
The optimized DeepFMmodel proposed in this paper is used
for training and testing, and the final scores are sorted from
high to low. The top 100 bonds were selected each time,
the experiment was conducted five times, and Table 10 shows
one of the test results, i.e., the ranking of actual default bonds
in the top 100 bonds that are likely to default. As seen from
the table, of the top 100 bonds that are expected to default,
8 bonds have substantial defaults.

Table 11 shows the number of default bonds in the top
100 possible default bonds in the five experiments.

By averaging the results of the five experiments, the num-
ber of bonds that actually default among the top 100 bonds
that are likely to default is 7.8.
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TABLE 10. Ranking of bonds that actually default in the top 100 possible
default bonds.

TABLE 11. Numbers of actual default bonds in the top 100 bonds.

To verify the effectiveness of the proposed method, the
prediction results of optimized DeepFM are compared with
those of the LR and Xgboost algorithms commonly used in
default prediction. The top 100 bonds, the top 150 bonds and
the top 200 bonds that are likely to default are selected to
compare the predicted results. The experimental results are
shown in Table 12 and the comparison figures are shown
in Fig. 13.

TABLE 12. Comparisons between optimized DeepFM model and
traditional methods.

As seen from the figure, among the Top100, Top150 and
Top200 bonds that may default, the optimized DeepFM
model has the highest hit rate. Generally, the predicted
results of the optimized DeepFM model are similar to those
of Xgboost. The reason is that the number of samples is
too small for a deep learning model. However, as an inte-
grated learning model, Xgboost can learn features better
when the number of samples is small. It is believed that
the actual prediction performance of optimized DeepFM
will be significantly reflected when there are relatively
many samples. LR has the worst predictive performance in
these three models, and it is relatively dependent on feature
engineering.

FIGURE 12. Prediction results of different embedding dimensions in the
TransR model.

FIGURE 13. Actual number of defaulted bonds in the top 100, 150 and
200 bonds.

VI. CONCLUSION AND FUTURE STUDIES
According to the characteristics of publicly available bond
data, this paper proposes a deep learning model that inte-
grates the semantic information of a knowledge graph and
applies it to bond default prediction. Using the knowledge
representation learningmodel, we embed the knowledge atlas
of discrete symbolized representation into the vector space
to obtain the knowledge representation of bonds. The bond
knowledge representation used to construct the knowledge
graph and train the knowledge representation model effec-
tively utilizes the bond relationship data and excavates the
implicit relationship between bonds. A deep learning model
is used to automatically learn higher-order features, and the
bond knowledge graph is used as prior knowledge to expand
higher-order cross-features.

The experimental results show that the deep learning
model improves the prediction accuracy greatly compared
with the traditional machine learning model. At the same
time, the optimized DeepFM model that fuses the semantic
information of the knowledge graphs outperforms the original
DeepFMmodel that does not include knowledge information
in the prediction task, which proves the feasibility and validity
of the deep learning of knowledge maps fusion.

In future research, more knowledge information should be
added to the bond knowledge graphs. At present, the data
obtained are not sufficient. Adding more knowledge can
help researchers obtain more comprehensive bond semantic
information, which is conducive to knowledge representation
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learning. In addition, knowledge representation learning is
developing rapidly, and new models are proposed every year.
In the future, other knowledge representation learningmodels
can be tested to find the most appropriate method.
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