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ABSTRACT Fabric is a planar material composed of textile fibers. Textile fibers are generated from many
natural sources; including plants, animals, minerals, and even, it can be synthetic. A particular fabric may
contain different types of fibers that pass through a complex production process. Fiber identification is
usually carried out through chemical tests and microscopic tests. However, these testing processes are
complicated as well as time-consuming. We propose FabricNet, a pioneering approach for the image-based
textile fiber recognition system, which may have a revolutionary impact from individual to the industrial fiber
recognition process. The FabricNet can recognize a large scale of fibers by only utilizing a surface image of
fabric. The recognition system is constructed using a distinct category of class-based ensemble convolutional
neural network (CNN) architecture. The experiment is conducted on recognizing 50 different types of
textile fibers. This experiment includes a significantly large number of unique textile fibers than previous
research endeavors to the best of our knowledge. We experiment with popular CNN architectures that include
Inception, ResNet, VGG, MobileNet, DenseNet, and Xception. Finally, the experimental results demonstrate
that FabricNet outperforms the state-of-the-art popular CNN architectures by reaching an accuracy of 84%
and F1-score of 90%.

INDEX TERMS Textile fiber recognition, image processing, convolutional neural network, pattern

recognition, ensemble architecture.

I. INTRODUCTION

Textile fibers are the components that are used to construct
fabrics. Commonly, the types of fibers are split into two
categories: natural fibers and synthetic fibers. Natural fibers
are extracted from environmental sources, whereas synthetic
fibers are manufactured through machinery and chemical
compounds. Such instances of natural fibers are silk, wool,
cotton, etc. whereas, nylon, polyester, rayons, etc. are the
example of synthetic fibers. Raw fibers are used to assemble
yarns. A single yarn is assembled using one or more types of
raw fibers. The yarns are further utilized to construct fabrics
and particular garments.

Fiber recognition is the process of identifying raw fibers
from fabrics, and it is widely used in different industrial
applications. It is a well-applied method in fabric reverse
engineering [1]. Garment identification is also possible using
fiber recognition systems since each garment type mostly
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requires fixed sets of fiber elements [2]. The fiber recognition
system can also be implemented as fabric fault detection and
garment inquiry systems [3].

Identifying raw textile fibers is considered difficult due
to the complicated weave structure and aging of fibers [5].
Moreover, present fabrics pass through complex printing
procedures that may alter the yarn structure. Classical
biological methods, such as soaking, cleaning, heating, etc.
are considered less effective in raw textile fiber identification.
However, microscopic observations are proven to be more
accurate in identifying raw textile fibers. The textile fiber
recognition from manufactured fabrics is complicated since
a single yarn (used to construct the fabric) can contain
multiple textile fibers. In some cases, fabrics are mostly
preprocessed. Moreover, microscopic observations may lead
to false recognition, as numerous fibers can be used to
generate a single textile yarn.

Generally, most systems identify textile fibers through
microscopic cross-section images [6] and spectroscopic
features [7], [8]. Fibers can be distinguished by microscopic
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FIGURE 1. Different yarn cross sectional shapes of particular fibers:
Tenasco (a,b,i), Nylon (e,gj.1), Viscose (f k) and Terylene. The image is
adopted from the work of Hearle et al. [4].

cross-section images due to their unique geometrical prop-
erties [9]. Figure 1 illustrates different cross-section shapes
of different types of yarns. Extricating cross-sectional shots
is nearly impossible for industrial usage of textile fiber
identification systems, as it requires a careful pre-processing
and microscopes. Using cross-sectional images for recog-
nizing textile fibers from fabrics is a critical approach
in real-time industrial aspects. Hence, the cross-sectional
investigation requires laboratories and is time-consuming.
On the contrary, spectroscopy-based methods can be used
for industrial purposes, but it is limited to recognizing only
a single textile fiber from a fabric. Further, the method is not
suitable for individual usage.

The research endeavor’s sole purpose is to overcome the
information gathering complexities of the fiber recognition
procedure. Smartphones and high definition cameras have
made image capturing one of the most superficial attempts for
information gathering procedures. Therefore, we introduce
a novel architecture that can recognize the textile fibers
by a fabric surface image. Because of the availability of
cameras, our proposed textile fiber recognition process can be
performed by individuals, and even by automated machines in
amuch more convenient and flexible way. Figure 2 represents
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FIGURE 2. The dataset contains fabric images in different light and
orientations [2]. The first row illustrates fabric made of artificial leather.
The second row illustrates the fabric made of silk. The third row contains
images of fabric which is made of polyester and viscose (rayon).

some image samples that are used to conduct the training of
our FabricNet architecture. The overall architecture performs
CNN based image processing using an ensemble architecture.
Since our proposed model recognizes textile fibers through
fabric surface image, it can be widely applied for diverse
industrial and individual applications for fault checking and
authentication. Our process can further be used for textile
fraud prevention and fault detection. The overall contribution
of the research endeavor includes the following:

o We exploit the surface image of fabric in recognizing
textile fibers, as it is one of the easiest ways for image
collection.

« We outline different categories of ensemble methods,
and introduce a class-based ensemble architecture that
receives downsampled image data through a head CNN
architecture. In class-based ensemble architecture, every
single ensemble memorizes only one class. Therefore,
the accuracy of FabricNet architecture increases.

o« We experiment with seventeen different implemen-
tations of famous image classification architec-
tures, including Inception, ResNet, VGG, MobileNet,
DenseNet, Xception, and CU-Net. Through the result
analysis, we affirm that FabricNet architecture provides
better accuracy.

The remainder of this paper is outlined as follows.
Section II demonstrates the procedures that are modeled to
identify textile fibers. Section III presents the motivation and
the architectural fundamentals of the FabricNet. Section IV
contains the experimental results that are performed to
evaluate FabricNet architecture. Finally, Section V concludes
the paper.

13225



IEEE Access

A. Q. Ohi et al.: FabricNet: A Fiber Recognition Architecture Using Ensemble ConvNets

Il. RELATED WORKS

The textile fiber identification process can be divided into
two types of tests: technical test and non-technical test [10].
Before the advancement of microscopic tests, non-technical
tests for textile fiber identification were mostly conducted.
Buring test, soaking test, feeling, etc. are considered as
non-technical tests. The drawback of the non-technical tests
is its authenticity [5].

Technical tests include the usage of microscopes and
chemicals for the detection of textile fibers. Chemical tests
include stain tests and solvent tests. However, the limitation
of chemical tests is their inapplicability to separate multiple
fibers. Therefore, chemical tests can not identify multiple
fibers from fabrics [11]. Microscopic examinations are also
considered as technical tests that involve identifying textile
fabric using microscopes. Experts previously conducted
microscope tests, and it proved to be more accurate. Nev-
ertheless, synthetic fibers are mostly geometrically similar
in microscopic view; therefore, specialists can sometimes
find it challenging to distinguish fibers, even applying
a microscope [12]. Figure 1 illustrates an example of a
microscopic test.

The usage of image recognition systems in fiber identifi-
cation has been observed since late 1980 [13]. The utilization
of image processing for fiber recognition is observed since
late 1990 that used Support Vector Machine (SVM) [14].
The SVM required a feature extraction method on which
the effectiveness of the scheme was mostly dependent. The
process also needed a microscopic cross-section view of
fibers, which made the technique inefficient for real-time
fiber recognition. The later research works conducted in the
field of fiber recognition systems followed the same path. The
purpose of the proposed architectures was to eliminate human
interference from the technical microscopic fiber recognition
procedure. Statistical analysis has also been introduced to
identify fibers from cross-section images [15]. Nevertheless,
the research work only classified two types of fibers, which
is not suitable for real-world usage.

Neural networks became famous after the backpropagation
learning method was introduced [16]. Neural network archi-
tecture is also introduced to identify fibers [17]. However,
researches exploiting neural network architectures could only
distinguish two types of fibers. Furthermore, neural networks
do not fit in the image recognition process. Hence, neural
network-based architectures are not suitable for recognizing
a broad set of textile fibers.

CNN architectures started to rule in image identifi-
cation problems through the successful breakthrough of
AlexNet [18]. Till now, CNN architectures are considered
the state-of-the-art image classification mechanism due
to its robustness and ability to identify objects from a
large set of targets. Also, CNN architectures perform auto
feature extraction, eliminating the dependency from image
feature extraction procedure [14]. CNN architecture has been
introduced to identify fibers using cross-section microscopic
images [19]. The research was carried out by identifying
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seven types of fibers and achieved an acceptable accuracy
level. Nevertheless, the method still depends on cross-section
microscopic images, and the number of unique fibers is
inadequate.

Apart from the same process of the automated identifica-
tion of fibers from microscopic images, spectroscopy-based
fiber identification methods have also been intro-
duced [7], [8]. Nevertheless, the experiments of the research
works were conducted with limited varieties of textile fibers,
and the spectroscopy-based method can only identify a single
fiber at once. The spectroscopy-based fiber identification
process is also time-consuming and often requires an expert
to position the spectroscope and calculate appropriate reading
time correctly.

The automated fiber identification has been less exploited,
and most research endeavor is conducted to identify a
single type of fiber at once. This type of classification is
defined as multi-class classification. Furthermore, previously
implemented architectures are time-consuming and require
laboratory equipment to carry out the data collection
(cross-section image or spectrograph extraction) and testing
process. Therefore, mass testing and validating fibers of
fabric often incur high cost.

Feng et al. [20] have proposed a similar concept of
converting the fiber recognition system into a multi-class
classification problem. The authors presented a CNN-based
ensemble architecture that contains an almost equivalent
strategy of FabricNet architecture. The authors used a
CNN architecture (defined as DFE module) to extract
the fabric’s necessary feature. Further, they transferred the
feature vectors to a stack of ensemble network (referred to
as CU module) containing three deep CNN architectures.
Each of the models in the ensemble network also has
inter-connectivity. Therefore, each of the models in the
ensemble can be triggered by other models. Although the
architecture is convincing, it suffers from overfitting issue due
to enormous trainable parameters (approximately 82 million).
Also, it requires extensive computations, which is about
3372 million floating point operations (FLOPs). The authors
conducted evaluations in a closed source dataset and achieved
74% accuracy. In comparison, our proposed architecture
achieves superior accuracy with less trainable parameters and
in fewer FLOPs.

Table 1 represents a comparison of various types of fiber
recognition architectures that also consider computer vision
framework. The present vision-based architecture is faster,
accurate, non-destructive, and do not require any expertise
to identify textile fibers. By analyzing the table, it can be
concluded that the computer vision based strategy is more
prominent than all the previous domains introduced till now.

We present an architecture that operates over a more
user-friendly information extraction process. It requires a
close-shot surface image of fabric to identify the raw textile
fibers. We argue that close-shot surface images contain
proper fabric surface properties that are enough to identify
textile fibers. Furthermore, in the current new media age,
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TABLE 1. The table represents a detailed comparison of various domains of fiber recognition procedures. Among the different strategies,
computer-vision-based method is fast, non-destructive, and requires no expertise. The table is a modified version, which was earlier presented

by Z. Feng et al. [20].

Method Accuracy Requiring Time Destructive Identifiable fibre
number
Physical Expert’s experience Expert > 5 min Yes Expert’s experience
Chemical Expert’s experience Expert, reagent > 10 min Yes Expert’s experience
Microscopic Expert’s experience Expert, microscope > 5 min No Expert’s experience
Spectroscopy >0.8 Infrared spectrometer > 5 min No <20
Cut-section >0.7 Optical aid > 3 min Yes <10
Computer Vision Systems . . <ls
(CU-Net) 0.80 Camera, computation device (3372 million FLOPs) No 50
Computer Vision Systems . . <ls
(ours) 0.84 Camera, computation device (640 million FLOPs) No 50

image capturing is one of the simplest functions due to
the well-spread of smartphones and high-definition cameras.
Therefore, the architecture changes the process of textile fiber
extraction from laboratories to individuals and industries.
Moreover, we achieve a satisfactory recognition accuracy that
is most suitable for industrial purposes.

The proposed FabricNet architecture can identify multiple
fibers at once. Therefore, the classification process of the
model is multi-label. The overall architecture uses CNN
containing a class-based ensemble that can individually
recognize a specific fiber. We investigate with various
deep learning frameworks and determine that Xception [21]
performs optimally amongst the existing CNN architectures.
We further adapt the structure of the Xception architecture
and assign our ensemble strategy. We name the revised
version of the Xception architecture as FabricNet.

Il. FabricNet
A. MOTIVATION
In neural network architecture, ensemble methods [22]
combine multiple sub-models to obtain better accuracy.
Ensemble architectures have been proven to be less prone
to overfitting and generate more accurate results than basic
models [23]. Furthermore, present ensemble architectures
have been able to identify complex spatial information from
image patterns [24]. Therefore the ensemble methods are
being implemented in different scopes, including geospa-
tial land classification [25], face recognition [26], image
segmentation [27], and so on. The process of ensemble
methods can be thought of as a particular situation where
a group of people will always make better decisions than a
single person [28]. Dietterich [29] pointed out three reasons
for which the ensemble architecture may work better than
traditional architectures: 1) training phase may not contain
sufficient data to train the single best classifier; 2) a single
algorithm may fail to converge to the global optimum, but an
ensemble starting from distinct points could lead to a better
approximate global optimum; 3) the space being searched
may not contain any optimum position, but an ensemble may
lead this space for a better optimum position.

In deep learning architecture, three types of ensemble
architectures are mostly encountered, a) stacked ensembles,
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b) weight average ensembles, and c) class-based ensem-
bles. In stacked ensemble architecture, multiple sub-models
receive input data and flows the data stream to a final learning
model that generates the results. Mathematically, the stacked
ensemble can be presented as,

E(x) = f(e1(x), e2(x), ..., en(x))
Where,
x = Input data
E(x) = Stacked ensemble model
¢;(x) = Ensemble sub-models
n = Number of ensemble sub-models
f(x) = The final learning model (1)

In weight average ensemble architecture, the results of
multiple models are calculated separately, further combined
through weight multiplication calculations to perform final
prediction [30]. Mathematically, the weight average ensem-
ble can be presented as,

E(x) = argmax(w1 x e1(x), wa X e2(x), ..., wp X en(x))
Where,
x = Input data
E(x) = Weight average ensemble model
e;(x) = Ensemble sub-models
w; = Weights for each ensemble models
n = Number of ensemble sub-models 2)

In class-based ensemble architecture, the number of
ensemble models is equal to the number of classes [31].
Each of the ensemble models only learns to identify a

specific category. The class-based ensemble architecture can
be derived as,

E(x)
Where,
x = Input data

argmax(e1(x), e2(x), ..., ey(x))

E(x) = Class-based ensemble model
¢;(x) = Ensemble sub-model for i" class

n = Number of output classes 3)
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|MaxPooling 3x3, stride=2x2|
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Entry Flow

FIGURE 3. The figure illustrates the head and ensemble model of the FabricNet. The entry flow network recieves input image, and the processed data is
passed to the middle flow network. It further forwards the processed data to the multiple ensemble models. Each of the convolutions is followed by a

batch normalization [32] layer, not illustrated in the image.

Inspired by the performance boost of the ensemble ¢i(x) = Ensemble sub-model for i’ class
architectures, we develop an ensemble architecture that n = Number of output classes
performs mostly similar to class-based ensemble architecture. .
Nevertheless, our proposed architecture is slightly different f(x) = Head model @
than the class-based ensemble architecture. Mathematically, Instead of directly passing the ensembles’ inputs, the pro-
the proposed architecture can be derived as follows, posed architecture uses an auxiliary feature extractor function

defined as the head model. The head model only passes
the relevant feature embeddings to the ensemble models and
reduces the full dependency over the ensemble models. As a

E(x) = argmax(e1(f (x)), e2(f(x)), . .., ex(f(x)))

Where, fabric can be constructed using multiple fibers, the FabricNet
x = Input data must output multiple classes at once, often acknowledged
E(x) = FabricNet model as multi-label classification. Therefore, the E(x) function
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of equation 4 may return multiple outputs at once. Also,
the number of ensembles n is kept equal to the number
of target classes. Furthermore, each ensemble model e;(x)
specifically learns to identify a particular class. Therefore,
individual ensemble models can approach an optimal state
to recognize a specific class, ignoring other classes. This
individuality may cause improving the accuracy of the
FabricNet architecture.

Input Image
/\o(\

Head

Model
SubModel SubModel SubModel SubModel

1 2 3 =t n
Sigmoid Sigmoid Sigmoid Sigmoid
Activation Activation Activation Activation
Concatenation
Output

FIGURE 4. The figure depicts the architectural strategy of the FabricNet
model. Inputs flow through the head model, which is further passed
through the class-specific ensemble submodels. Submodels contain
minimal trainable parameters to avoid overfitting and reduce
computational complexity.

B. ARCHITECTURE

The overall architecture of FabricNet is segmented into
two parts: a head model and ensemble models. The head
model directly fetches the input images and generates lower
dimension embeddings. The embeddings derived by the
head model are passed to the ensemble models. Each of
the ensemble models is assigned to identify only a single
type of fabric fibers or class, and each class’s prediction is
independent of the other class-based ensemble. Therefore,
the number of ensemble models must be similar to the number
of possible categories. Figure 4 illustrates a block diagram
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of the FabricNet architecture. Using the head model poses
some advantages, considering the usual class-based model.
Generally, higher parameters in a CNN architecture may
often cause overfitting. Passing the input through a head
model causes a reduction of irrelevant features. Furthermore,
it also reduces the number of trainable parameters signifi-
cantly. On the whole, implementing our suggested ensemble
architecture leads to the following benefits:

« Each ensemble only extracts the knowledge required to
recognize a specific class. This results in acquiring an
approximate optimal position for each particular class,
which causes superior accuracy.

« Using the head model significantly reduces the number
of parameters required for each ensemble model. This
substantially reduces the FLOPs and overfitting [33].

o Apart from the general class-based ensemble, our
proposed ensemble structure can be deeper with reduced
computational complexity (due to head convolution non-
parallelism).

Instead of implementing a new baseline architecture for
the head model, we modify the existing CNN architec-
tures. Through our investigation (illustrated in Figure 6),
we affirm that Xception architecture performs superior to the
currently existing popular architectures. Therefore, we fuse
the ensemble methodology in Xception architecture. The
Xception model counterfeits the basic properties of VGG [34]
and Inception [35] network. The model utilizes a shorter
kernel of the size of 3 and performs depthwise separable
convolutions. The depthwise separable convolutions of the
Xception architecture are performed by a depth-wise con-
volution followed by a pointwise convolution (in Inception
architecture, the order is reversed). This strategy is based on
a hypothesis that spatial feature extraction and channel-wise
feature extraction procedure can be decoupled. Meanwhile,
this decoupling has a huge advantage in reducing the
required parameters of a convolutional layer. Xception further
implements residual identity maps [36] in different layers to
resolve the issue of vanishing gradient.

Xception architecture contains three types of data-flow
networks. The entry flow performs depthwise separable
convolutions, followed by a maxpool layer. The entry flow
is followed by nine similar middle flow networks that
perform depthwise separable convolution. Finally, the exit
flow network performs a similar computation sequence to
the entry flow, followed by a global average pooling. The
model is substantially deep (126 layers), and it is often
validated that deeper networks are better [34]. However, as we
search for an optimal head model that will also contain
ensemble models, we have to avoid over-parameterizing the
head model. Over-parameterization may cause overfitting
and also increase the FLOPs of the architecture.

Hence, we expel unnecessary blocks from the Xception
architecture, which does not boost the prediction accuracy.
While expelling the exit flow and some middle flow networks
of the Xception model, we found a minimal fluctuation of
F1-score and AUC score (reported in Figure 7). The metrics’
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steadiness indicates that most of the lower layers are not
necessary (for the experimental dataset), and they can be
removed. Therefore, we only adopt the entry flow and two
middle flow stacks of the Xception architecture as our head
model. Also, removing the lower portion of the Xception
architecture reduces trainable parameters by more than 80%.
A full investigation is reported in the Result Analysis section
(Section IV-D).

The architectural specifications of the head and ensemble
models of the FabricNet is reported in Figure 3. More-
over, Figure 4 illustrates the overall flow of the model.
We implemented separable convolutions in the ensemble
model to keep the learnable parameters limited. Each
ensemble model contains a single dense node with a sigmoid
activation function that works as the final activation for each
category. The available outputs of each ensemble are further
concatenated to produce the final output of the FabricNet
model. We broadly analyze and discuss our FabricNet
architecture findings in the Result Analysis (Section IV-D),
particularly the ensemble architecture.

As the FabricNet architecture performs a multi-label clas-
sification task, the final output contains a sigmoid activation
function. Nam et al. has suggested that cross-entropy loss is
the best choice for multi-label classification tasks [37], that
is defined as follows,

Lee(y,0) = — <Z 1 log o)) — (1 — yp) log(1 — 01))
1

Where,
Lcr = Loss function
0; = Prediction for label /
y; = Target for label / 5)

Therefore, the model is trained using the aforementioned
cross-entropy loss function.

IV. EXPERIMENTAL RESULTS

A. THE FABRICS DATASET

As this is a prior work investigating multiple fibers,
we currently found only one dataset suitable for the
experiment. The fabric dataset contains around 8000 images
of different fabrics, and garments [2]. However, we found a
total of 7553 images suitable for the experiment. Although
the original work conducted using the dataset contained
only 2000 images of fabric surfaces, the current repository
contains an increased number of surface images. The dataset
contains images with various lightning and orientation to
make the recognition process more challenging. Figure 2
contains an example of the images. Further, Each of the
fabric images contains one or more classes. The classes
are the fibers that are used to construct the fabric. These
fabrics contain a total of fifty types of fibers that constituted
the fabrics. Figure 5 illustrates the class distribution for
the images of the dataset. The dataset collectors only
attempted to identify fabrics that were not blended (contained
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FIGURE 5. A pie chart that represents the number of images belonging to
the number of fiber classes.

a single fiber) [2]. Therefore, the collectors were able to
identify nine types of non-blended fabrics from the dataset.

B. EVALUATION METRICS
To evaluate and compare the results, three evaluation metrics
have been used, which are presented as follows:

Accuracy: Accuracy is the simplest form of evaluation.
It formally defines the ratio of correct predictions over
total experiments. In multi-label classification, we consider a
single prediction is accurate if all of the classes are correctly
guessed. Accuracy can be defined as follows,

Number of correct predictions

Accuracy = Y (6)
Total number of predictions

Precision: Precision is also named as the positive predic-
tive value (or true positive rate) of a system that reports the
ratio of correctly predicted positive cases over total predicted
positive cases. It can be represented as,

. TP
Precision = —— @)
TP + FP

F1-Score: F; score represents the weighted average of
precision and recall. By choosing the weight value as 2, the F
score can be presented as,

2 x Precision x Recall
FiScore = — 8)
Precision + Recall

AUC Score: Area under the curve (AUC) and receiver
operating characteristics (ROC) curve defines how well a
model converges towards distinguishing classes accurately.
In general, the metric generates a curve, where AUC repre-
sents the area under the ROC curve. In overall experiments,
we use 200 thresholds to discretize the ROC curve.

FLOPs: Floating point operations (FLOPs) measures the
number of arithmetic operations required to execute a single
instance of a deep learning model. Models requiring higher
FLOPs have higher time complexity.

Accuracy, Precision, Fl-score, and AUC score generate
results in the range [0, 1], whereas higher score points
better performance of a system. Hence, we use the metrics
mentioned above to prove the effectiveness of our model.
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Moreover, we use FLOPs to measure the time complexity of
each model.

C. EXPERIMENTAL SETUP

The evaluation architectures were implemented using Ten-
sorflow [38], Keras [39], scikit-learn [40], and NumPy [41].
To lessen the architecture’s bias and correctly measure
each architecture’s accuracy, k-fold cross-validation is per-
formed [42]. All of the evaluations are conducted by
selecting the value of k = 4. Therefore, the dataset is
split into 50%-25%-25% train, validation, and test subsets.
The reported measurements are the best performance on
the validation set for a particular fold, further evaluated
on the unseen test set. Each architecture is trained using
batchSize = 128 with a maximum epoch limit of 100.
With a learning rate of 0.001, Adam optimizer is used to
train each of the architectures. All of the tested architectures
are initialized with ImageNet trained weights, and they are
further trained on the Fabrics dataset. The input image is
in the shape of 120 x 120 x 3. As the training dataset
is small, we implemented image augmentation considering
some common augmentation process that includes brightness
change, contrast change, zooming, cropping, and channel
shifts. We did not perform any geometrical distortions as it
may change the texture pattern of the fabric weave. Every
exhibited result is calculated as the mean and standard
deviation for three runs for each fold (total 3 x 4 runs).

D. RESULT ANALYSIS

As fabric surface images are less exploited for fabric fiber
recognition, we compare the FabricNet architecture with
various computer vision based architecture. Also, we include
the existing architecture CU-Net [20] that also operates over
fabric surface image. We have implemented the DenseNet
baseline for the CU-Net architecture.

Figure 6 illustrates the F1-scores obtained on the validation
set while training the existing DCNN frameworks in the
fabric dataset. The graphs report that Xception architecture
achieves a better result on the validation set. VGG architec-
tures do not perform adequately in the framework, mostly due
to the vanishing gradient problem. On the contrary, ResNets
solve the vanishing gradient problem by implementing
residual identity maps. Yet they don’t acquire satisfactory
results mostly due to overfitting. InceptionResNet architec-
ture achieves better results due to the proper integration
of residuals and inception blocks. DenseNets require fewer
parameters than Xception architecture; still, the idea of the
shorter connection from input and output does not help to
achieve better performance. MobileNet architectures require
the least number of parameters than the other implemented
models. Nevertheless, they fail to perform fiber recognition
at an acceptable rate. This low F1-score of MobileNets may
indicate that the issue is not with training parameters, rather
than a necessity of optimal network architecture.

The actual Xception architecture consists of one entry
flow, nine middle flows, and an exit flow network. Each
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TABLE 2. The table illustrates the F1-score of the validation and test
dataset corresponding to the different ensemble architectures. Each layer
is represented as ‘{Sx, y, z}, where ‘x’ is the number of filters, 'y’ is the
kernel size, and ‘z’ is the stride. ‘S’ defines a depthwise separable
convolution layer. Each convolution is followed by batch normalization
and RelU activation function. Trainable parameters (for each ensemble)
are presented in thousand.

Architecture l():‘l:::s];;e;)s Fl-score (val) | Fl-score (test)
{S64,3,2},{S64,3,2} 58 0.883+0.01 0.80+0.01
{S32,3,2},{S64,3,1} 33 0.884+0.01 0.828+0.01
{S16,3,2},{S32,3,1} 19 0.884+ 0.0 0.874+0.01

{S8,3,2},{S8,3,1} 12 0.893+0.02 0.887+0.02
{54,3,2},{516,3,2} 9 0.922+0.002 0.902+0.01
{S2,3,2},{S16,3,2} 8 0.891+0.01 0.889+0.02
{S4,3,2},{S16,3,2}{S16,3,2} 9 0.90+0.01 0.898+0.02

flow network contains residual connections. To select a
proper head model, we further investigate the Xcecption
architecture with different flow settings. Figure 7 represents
a validation test score of the Xception architecture tuning the
number of entry flow, middle flow, and exit flow segments.
Only selecting the entry flow causes the validation F1-
score and AUC to decrease. Choosing different numbers of
middle flow layers improves the validation score by 0.2.
However, for a different number of middle flow blocks,
the score remains nearly constant. We select an entry flow
with two middle flow network as the head architecture of the
FabricNet. Although setting six intermediate flow blocks with
an entry block acquires the highest score, the improvement is
negotiable. As we implement a class-wise ensemble network
that will contain more parameters (in the ensemble model),
we avoid over-parameterizing the head model. Avoiding
over-parameterization causes the overall architecture to be
less prone to overfitting. Furthermore, using one entry and
two middle blocks as the head model decreases the number
of the trainable parameter by 80% compared to Xception
architecture. Also, reducing the number of parameters causes
the reduction of FLOPs by 60%, corresponding to Xception
architecture.

We further investigate for selecting the optimal ensemble
model. However, it is considered to keep the ensemble
network’s trainable parameters as less as possible to avoid
overfitting and for easy training. Hence, we search for an
optimal shallow architecture as an ensemble model. Shallow
architecture requires fewer parameters, and as a result, it is
possible to greatly increase the number of networks in the
ensemble, based on the output classes. Therefore, we inves-
tigate CNN architectures with no more than three layers.
Table 2 exhibits our experiment with different ensemble
architecture with the reported Fl-score on validation and
test dataset. In the ensemble architecture, only separable
convolution is implemented as it initiates fewer parameters.
A close relationship between the trainable parameters and
overfitting can be observed by investigating the table data.
Higher training parameters in the ensemble model results in
overfitting in the validation data. By decreasing the number
of training parameters, a reduction in overfitting can be
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FIGURE 6. Each graph represents the loss (min-max normalized), AUC, and F1-score on the validation dataset calculated on the existing DCNN
architectures’ training procedure. The horizontal axis represents the training epochs, while the vertical axis represents the metric score. The train and test
scores of the corresponding architectures are reported in Table 3. Zoom in for a better view.

observed. However, after a certain period, the score drops.
Adding additional layers does not heavily improve the score.
Thus, each of the ensemble architecture is implemented
using two depthwise seperable convolutions followed by a
single fully-connected node. A sigmoid activation function
is used as our target output may contain multiple classes
at once.

13232

Figure 8 represents a comparison (on validation dataset) of
FabricNet and the CU-net architecture. Both of the architec-
tures follow ensemble strategy. However, the architectures’
influential differences are: 1) improper class distribution for
each ensemble model and 2) the number of parameters for
each ensemble model. In the case of CU-Net architecture,
the output of each class is generated based on the ensemble
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middle, and end define the three types of network flows of Xception architecture. The number of middle flows is indicated by multiplication. The

‘entry+2 xmiddle’ design is used as the head model.
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FIGURE 8. The figure illustrates a comparison of FabricNet architecture with CU-Net architecture. Both architectures are based on ensemble strategy.
However, FabricNet architecture acquires higher performance as it contains class-specific models in the ensemble.

framework’s decision. However, the architecture does not
define specific ensemble models for each specific class.
Hence, a single binary output of each class can be easily
biased by multiple ensemble models. On the contrary, Fabric-
Net architecture contains shallow CNN models specifically
for each class. Hence, FabricNet avoids biased outputs for
each class. Also, in comparison to CU-Net architecture,
FabricNet requires a low number of trainable parameters.
Lower parameters solve the overfitting issue, also models
with lesser parameters are more comfortable to train.

The FabricNet architecture (network illustration in
Figure 3) is compared with the DCNN architectures,
presented in Table 3. The comparison reports the precision,
accuracy, Fl-score, and AUC score of all the architectures
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calculated on the train, validation, and test dataset. The
table represents the improvement of FabricNet architecture
from the general implementation of Xception architecture.
Although the FabricNet is a subset of the Xception
architecture, joining the ensemble models boosts the F1-score
of the FabricNet architecture by approximately 0.7. Figure 10
represents a scatter plot of the tested architectures and
the FabricNet. The horizontal axis indicates the number
of training parameters, and the vertical axis reports the
F1-score. As to calculate the number of trainable parameters
and the FLOPs of the FabricNet architecture, the whole
ensemble of 50 classifiers is considered. The FabricNet
architecture achieves the highest accuracy while keeping
the training parameters at a limit of 4.8 million. On the
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TABLE 3. The table reports a comparison between the FabricNet and other well-performing architectures on train validation and test dataset. The
Parameters column represents the total number of trainable parameters required for each model.

Architect Parameters | FLOPs | Train I Validation I Test
rehitecture (million) (million) | Precision [ Accuracy [ Fp -Score | AUC | Precision | Accuracy | Fj -Score | AUC | Precision | Accuracy | Fj -Score | AUC
MobileNetV2 [43] 3 96 0.964+0.0 0.851+0.01 0.957+0.003 0.998+0.0 0.718+0.235 | 0.394+0.077 | 0.307+0.069 | 0.498+0.007 0.553+0.01 0.494+0.01 0.418+0.01 0.503+0.01
VGG19 [34] 143 5533 0.762+0.015 0.658+0.01 0.641£0.029 | 0.962+0.012 | 0.669+0.005 | 0.574+0.006 | 0.532+0.005 | 0.799+0.014 0.696+0.01 0.585+0.01 0.528+0.01 0.809+0.01
VGG16 [34] 138 4356 0.7940.001 0.746+0.01 0.689+0.014 | 0.973+0.006 | 0.686+0.017 0.585+0.0 0.566+0.005 | 0.818+0.016 0.687£0.01 0.583+0.01 0.561+0.01 0.84420.01
DenseNet201 [44] 20 1134 0.724+0.086 0.765+0.01 0.594+0.136 | 0.839+0.085 | 0.603+0.084 | 0.528+0.007 | 0.454+0.138 | 0.742+0.043 0.809+0.01 0.662+0.01 0.676+0.01 0.85+0.01
DenseNet121 [44] 8 783 0.787+0.029 0.79+0.01 0.697+0.049 | 0.955+0.009 | 0.644+0.092 | 0.506+0.077 | 0.487+0.095 | 0.771+0.159 0.778+0.01 0.674+0.01 0.677+0.01 0.918+0.01
DenseNet169 [44] 14 903 0.72+0.055 0.782+0.01 0.583+0.103 | 0.834+0.143 | 0.604+0.065 | 0.532+0.059 | 0.453+0.094 | 0.705+0.139 0.85+0.01 0.71+0.01 0.753+0.01 0.918+0.01
ResNet152 [36] 60 3594 0.991£0.002 | 0.854+0.008 | 0.988+0.001 0.999+0.0 0.792+0.032 | 0.663+0.017 0.724+0.01 0.876+0.052 | 0.799+0.047 | 0.681+0.006 [ 0.742+0.002 [ 0.908+0.027
ResNet50 [36] 25 1197 0.98+0.002 0.856+0.003 | 0.974+0.006 0.998+0.0 0.754+0.021 0.632+0.054 0.646+0.02 0.847+0.04 0.828+0.002 | 0.698+0.005 | 0.747+0.003 | 0.896+0.017
ResNet101 [36] 44 2413 0.979+0.005 | 0.853+0.005 | 0.974+0.007 | 0.999+0.001 | 0.743+0.079 0.617+0.05 0.65+0.07 0.845+0.038 | 0.839+0.008 | 0.709+0.006 | 0.744+0.002 | 0.888+0.011
ResNet152V2 [45] 60 3481 0.982+0.006 0.856+0.01 0.978+0.006 0.999+0.0 0.779+0.033 | 0.642+0.023 | 0.717+0.006 | 0.866+0.059 0.856+0.01 0.704+0.01 0.782+0.01 0.871+0.01
ResNet101V2 [45] 44 2300 0.996+0.006 0.852+0.01 0.995+0.007 0.999+0.0 0.819+0.008 | 0.688+0.003 | 0.731+0.002 [ 0.851+0.027 0.85+0.01 0.713+0.01 0.7860.01 0.879+0.01
ResNet50V2 [45] 25 1085 0.99+0.006 0.863+0.01 0.987+0.006 0.999+0.0 0.809£0.022 | 0.668+0.019 | 0.714+0.017 | 0.846+0.029 0.86+0.01 0.703£0.01 0.7540.01 0.8740.01
InceptionV3 [46] 23 586 0.979+0.005 0.871+0.01 0.975+0.004 | 0.998+0.001 0.783+0.023 | 0.683+0.023 | 0.747+0.007 | 0.893+0.025 0.87+0.01 0.745+0.01 0.815+0.01 0.898+0.01
MobileNet [47] 4 146 0.979+0.007 | 0.857+0.004 0.974+0.01 0.999+0.0 0.734+0.172 | 0.508+0.161 | 0.463+0.158 0.6+0.101 0.684+0.146 | 0.602+0.098 | 0.589+0.175 | 0.617+0.119
InceptionResNetV2 [48] 55 1258 0.997+0.009 0.849+0.01 0.994+0.007 | 0.999+0.001 | 0.845+0.048 | 0.717+0.005 | 0.761+0.021 0.89+0.028 0.864+0.01 0.759+0.01 0.813+0.01 0.907+0.01
Xception [21] 22 1424 0.999+0.004 | 0.871+0.001 | 0.999+0.004 0.999+0.0 0.889+0.026 | 0.763+0.021 [ 0.839+0.025 | 0.874+0.036 | 0.916+0.017 | 0.778+0.007 | 0.866+0.025 | 0.894+0.008
CU-Net [20] 82 3372 0.999+0.009 0.903+0.01 0.999+0.009 0.999+0.0 0.904+0.005 | 0.782+0.006 | 0.878+0.005 0.904+0.02 0.895+0.01 0.807+0.01 0.856+0.01 0.897+0.01
FabricNet(ours) 4.8 640 0.999:+0.009 0.879+0.01 0.999:+0.009 0.999+0.0 0.929+0.001 | 0.855+0.001 | 0.922+0.002 | 0.948+0.023 0.912+0.01 0.846+0.01 0.902+0.01 0.932+0.01
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06s to memorize the head ensemble’s missed out features. Mixing the head
and ensemble model enables the architecture to perform better with
more class-specific feature memorization.
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s erated by the head model of the FabricNet architecture
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FIGURE 9. A scatter plot illustrating the test accuracy scores (vertical
axis) w.r.t. the number of trainable parameters (horizontal axis). Zoom in
for a better view.

contrary, the MobileNet and MobileNetV2 architectures fall
behind in achieving a better score with comparable training
parameters. It is a clear indication that FabricNet architecture
gains superiority due to the CNN network topology.

Residual architectures (ResNet, Xception, Inception) indi-
rectly implements the property of the ensemble strategy.
Residuals not only help to solve the vanishing gradient
problem but also can ignore a particular CNN block if
required. However, the ignore state of a CNN block depends
on the type of input, and it is adequately utilized using
backpropagation. Yet, the difference between the residual
ensemble and our implemented ensemble lies in the dedicated
path (i.e., a layer sequence is fully dedicated to a class).
Therefore each of the filters only looks for class-specific
features. The dedicated feature extraction solves separating
the depth filters for a class-specific identity extraction mostly
occurred at the deepest layers (before fully connected layer)
of a CNN architecture.
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on a small subset of the input. It can be anticipated by
analyzing the figure that the head model extricates some of
the necessary features. Further, the ensemble’s class-specific
models furnish the embeddings based on the class-specific
features. In such a case, the ensemble has the primary
advantage of correcting the head model’s erroneous guesses
and further fix the issue through memorization.

V. CONCLUSION

The paper presents an architecture FabricNet, a textile fiber
recognition scheme, that can recognize multiple fibers at once
by only processing the surface image of fabrics. This research
work points to an immense improvement in fiber recognition
tasks as the previous methods required microscopic images
and spectrographs of fibers. The FabricNet is implemented
based on a new idea of ensemble architecture, and to
outline the difference, the paper comprises an investigation of
mostly implemented ensemble architectures. The experiment
is conducted using fifty types of textile fibers, and the
FabricNet outperforms most of the well-known image clas-
sification architectures. We strongly believe that the overall
contribution of this paper inaugurates a broader perception
in the scope of image pattern recognition and industrial fiber
identification research works.
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