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ABSTRACT In this article, we propose a description length guided unified Granger causality analy-
sis (uGCA) framework for sequential medical imaging. While existing efforts of GCA focused on causal
relation design and statistical methods for their improvement, our strategy adopts the minimum description
length (MDL) principle in the GCA procedure where the MDL principle offers a unified model selection
criteria for deciding the optimal model in the sense of description length. Under this framework, we present
different description length forms of linear Granger representations under several coding schemes that all
achieve the lower bounds on redundancy, thus producing valid MDLmodel selection criteria. The efforts are
validated using a 5-node network synthetic experiment, illustrating its potential advantage over conventional
two-stage approach. The subtle distinction between the performance of different uGCA forms is investigated
as well. More importantly, the proposed approach gives a more similar network topology than conventional
approach in a challenging fMRI dataset, in which neural correlates of mental calculation elicited by visual
and auditory stimulation (respectively) in the same task paradigm, allowing one to evaluate the performance
of different GCA methods.

INDEX TERMS Description length, Granger causality analysis (GCA), minimumdescription length (MDL),
model selection.

I. INTRODUCTION
Nervous system of the brain is characterized by com-
plex temporal and spatial changes, which has drawn
increasing attention in describing its dynamic space-time
network [1]–[6]. Until now, from macro to micro levels,
a growing body of research demonstrates that the brain works
together through distributed neural subsystems (functional
integration) [7]–[12], rather than specialized independent
systems (functional specialization) [13]–[15]. To investigate
how this distributed dynamic connection network is inte-
grated, causal connectivity analysis, also known as effective
connectivity, which refers to the event correlation of a nervous
system effected by another one, should be essential [16]–[19].

Granger causality analysis (GCA) provides a statistical
hypothesis test for investigating causal connectivities that can
provide information about the dynamics and directionality
of associations [20]. Certainly, Granger-causality describes
the temporal relation between variables, which is played a
predicting role rather than explained the causality in

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Radhakrishnan .

philosophical. Specifically, GCA indicates time series X
Granger-causeY if importingX can providemore statistically
significant information about the prediction of Y than its
restricted model [21].

In general, GCA is performed in the context of linear
autoregressive (AR) models for stationary time series. The
candidate models with different time-lags, imply a histori-
cal dependence on variables. Then, through model selection
technique, the optimal model basically is selected by balanc-
ing fitting error term and penalized term. Original Granger
causality does not consider potential confounding effects,
nor does it capture instantaneous and nonlinear causalities.
Therefore, some extensions of GCA have been developed
to capture nonlinear causal relations [22]–[24]. To differen-
tiate the causal effects of positive from negative, an asym-
metric causality test was proposed [25]. Moreover, causal
investigation paradigm of GCA has been also generalized
in other function spaces, e.g. Fourier spaces [26]–[28], ker-
nel Hilbert spaces [29]–[31]. In addition, considering the
model with asymptotic noise distribution data, several forms
of extensions, which are especially suitable in task-related
fMRI researches, have been developed [32], [33]. But causal
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investigation among regional networks still can not express
the connectivities between regions of interest completely and
accurately. Thus, numerous efforts have been made to scale
from a small network with several nodes to a large complex
network [34]–[37]. These methods are broadly applied in
exploring the internal connection of the brain for which causal
relationships between neuron populations are usually nonlin-
ear and have complex statistics in view of various sources of
uncertainty.

Despite these improvements, the initially mathematical
core for investigating Granger causality remains in place.
That is, GCA determines the time-lag of candidate model
through Akaike information criterion (AIC) or Bayesian
information criterion (BIC) and then obtains causal influence
through F-test, which actually is a two-stage scheme [22],
[27], [38], [39]. In this sense, the conventional GCA method
relies on the subjective selection of confidence level, resulting
in a lack of uniformity of research results, which will bring
in some performance issues. Another problem brought about
by F-test needs to be compared with each other through an
intermediate model, which will increase algorithm complex-
ity, especially in large networks. And selection results by pair-
wise F-statistics sometimes depend on initial selected model
and search path heavily [40]. It is mentioning that selecting
and using the F statistical value have become very careful
in current scientific research, and its statistical significance
has also caused extensive discussion [41]–[44]. Generally,
most GCA methods still define causal connectivities by the
framework of original GCA, which does not solve the incon-
sistency of mathematical theories, the subjective selection
of confidence level, and the algorithm complexity caused
by nested model. In fact, in a purely mathematical sense,
these two stages are a generalized model selection paradigm,
the application of two different mathematical theories will
cause inherent correlation to be discontinuous in the quan-
titative mapping process, namely, bringing in singularity.

Based on these considerations, to make investigating
causal connectivity more consistent and continuous, we argue
that the generalized model selection paradigm in GCA should
follow the same benchmark under one mathematical theory.
In our previous study, against the conventional two-stage
scheme, we have proposed a unified GCA (uGCA) method
with the minimum description length (MDL) principle that
model selection follows a single mathematical theory during
theGCAprocess. Our uGCAmethods can unify the dynamics
of brain regions into the same framework continuously, which
guarantees the correlation is not distorted or truncated.

Advocating principle of parsimony, with help of the algo-
rithmic or description complexity theory of Kolmogorov [45],
[46], Wallace and Boulton [47], MDL was formulated as
a broad principle governing statistical modeling in gen-
eral [48]. Then embracing Shannon’s information theory,
MDL was endowed with a rich information-theoretic inter-
pretation. Until now, it has been developed in several
forms. For original MDL, it describes the candidate models
by two-part description length (or code length), which is

two-part MDL. One part is the fitting error term, the other is
the model complexity term. Following, distilling the stochas-
tic complexity, MDL is developed a mixture form which
adopted some priors to describe the nuisance parameters,
named mixture form MDL. Combined with Fisher informa-
tion, the normalized maximum likelihood (NML) formMDL
has been developed. These are three main forms of MDL,
of course, it also has other forms of description standpoint
[49], [50]. We had illustrated the benefits of introducing a
unified model selection approach in simulated and real fMRI
experiments, in term of two-part MDL guided uGCA [40].
These uGCA methods with different MDL forms have com-
pletely different coding schemes in terms of describingmodel
complexity. This uGCA paradigm hopes to find a most suit-
able model to describe data in a description length guided
framework, while, theoretically, the true model behind the
data does not exist. Therefore, uGCA methods of different
forms approach to the true model from different aspects to
obtain their own optimal model in describing data.

The rest of article is as follows. In Section II, different
forms of MDL principle have been stated in turn, the gener-
alized formulas of several forms also have been derived with
Bernoulli distribution in Markov model class. Immediately,
three forms of description length guided causal investigation
for ordinary linear model has been carried out. In Section III,
we illustrate the advantages of several uGCA forms over the
conventional two-stage GCA in two 5-node network syn-
thetic experiments. More importantly, in a task-related fMRI
dataset, uGCA methods obtained more consistent results for
causality investigation of mental arithmetic networks under
visual and auditory stimulus, respectively. Section IV and V
demonstrate comparisons between conventional two-stage
GCA and our proposal from a mathematical modeling stand-
point, and discusses its following potential development.

II. MINIMUM DESCRIPTION LENGTH PRINCIPLE
The MDL provides a generic solution for model selection
issue as an information criterion [51], and it regards the prob-
ability distribution as a descriptive standpoint to choose the
model that gives the shortest description of data. As a broad
principle, MDL has some connections with AIC and BIC,
sometimes it behaves similarly to them [49], [52], [53]. But it
actually represents a completely different approach for model
selection relative to conventional statistical approaches. Com-
pared with AIC/BIC, MDL fixes attention on unifying model
complexity term and fitting-error term into a description
length guided framework, and it does not require any assump-
tions about the data generation mechanism. The purpose of
model selection in MDL is not to estimate an assumed but
unknown distribution, but to find a more appropriate model
to describe data [54], [55].

A. DIFFERENT FORMS OF MDL
In the following, we formally introduce several coding
schemes that provide valid description lengths of a data string
based on classes of probability models [49], [50]. To derive
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formulas and explain models more intuitively, we first con-
sider a simple parametric model classM comprising a family
of distributions with the parameter θ ∈ Rk . Let xn =
(x1, x2, . . . , xn) denote a data string, and the model class is
represented as

M = {f (x|θn) : θ ∈ 2 ⊂ Rk}.

We have uncovered two-part MDL in detail in previous stud-
ies [40], but still describing it briefly here in order to make
a more clear comparison between several different forms
of the coding scheme. Then the three descriptive schemes
are introduced successively, and we derive a more general
framework for each form. Built on these derivations, next
section provides a rather extensive treatment of MDL for
causal investigation in ordinary linear regression.

1) TWO-PART CODING SCHEME
At original MDL, it usually divides modeling for the data set
into two parts, first part is to choose a subset of class M,
and then encode xn using this distribution. From the family
M to a candidate distribution, which is selected by an esti-
mator θ̂n, then the description length associated with a prefix
code is constructed from f

θ̂n
. Ultimately, similar to AIC/BIC,

the description length within two-part MDL adopts penalized
fitting-error and model complexity to encode data fitting
f (xn|θ̂n) and estimated parameter value θ̂n. Consequently,
the most common implementation of MDL, two-part code
version [40], [50], is carried out. The description length for
coding xn is then

L2p(xn, θ) = L1((xn|θ̂n)+ L2(θ̂n)

= − log f (xn|θ̂n)+
k∑
i=1

log
θ̂i

δ
+ log(n+ 1). (1)

where the distribution θ̂n on parameter space was truncated to
same precision δ = 1/

√
n.

2) MIXTURE FORM CODING SCHEME
Different from a crude coding scheme to describe model
complexity in the two-part MDL, the mixture form of MDL
establishes a description of data string xn on the basis of a dis-
tribution, which is obtained by taking a mixture of members
in a family of probability density functions ω on parameters,

m(xn) =
∫
fθ (xn)ω(θ )dθ (2)

The mixture m(xn) involves integrating over model classes,
to get around such difficulties, its first-order approximation to
this form coincides with the two-part MDL [56]. An alterna-
tive approximation yields another form of description length
known as Stochastic Information Complexity (SIC). Associ-
ating the stochastic complexity concept and creating a dis-
tribution for the data based on model class M, an analytical
approximation to the mixture MDL is obtained by Laplace’s
expansion when ω is smooth [49], [56]–[59]. The mixture

finally arrives at, I (θ ) denotes the Fisher information of θ ,

Lg = − log f (xn|θ̂ )+
k
2
ln

n
2π
+ log

|I (θ )|1/2

ω(θ )
+ o(1). (3)

Indeed, the mixture form of MDL shares many formal
elements with Bayesian model selection because their under-
lying analytical tools are the same. However, the philosophies
behind each approach are much different.

3) NML FORM CODING SCHEME
In earlier two-part codes, it still remains the inherent redun-
dancy. The NML form of MDL, taking into account Fisher
information, was developed based on the coding scheme of
Barron et al. [57] and Shtarkov [60]. In general, NML form
restricted the early second part description of two-part MDL
into a data region identified by parameter estimation [49].
This scheme for MDL model selection was formally intro-
duced by Rissanen in [61], and discussed its association with
minimax theory. In this case, as long as θ̂n exists for all xn,
we have

P(n)nml(x
n) =

P
θ̂n
(xn)∑

P
θ̂n
(xn)

. (4)

The sequence of distributions P1nml , P
2
nml ,. . . constitutes min-

imax optimal universal model relative to M, it tries to
assign to each xn a probability according to ML distribution
for xn [50]. And the studies were carried further by [57], [61],
for sequences xn such that θ̂(xn) ∈ 0,

Ln = − log f (xn|θ̂ (xn))+
k
2
ln

n
2π

+ ln
∫
0

√
|I (θ )|dθ + o(1) (5)

B. DESCRIPTION LENGTH GUIDED CAUSAL
INVESTIGATION
Associating with above extensive treatment, the causal inves-
tigation within uGCA methods can be put into effect. Firstly,
two time-series XN and YN are given, to describe XN , it hasXt =

∑n

j−1
a1iXt−j + ε1t

Xt =
∑n

j−1
a2iXt−j +

∑n

j−1
b2iYt−j + ε1t

(6)

where εt denotes the fitting residual, which has Gaussian
distribution with mean 0 and unknown variance σ 2. Thus,
the residual terms εt can be a standpoint to describe the
model within MDL. Distilling the sense of Granger causality,
the influence from Y to X based on description length guided
framework is defined by

FY→X = LX − LX+Y . (7)

where LX denotes the minimum description length of
restricted model for XN , and LX+Y denotes the mini-
mum description length of unrestricted model for XN after
adding YN . If FY→X > 0, it means causal influence from
Y to X existed, or else there is no causal influence from
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Y to X . As represented above, uGCA can unify conven-
tional two-stage scheme into the description length guided
framework to obtain causal relationship, which can avoid the
inconsistency of different mathematical theories and the issue
of subjective selection of confidence level.

Considering conditional Granger causality, the influence
from Y to X can be investigated while controlling the effect
from another node Z to X . This joint representation is
Xt =

∑n

j−1
a3iXt−j +

n∑
j−1

b3iZt−j + ε3t

Xt =
∑n

j−1
a4iXt−j+

n∑
j−1

b4iYt−j +
n∑
j−1

c4iZt−j + ε4t .

(8)

Thus, if FY→X > 0, in the conditional concept of proposed
uGCAmethods, the causal influence from Y to X conditioned
Z is given by the description length in (8),

FY→X |Z = LX+Z − LX+Y+Z . (9)

where LX+Z denotes description length of the unrestricted
model for XN after adding ZN . And LX+Y+Z is the length of
unrestricted model for XN after adding XN and ZN . Same as
above, causal influence from Z to X conditioned Y is

FZ→X |Y = LX+Y − LX+Y+Z . (10)

Intuitively, in this unified framework, all candidate models
can be described as description length and then compared
freely. In other words, unlike the conventional scheme, which
can only perform pairwise comparison by nested models,
uGCA can freely choose the number of comparison models,
which can release the algorithm complexity. Which is, if both
FY→X > 0 and FZ→X > 0 exist,

FY ,Z→X = min(LX+Y ,LX+Z )− LX+Y+Z . (11)

Clearly, if FY ,Z→X > 0 exist, it means that both Y and Z have
direct influence on X . But that will be dealt with in two cases
whenFY ,Z→X < 0. One isFY ,Z→X = (LX+Y−LX+Y+Z ) < 0
existed, which means Y impacts on X directly and Z has a
indirect causal influence X . The other case is FY ,Z→X =

(LX+Z −LX+Y+Z ) < 0, it indicates only Z has a direct causal
influence X . In the unified description length framework,
uGCA methods can map each candidate model into a unified
mathematical space to have a straightforward comparison.
Consequently, the uGCAmethods aremore concise and rigor,
that is more in line with Occam’s razor, or the principle of
parsimony.

C. DIFFERENT FORMS OF DESCRIPTION LENGTH
GUIDED uGCA
The following is model selection in the causal investigation
of which different forms of uGCA guided for the linear AR
model [48], [61]. Data set xn = {x1, . . . , xn} is given,

xt = β1xt−1 + β2xt−2 + · · · + βkxt−k + εt . (12)

where t = 1, · · · ,m, andm is more than k to keep the solution
determined, n denotes data length. In order to describe xt , turn
to Gaussian distribution for εt , it arrives at

f (xn|xt , β, τ ) =
1

(2πτ )m/2
e−(1/2τ )

∑
t (xt−

∑
k βkxt−k ) (13)

1) uGCA-TP—CRUDE TWO-PART CODING SCHEME
Clearly, for descriptive model of xn, its parameter vector
consists of data

θ = (k, ξ ) and ξ = (τ, β1, · · · , βk ),

where ξ ∈ Rk+1, τ = ξ0 is the variance-parameter of
zero-meanGaussian distributionmodel for εt . LetRSS denote
the residual sum of squares corresponding to estimation in the
model. Thus total description length is given as

LuGCA−TP = m ln
√
2πτ +

RSS
2τ
+

k∑
i=0

ln
|ξi|

δ
+ ln(k + 1).

(14)

where δ is the precision, and it’s optimal to choose 1/
√
N

[49], [58], [62]. Specially, |ξi|
δ
< 1 should be ignored.

2) uGCA-MIX—g-prior FOR PARAMETER SPACE
To obtain a closed-form expression for mixture form, ω(β, τ )
is represented as a member of the natural conjugate family of
priors for normal linear regression model, namely the normal
inverse-gamma distributions [58],

ω(β, τ ) ∝ τ
−d+k+2

2 e
−(β−b)′c6(β−b)+a

2τ . (15)

where 6 = X ′kXk = mS (X ′k = {xi,t−k}) is a k × m
matrix defined by the values of regressor variables [57].
Rissanen [58] provided a special solution that a = d = 0,
b = (0, .., 0), and Zellner [63] christened a specification the
g-prior. The value of 6, provided a closed-form expression
for ĉ in [49], namely 1/ĉ = max(F − 1, 0) where F =
(m− k)(X ′tXt −RSS)/(k ·RSS). Thus, R

2 is the usual squared
multiple correlation coefficient, the mixture is given

LuGCA−MIX =


m
2
ln

RSS
n− k

+
k
2
lnF + lnm, if R2 6

k
n

m
2
log

X ′tXt
m
+

1
2
logm, otherwise.

(16)

Finally, a simple approximation to this mixture form is
applied to derive the SIC [49],

SIC =
m− k − 2

2
logRSS +

k
2
logm+

1
2
log det[6], (17)

where the additive constant independent of model choice
has been omitted. In this context, mixture form adapts to
behave like Bayesianmodel selection. However, for a small n,
mixture criterion will not be as sharp as the one provided by
the NML form.
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FIGURE 1. The relationships of simulation data sets in the 5-node
networks in model A.

3) uGCA-NML—MINIMAX SOLUTION FOR THE INHERENT
REDUNDANCY
Combining Fisher information to remove the inherent redun-
dancy in earlier two-part codes, a sharper description length
as stochastic complexity and the associated universal process
are derived for a class of parametric processes [61]. And this
description form is motivated by the maximum-likelihood
estimate (MLE) which requires to satisfy the Central Limit
Theorem (CLT) [57], [64]. Then the nonintegrability of MLE
code is the key issue to be solved. For this, the Fisher infor-
mation is needed, which is given by

|I (β, τ )| = |S|/(2τ k+2),

and the integral of its square root dealt by [57], [61], [64] is∫
β
′Sβ6R

∫
∞

τ0

|I (β, τ )|1/2dτdβ = (2|S|)1/2(
R
τ0
)k/2

Vk
k
. (18)

where VkR
k
2 = |S|−

1
2 2(πR)

k
2 /k0( k2 ) denotes the volume of

a k-dimensional ball B = {β ′Sβ 6 R}. Lower bound τ0 is
determined by the precision which the data are written, then
τ̂0 = RSS/m and R̂ = (β̂ ′X ′t−kXt−k β̂)/m obtained by MLE.
Thus description length associated with (5) arrives at

LuGCA−NML = m ln
√
2πτ +

RSS
2τ
+
k
2
ln
m
2
− log0(

k
2
)

+
k
2
log

R̂
τ0
− 2 log k (19)

III. EXPERIMENTS AND RESULTS
A. SIMULATION
To reveal the specialty of several different uGCA forms,
we intended to compare the characteristics of different uGCA
in simulation data of a 5-node network, seen in Fig. 1. Noise
terms εi(i = 1, 2, . . . , 5) were Gaussian distribution with
mean 0, and their variance were all 0.35. This structural
network was named model A, each node was given by

x1,t = 0.68x1,t−1 − 0.27x1,t−2 + ε1
x2,t = 0.75x1,t−1 − 0.32x1,t−2 + 0.73x2,t−1
−0.42x2,t−2 + 0.63x3,t−1 − 0.33x3,t−2 + ε2

x3,t = 0.56x2,t−1 − 0.42x2,t−2 + 0.62x3,t−1
−0.3x3,t−2 + 0.78x4,t−1 − 0.31x4,t−2 + ε3

x4,t = 0.72x2,t−1 − 0.27x2,t−2 + 0.52x3,t−1
−0.45x3,t−2 + 0.73x4,t−1 − 0.27x4,t−2 + ε4

x5,t = 0.68x4,t−1 − 0.24x4,t−2 + 0.805x5,t−1
−0.21x5,t−2 + ε5

(20)

To ensure the stability of data, we generated 1000 data
points in each node and only take the last 300 data points. And
ranging the variance of noise can compare the performance of
several forms uGCA more comprehensively.

First, the foothold of our model had been verified in
our previous research [40]. Causal connectivities between
the 5-node networks obtained by different methods showed
in Fig. 2, which the connection was single edge between
nodes. In conventional GCA, we chose different confidence
levels in its F-test and found that the probability of false
connections was indeed reduced a lot. For several different
forms of uGCAmethod, the judgment of true connection was
very accurate, the same as conventional GCA. Of course,
uGCA-TP was still not accurate enough to identified false
connections, but uGCA-MIX and uGCA-NML performed
very well. Obviously, these two kinds of uGCA can always

FIGURE 2. The result obtained by different forms of uGCA and conventional GCA under different confidence intervals. The variance of noise ranged from
0.15 to 0.55, the length of data points is 300. The number in the sheet represented the count of identified connectivities in 1000 simulations. The row
of 5*5 matrix in the figure is the exogenous nodes, the column of 5*5 matrix is the endogenous nodes. Clearly, the darker blue panes in the figure are the
connected edges of each node in Fig. 1.
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FIGURE 3. The result obtained by different form of uGCA and conventional GCA under different confidence interval. The length of data ranged from
150 to 500 (Length=300 showed in Fig2). The illustration of figure is same as Fig. 2.

find true connection very accurately while rarely obtaining
false connections, that is, the true positive rate(TPR) and the
true negative rate (TNR) were very high. The performance
of conventional GCA eliminating false connections was not
very well relatively. Meanwhile, we found all the methods
had relatively stable performance under different noise levels
(0.15,0.35 and 0.55), except for uGCA-MIXmethod. At a low
noise level, it seemed that uGCA-MIX cannot identify true
connections very well, specifically, some true causal effects
from node 1 to node 2 and node 3 to node 2 were omitted,
seen in Fig. 2.

Fig. 3 showed causal connectivity obtained by uGCA and
conventional GCA, in which 5 nodes were generated under
the different length of data points. Firstly, for the true con-
nections, uGCA and conventional GCAwere nearly the same
robust when data points ranged from 200 to 500, the six
true connection edges were identified to the most extent.
Conventional GCA with a high confidence level was not very
accurate when the data point was 150, the same as several
uGCA forms. Then, as for false connections, when data points
ranged from 150 to 500, uGCA-NML and uGCA-MIX had
higher TNR. The uGCA-TP method can also largely elimi-
nate false connections, but the performance of conventional
GCA was not very good when its confidence interval was
0.05, except for data length reaching 500. That meant conven-
tional GCA can identify true connections well, but for its sub-
jectivity or inconsistency, it seemed not self-driven enough
to eliminate false connections. So far, uGCA method may be
similar to conventional GCA with a high confidence level to

FIGURE 4. The 5-node networks of model B, it was removed two
connected edges (3→2 and 4→3) of model A.

some extent. Actually, uGCA was not equal to conventional
GCAwith a high confidence level at all, which had been illus-
trated clearly in our previous research [40]. For now, it seems
that uGCA-NML is more outstanding, which is more like
an enhanced version of uGCA-TP, showing same accuracy
as uGCA-TP in identifying true connection, but better than
uGCA-TP in eliminating false connections. This is also con-
sistent with the different origin of formulas in the principle.
Originally, the NML form is proposed to remove the redun-
dant model description. For themixture form, it behavesmore
like BIC, depending on the priors for model selection. That
means, for some data sets, the performance of uGCA-MIX
may be very wonderful, but its robustness is not very well.

To further confirm the difference of characteristics in the
several uGCA forms, we thought it necessary to further
demonstrate these different approaches in other networks.
Therefore, we considered that model A was removed two
connected edges (3→2 and 4→3), it arrived at the other
5-node network (named model B), seen in Fig. 4. The other
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FIGURE 5. The result obtained by the different form of uGCA and conventional GCA with different confidence levels. The variance of noise
was 0.15, the length of data points is 300. The Exo (the row of 5*5 matrix) denotes the exogenous variables, and the Endo (the column
of 5*5 matrix) is the endogenous variable. Ni(i=1,2,3,4,5) represents the five nodes in the networks. Same as Fig. 2, the number in the
sheet represented the count of identified connectivities from exogenous nodes to endogenous nodes in 1000 simulations. Namely,
the darker blue panes denote the connected edges of each node in Fig.4.

setting remains the same as model A, it is given by

x1,t = 0.68x1,t−1 − 0.27x1,t−2 + ε1
x2,t = 0.75x1,t−1 − 0.32x1,t−2 + 0.73x2,t−1
−0.42x2,t−2 + ε2

x3,t = 0.56x2,t−1 − 0.42x2,t−2 + 0.62x3,t−1
−0.3x3,t−2 + ε3

x4,t = 0.72x2,t−1 − 0.27x2,t−2 + 0.52x3,t−1
−0.45x3,t−2 + 0.73x4,t−1 − 0.27x4,t−2 + ε4

x5,t = 0.68x4,t−1 − 0.24x4,t−2 + 0.805x5,t−1
−0.21x5,t−2 + ε5

(21)

Consistent of the consequence in model A, the results of
model B showed that uGCA-TP and uGCA-NML was rela-
tively more robust in the connection networks, seen in Fig. 5.
For uGCA-NML, it obtained a more sparse connection net-
work and guaranteed a higher accuracy at the same time.
But for uGCA-MIX at low noise level, its false connections
can be eliminated well but the true connections were not
identified accurately, seen in Fig. 5. This meant uGCA-MIX
will obtain a more sparse connected matrix but that there
may be some false negative for its true connections at some
noise level. For conventional GCA, our previous research had
executed a model similar to the structure of model B, it found
that there were some true causal connectivities missed to be
identified [40]. As a whole, uGCA was not equivalent to the
conventional GCAwith a high confidence level at all whether
from the performance or their principle, and it may have more
robust performance in complicated networks.

Actually, due to the subjective statistical inference process
and inconsistent mathematical theories, the inherent causal-
ity between nodes cannot be guaranteed when conventional
GCA identifies causal connectivity. Our previous research
had demonstrated, for conventional GCA, true connections

that cannot be well identified were all about the drive node,
which may be related to overlapping or mutual suppression of
incoming information of the other nodes, and there seemed
to be more related nodes. But on the contrary, under a uni-
fied mathematical framework, uGCA methods did not have
such mistakes, except for uGCA-MIX under low noise level.
Furthermore, there were some interesting phenomena in the
false connections from other nodes to the driver node 1 in two
models. It seemed harder than other false connectivities for
all methods to completely eliminate them. These misjudge
may be considered to be accidental, but due to their higher
TNR of uGCA-MIX and uGCA-NML, it’s more reasonable
to interpret it as the characteristics related to driver node.
Theoretically, all incoming information of other nodes comes
from the driver node, so there will be some causal aliasing in
time series.

In general, several different forms of uGCA were more
robust than conventional GCA in two 5-node simulations.
As for uGCA-NML form, it seemed to be more admirable
in investigating causality when data points were above 200.
Meanwhile, at some noise level, uGCA-MIX seemed to be
a reliable choice to obtain a more sparse network, and its
performance is similar to that of conventional GCA with a
high confidence level. For the uGCA-TP form, its overall
performance was between these two forms of uGCA, which
can be a good conservative choice.

B. ISOMORPHIC MAPPING IN MENTAL ARITHMETIC
The validity of causal investigation within several uGCA
forms has shown in two simulated models. Next, it is nec-
essary to verify this causal connectivity analysis of uGCA
methods through real imaging data. In the study we let
ten subjects perform simple one-digit(consisting of 1-10)
serial addition (SSA) and complex two-digit(consisting
of 1-5) serial addition (CSA) by visual stimulus and
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FIGURE 6. Mental arithmetic of CSA-control state under the two stimuli(visual stimulus and auditory stimulus), the activation regions were processed by
SPM12, the control state meant that the sample was in rest state without mental arithmetic. (a): CSA-control state under visual stimulus. (b): CSA-control
state under auditory stimulus.(P<0.0001, uncorrected).

simultaneously measured their brain activities with fMRI.
Immediately following, the subjects were asked to perform
the same serial addition arithmetic tasks by an auditory
stimulus. Nine right-handed healthy subjects (four female,
24±1.5 years old) and one left-handed healthy female subject
(24 years old) participated. One of the subject’s(a right-hand
male) experimental data was removed due to excessive head
motion. All subjects volunteered to participate in this study
with the informal written consent by themselves.

In this experiment, different samples performed mental
arithmetic tasks through visual and auditory stimuli, respec-
tively. During tasking, these working scenarios of the brain
were mental arithmetic tasks, thus working scenarios can
be considered similar regardless of specific stimuli. At the
same time, brain connectivity should be isomorphic when the
subject performsmental arithmetic regarding a high cognitive
task, that is to say, the phenomenon of isomorphic mapping
should be widely present in the brain during the comple-
tion of this task. Then through SPM software, we can get
the mental arithmetic activation area of the brain. In these
mapped regions through statistical inference, we used several
causal connectivity methods to obtain connections between
networks. Finally, by comparing their similarities of mental
arithmetic networks under different stimuli, the phenomenon
of isomorphic mapping in processing mental arithmetic tasks
was quantitatively described to demonstrate the advantages of
several uGCA forms in investigating the dynamic correlation
of brain regions [40], [65].

In Euclid space, for different methods, we measured the
similarity of two networks under visual/auditory stimulus.
This similarity was given by

SC =
1

1+ |Av − Aa|
, (22)

where Av and Aa was the connection matrix under visual/
auditory respectively. Specifically, in conventional GCA,

the value in connection matrix was a residual ratio while it
was a description length difference in several uGCA forms.

By setting the values of the connection matrix to 0 and 1,
we obtain some connected networks (A′v, A

′
a) with direction

and no weight. For this 0-1 connection matrix, we measured
similarity by combining the same edges in obtained network.
Consequently, the similarity of connected edge was given

SE =

∑ ∑
(A′v ∩ A

′
a)∑ ∑

(A′v ∪ A′a)
. (23)

For most subjects, their similarities of mental arithmetic
networks were higher than 60%, seen in Fig. 7a. Obviously,
this similarity of edges in causal connectivity networks was
sufficient to show the isomorphic mapping between two
stimuli during the mental arithmetic tasks in each subject.
At the same time, the causal network identified by uGCA
was obviously more similar than conventional GCA. Specif-
ically, for subject 1 and subject 3, network similarities of
all methods were relatively high, indicating that the brain
isomorphic mapping on mental arithmetic task may be rel-
atively more robust. In subject 2, for several forms of uGCA
methods, results found that the obtained mental arithmetic
network under visual/auditory is exactly identical. Further-
more, in subject 8, uGCA-MIX also obtained two identical
networks.

Comparing their relative performance of different meth-
ods, this resulting similarity showed in Fig. 7b, which was
divided by a maximum of SC of different methods on each
subject. Intuitively, at the individual level, the similarity of
connection matrix obtained by uGCA method was much
higher than that of conventional GCA, which verified its
excellent performance of this consistency of mathematical
principle in uGCAmethod.Meanwhile, with help of obtained
connection matrix, it found that the similarity of networks
obtained by uGCA-NML was more robust, which meant that
a sparse matrix obtained can guarantee higher TNR and TPR.
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FIGURE 7. The similarity of the obtained mental arithmetic networks under two stimuli(visual stimulus and auditory stimulus). (a): The similarity of each
subjects was measured by SE . (b): To compare the difference between methods, this similarity was obtained by quantifying distance in connection
matrix, which obtained by a difference in description length.

To further illustrate the difference of this quantified iso-
morphic mapping phenomenon, causal networks obtained by
different methods on individuals showed in Fig. 8 respec-
tively. For causal network obtained by conventional GCA
and uGCA-TP, their result had shown in [65]. Different from
the irregularity of networks obtained by conventional GCA,
causal networks obtained by uGCA-TP were very similar.

For uGCA-MIX form, causal networks of subject 2 and
subject 8 were identical, seen in Fig. 8. But for subject 1, most
connected edges were identical when a few edges were dif-
ferent. As mentioned in simulation, uGCA-MIX will obtain
a more sparse network, but its networks may miss some
true connections. Anyway, the identical mental arithmetic
networks obtained through uGCA-MIX showed that this iso-
morphic mapping phenomenon of three subjects was very
legible, it meant that the ability of subjects to perform mental
arithmetic tasks may be more prominent.

For uGCA-NML form, its causal networks also showed
in Fig. 8. In subject 1, there were two different edges, other
edges were the same in networks. But we can still conclude
that two networks had an isomorphic characteristic, for exam-
ple, their driving node may be identical. For subject 2, whose
causal networks were identical, isomorphism mapping under
mental arithmetic task quantified by uGCA-NML was very
legible. As for subject 8, only one edge was different, and it’s
clear that the two networks were almost identical. For these
three subjects, mental arithmetic networks obtained through
uGCA-NML all had the phenomenon of isomorphic mapping
obviously. As wementioned above, uGCA-NML can identify
true connections well when eliminating the influence of false
connections, then to obtain a more sparse connection matrix.

IV. DISCUSSION
In simulation experiments, uGCA methods had shown supe-
rior performance by comparing conventional GCA in 5-node

networks. Whether it was true or false connections, uGCA
had a greater chance to find real causal connectivities than
conventional GCA. We found that uGCA-MIX preferred
to find a more sparse causal network duo to its priors on
parameter estimation, and uGCA-NML, no matter what the
noise level was, can eliminate the influence of false con-
nections better when found real connections, so as to get
sparse connection matrix more accurately. The performance
of uGCA-TP was the compromise between the other two
methods.

In fMRI experiment, the isomorphic mapping involving
mental arithmetic tasks in the brain was constrained into
metric space to verify the performance of investigating causal
connectivity for different methods. Overall, we found that the
mental arithmetic networks obtained by uGCA were more
similar, and isomorphic phenomenon seemed more obvious.
In this research, causal networks obtained by uGCA-MIX and
uGCA-NML methods showed that their mental arithmetic
networks under different stimuli also existed a legible iso-
morphic mapping. In real imaging datasets, the requirements
for comprehensive performance of these methods are much
higher, due to the length of experimental data was between
200-300, advantages of uGCA-NML form are not very evi-
dent. For uGCA-MIX, misjudging a few true connections
will lead to results inaccurately. As a comparison with con-
ventional GCA, only a few subjects seemed to show clear
isomorphism. We consider the difference is that uGCA inte-
grates the conventional two-stage GCA scheme into a unified
framework, and isomorphic mapping is a continuous closed
process, which requires that process of quantitative isomor-
phism must keep the consistency of mathematical principles,
otherwise there will be a breakpoint in quantitative process.
In mathematics, we call it a singular point, and its operation
is not closed, which its result may be a departure from the
original space and become very distorted. And we know the
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FIGURE 8. Causal network in the mental arithmetic tasks obtained by uGCA methods and conventional GCA, respectively. With the conventional GCA
approach, connected edges of causal networks in two different stimuli were to a large extent distinct. In contrast, for uGCA methods, their connection
networks commonly showed high similarities, only about one or two edges were different. Especially in subject 2, three uGCA all obtained two identical
networks. For subject 8, uGCA-MIX and uGCA-NML also obtained two identical networks while there is only one different edge in the two networks for
uGCA-TP. As for subject 1, only two connected edges were different for the networks obtained by uGCA-TP and uGCA-NML, and whose information flows
were similar to a large extent. For uGCA-MIX, there were also two different edges. But because it is susceptible to noise and is not so stable, there was an
opposite connected edge.

original model space can not be found at all. Thus, toward
description length of the model complexity, uGCA-MIX and
uGCA-NML provided some different solutions, which map-
ping the descriptive model into different feature spaces to
approach the original model space in different aspects.

These results obtained by uGCA indicated that causal iso-
morphism does exist duringmental arithmetic tasks. Actually,
the postulation that the brain is isomorphic under similar tasks
is not made up out of thin air. For decades, some studies have
tried to demonstrate this capability that the brain cognizes the
world by analogy [66]–[72]. And there are also some studies
that use category theory to mathematically demonstrate how
analogical reasoning in the human brain get rid of the spuri-
ous inferences that puzzle conventional artificial intelligence
model (called systematicness) [73]–[75].Hence, it’s reason-
able to believe that the causal networks of brain duringmental
arithmetic tasks are isomorphic, even in different modes of

stimuli. Specifically, this tasking network should be similar
in the feature space of causal connectivity.

Intuitively, at the individual level, their causal networks
under different stimuli should be similar for one subject,
which means the brain activity should be isomorphic map-
ping. In our mental arithmetic experiment, uGCA showed
the legible isomorphism of the brain under different stimuli.
In contrast, the causal network obtained by conventional
GCA was not very similar, or isomorphism was not clear
either. At the same time, for the similarity of mental arith-
metic brain network, our previous research also found a
relatively legible isomorphic mapping through the method of
dynamic causal modeling (DCM) [65].

For conventional two-stage approach of GCA, its causal
investigating process may obscure original relationship of
data from the same space and then leads to an unreliable infer-
ence. This may be one of the mathematical reasons behind the
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distrust of GCA by its peers when it was introduced from eco-
nomics to neuroscience. On the one hand, the imaging data
space in a brain should also be closed from a mathematical
viewpoint. A modeling tool that describes the brain through
the imaging data should change the original closed space as
little as possible, so as to ensure that the internal correlation
of data is not distorted so much. Therefore, as a method of
describing effective connectivities related to brain behaviors,
it is critical to maintain the consistency of mathematical the-
ory throughout the description process. Our uGCA paradigm
first maps the original space into a unified description length
guided space, which is also closed topologically, and then to
identify the causal connectivities. Therefore, this allows data
to maintain the original correlation as much as possible, thus
obtaining an optimal approximate description of correlation
among data in the original space. More importantly, differ-
ent uGCA forms provided different sides to approach the
original space, uGCA-MIX and uGCA-NML can both obtain
their optimal descriptive model in different feature spaces
respectively. In general, based on the MDL principle, causal
connectivity of brain regions is investigated by initiating a
unified description length guided framework, which ensures
closure and continuity of the description process to obtain
a more convincing result. Furthermore, in the current work
for distributed collaborative brain, the isomorphism between
tasks may be generalized existed, which requires that the
method used to describe brain behavior should be consistent
and follows the same mathematical theory.

V. CONCLUSION
From the parsimony principle in modeling, we propose that
the causal connectivity can be obtained by initiating a unified
framework guided by description length based on the MDL
principle, which guarantees continuity and closure of the
original correlation of data in processing, so as to obtain
an optimal approximate description for data. In this article,
we developed several uGCA forms to approach the original
descriptive space from different sides. We verified the superi-
ority of several uGCA forms in simulated data and real fMRI
experiments. Meanwhile, further derivation of uGCA needs
to reveal and investigate nonlinear phenomena in the brain,
this is one of our future works.
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