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ABSTRACT In the advanced television systems committee (ATSC) 3.0 system, the concept of flexibility
is significant for supporting backward compatibility within the same ATSC 3.0 system. However, since
the conventional bootstrap signal detection scheme is difficult to support the flexibility, the conventional
bootstrap signal detection scheme should be newly designed according to the change of version. In this
paper, a convolution neural network (CNN) model for bootstrap signal detection in ATSC 3.0 is proposed
to maintain the flexibility of bootstrap. Additionally, for minimizing the loss of error performance of
CNN-based bootstrap detection scheme, this paper proposes two dimensional alternate array to utilize the
correlation of the adjacent bootstrap symbol and proposes the offline learning method using the bootstrap
signal corrupted by noise to improve the error performance.

INDEX TERMS ATSC 3.0, bootstrap, deep learning, convolutional neural network, signal detection,
broadcasting.

I. INTRODUCTION
The advanced television systems committee (ATSC)
developed the standard known as ATSC 3.0 to support ultra-
high definition(UHD) services. ATSC 3.0 is designed to pro-
vide flexibility and extensibility for backward compatibility
within the same ATSC 3.0 systems [1]–[4]. The ‘system dis-
covery and signaling’ (A/321) describes the system discovery
and signaling architecture for the ATSC 3.0 physical layer. As
broadcasters realize a need providingmultiple wireless-based
services in addition broadcast, ATSC 3.0 defines bootstrap
identifying the type or form of transmitted signal [2].

The bootstrap signal provides a universal entry point into
a digital transmission signal. The bootstrap is designed to
use the concepts of versioning, scalability and extensibility
to support backward compatibility which is called flexibil-
ity. The bootstrap version is expressed as a major and a
minor version which are generated by Zadoff-Chu (ZC) and
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pseudo-noise (PN) sequence, respectively. Scalability means
that the bootstrap can sustain backward compatibility when
the number of bits signaled per bootstrap symbol is increased,
up to a specified maximum. The bootstrap extensibility is
obtained by additional bootstrap symbol and termination of
bootstrap signal is signaled by a final symbol having 180◦

phase inversion relative to the preceding symbol.
The bootstrap signal is positioned in front of the frame.

The bootstrap signal consists of a number of symbols, and
the first symbol is enable to signal discovery, coarse syn-
chronization, frequency offset estimation, and initial channel
estimation [5]. The remainder of the bootstrap contains suf-
ficient control signaling such as the minimum time interval
to next frame and system bandwidth. For synchronization,
channel estimation and signal detection, even if the version
number evolves, ATSC 3.0 bootstrap configurations such as
sampling rate, bandwidth, FFT size, and symbol length are
unchanged [6]. Also, in time domain, the bootstrap sequence
of the bootstrap symbols is generated by ZC sequence and PN
sequence which are changed by the number of the bootstrap
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symbols and subcarriers. For the same version of boot-
strap, since the bootstrap signal uses the fixed configuration,
each symbol has different fixed sequence. The receiver can
demodulate the received bootstrap signal by using the fixed
sequence [7].

To demodulate the bootstrap signal successfully, many
researchers have proposed various detection schemes [8], [9],
[12], [13]. In [9], while the extensibility of the bootstrap
is being maintained, a newly designed bootstrap sequence
was proposed. The bootstrap of this scheme is signaled in
frequency domain compared to the bootstrap of standardized
scheme in time domain. In this way, the performance of the
proposed scheme is improved compared to the performance
of the standardized scheme. Inmany communication systems,
the maximum likelihood (ML) detection method has been
researched [10]–[12]. the ML detection method is known as
the optimal scheme, and it also be researched in ATSC 3.0
system. In [12], an iterative detection scheme usingmaximum
likelihood scheme was proposed. Also, this paper improves
the reliability of the channel estimation by averaging the
channel gains iteratively. Additionally, in [13], in order to
improve detection performance for specific bits, character-
istic of the fixed system parameters, such as the system
bandwidth, sample rate, and etc was used. However, these
conventional bootstrap detection schemes have no flexibility.
When the standard is changed, conventional schemes is no
longer practical. Thus, detection module should be newly
designed and replaced with new one.

Recently, deep learning technology has received atten-
tion in communication engineering area [14]–[21]. In this
aspect, this paper deals with convolutional neural network
(CNN) among deep learning technologies for detection of
bootstrap signal. However, since a detection scheme using
simple CNN-based models is not enough to detect bootstrap
symbols, this paper proposes two preprocess methods to
improve reliability for detection of bootstrap signals. The
conventional CNNmodel uses 2 dimensional array input data.
Since the performance of CNNmodel defends on the method
of array, it is significant to find proper array. First, a received
bootstrap symbol is compensated by a bootstrap sequence,
and then two adjacent compensated bootstrap symbols are
arranged into two-dimensional array which is arranged alter-
nately in each subcarrier. With application of the preprocess,
training loss value is decreased and performance is improved.
Additionally, to further improve the performance, this paper
uses for training the alternately arranged input data corrupted
by noise. By training the input data corrupted by noise, the
threshold boundary of bootstrap symbol is trained and the
actually received bootstrap symbol is detectedmore precisely.
Consequently, in this paper, to help utilization of the CNN for
ATSC 3.0 system and maintain the flexibility of evolving the
major and minor version in the future, the structure of CNN
and preprocessing method are presented.

In this paper, to verify the performance of proposed
CNN-based detection model, the maximum likelihood (ML)
detection method and the DNN-based detection model

FIGURE 1. Frequency domain for bootstrap generation.

are introduced and compared with proposed CNN-based
model.

II. STRUCTURE OF BOOTSTRAP SIGNALS
Fig. 1 shows that the bootstrap sequence is generated by mul-
tiplying Zadoff-Chu (ZC) sequence and pseudo-noise (PN)
sequence, in the frequency domain. The ZC sequence and
PN sequence contain the information of the major and minor
versions of the bootstrap, respectively. The ZC sequence is as
follows,

zq(k) = e−jπq
k(k+1)
Nzc , k = 0, 1, 2, . . . ,Nzc − 1, (1)

where NZC = 1499 is the largest length due to channel
bandwidth 4.5MHz with a subcarrier spacing 3kHz and q is
a root which is the major version number of the bootstrap.

The PN sequence p(k) is generated by linear feedback
shift register (LFSR) of length l = 16 where the generator
polynomial is p(x) = x16 + x15 + x14 + x + 1 and the PN
sequence is represented by 0 or 1. The initial state of generator
polynomial rinit is called seed which means minor version of
the bootstrap. The output of PN sequence p(k) is converted as
follows,

c(k) = 1− 2× p(k), (2)

where c(k) is represented by −1 or 1 instead of 1 or 0. And
then, zq(k) and c(k) are mapped as follows,

Sn(k)

=


zq(k + NH )× c((n+ 1)× NH + k) −NH ≤k≤−1
zq(k + NH )× c((n+ 1)× NH − k) 1 ≤ k ≤ NH ,
0 otherwise

(3)

where Sn(k) is the frequency domain bootstrap sequence of
the n-th symbol and k-th subcarrier and NH = (NZC − 1)/2.
The power of the bootstrap sequence Sn(k) is normalized to 1.
To indicate the final symbol, phase of final symbol is inverted
as follows,

S̃n(k) =

{
Sn(k) 0 ≤ n < NS − 1
−Sn(k) n = NS − 1,

(4)

where Ns is the number of bootstrap symbols. The frequency
domain bootstrap sequence S̃n(k) is transformed to the time
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domain sequence Ãn(t) through IFFT of size NFFT = 2048.

Ãn(t) =
1

√
NZC − 1

( −1∑
k=−(NZC−1)/2

s̃n(k)ej2πkf1t

+

(NZC−1)/2∑
k=1

s̃n(k)ej2πkf1t
)
. (5)

where Ãn(t) is the time domain bootstrap sequence of the n-th
symbol at the time t . f1 has subcarrier space of 3kHz.
In current version, the bootstrap has four symbols for

ATSC 3.0. To transmit the signal, the information is signaled
via the bootstrap symbol using a cyclic shift in the time
domain [2]. Since the bootstrap sequence has a length of
NFFT , 2048 distinct cyclic shifts are possible and it can be
signaled up to log2(2048) = 11 bits. However, all of these
bits actually are not used. When the number of used signaling
bits for the n-th bootstrap symbol is N n

b , the bit representation
of the signaling information is given by bn0, b

n
1, . . . , b

n
N n
b−1

which have the value 0 or 1. The rest bits bnN n
b
, . . . , bn10

are set to 0. And then, these bits are transformed to valid
signaling bits using Gray code. When the Gray coded bits are
represented by decimal M̃n which is relative cyclic shift, the
absolute cyclic shift of the n-th bootstrap symbol isMn and it
is calculated as follows,

Mn =

{
0 n = 0
(Mn−1 + M̃n) mod NFFT 1 ≤ n < NS .

(6)

Since the first bootstrap symbol does not include the sig-
naling information, the absolute cyclic shift value M0 of the
first bootstrap symbol is zero. The bootstrap signal An(t)
is finally generated by cyclically shifting the time domain
sequence Ãn(t) using the absolute cyclic shift of the n-th
bootstrap symbol. An is obtained as follows,

An(t) = Ãn ((t +Mn) mod NFFT ) , (7)

III. CONVENTIONAL MODELS FOR BOOTSTRAP
DETECTION
A. ITERATIVE MAXIMUM LIKELIHOOD FOR BOOTSTRAP
DETECTION
In this section, iterative ML detection method is represented
by [12]. It is assumed that the synchronization between
transmitter and receiver is perfect. The relative cyclic shift
detection is performed and the signaling information bits are
finally obtained by the gray code demapper. The relative
cyclic shift detection is performed iteratively for the ML
method. The received bootstrap signals can be represented as
follows,

Rn(k) = Hn(k)Sn(k)e
j2π kMn

NFFT +Wn(k)

= He,n(k)Sn(k)+Wn(k), (8)

where Rn(k), Hn(k), Sn(k) and Wn(k) are the received
bootstrap symbol, channel, the bootstrap sequence and
AWGN of the n-th symbol and k-th subcarrier, respectively.

FIGURE 2. Block diagram to detect bootstrap signals based on DNN.

He,n(k) = Hn(k)e
j2π kMn

NFFT denotes the equivalent channel gain
of the k-th subcarrier for the n-th symbol. The ML decision
rule for the relative cyclic shift can be calculated using IFFT
operation as follows,

M̃n = arg min
m̃n∈χr

NFFT−1∑
k=0

∣∣∣∣Rn(k)− He,n−1(k)Sn(k)ej2π km̃n
NFFT

∣∣∣∣2

= arg min
m̃n∈χr

RE

{NFFT−1∑
k=0

R∗n(k)He,n−1(k)Sn(k)e
j2π km̃n

NFFT

}
= argmaxRE

{
IFFT

{
R∗n(k)He,n−1(k)Sn(k)

}}
, (9)

where χr denotes the set of all possible values of the relative
cyclic shift. RE {•} and IFFT {•} are the real part of a complex
value and IFFT operation, respectively. Consequently, by
using the channel gain He,n−1(k) of the previous bootstrap
symbol and the received bootstrap signal Rn(k), the relative
cyclic shift value M̃n is obtained.
The ML method is known as an optimal detection scheme

among the digital signal detection schemes. Since ML
method determines the signal which is the highest possibility
among all the signals that can be transmitted, the receiver
needs to know the information about all the signals that can be
transmitted. However, in the case of ATSC 3.0 bootstrap, the
number of transmittable signals can be changed according to
the request of broadcasters in the future. As a result, the ML
method cannot adapt to the changing standards of ATSC 3.0
without changing the receiver.

B. DEEP NEURAL NETWORK FOR BOOTSTRAP DETECTION
In recent, deep learning technology has been applied in com-
munication engineering area [18]–[21]. In [21], deep neural
network model is applied in MIMO system. This section
introduces a DNN-based detection model for ATSC 3.0 with
reference to [21].

In order to detect relative cyclic shift M̃n with the DNN,
preprocessing is performed on adjacent symbols and it is
used for training in the deep neural network model. Fig. 2
shows the block diagram of the receiver to detect bootstrap
signals based on DNN. The bootstrap detector consists of
preprocessing and DNN module. In the off-line training step,
the DNN-based model is trained without noise Wn(k). Mn is
the absolute cyclic shift of the n-th symbol. By (3), the power
of the bootstrap sequence Sn(k) is normalized to 1. When the
received bootstrap symbolRn(k) is compensated by S∗n (k), the
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FIGURE 3. The proposed DNN model for ATSC 3.0.

result is as follows,

yn(k) = Rn(k)S∗n (k)

= Hn(k)Sn(k)S∗n (k)e
j2π kMn

NFFT +W ′n(k)

= Hn(k)e
j2π kMn

NFFT +W ′n(k), (10)

where yn(k) is the compensated bootstrap symbol and equiv-
alent noiseW ′n(k) isWn(k)× S∗n (k). Since the power of Sn(k)
is normalized to 1, Sn(k)S∗n (k) is 1. The current bootstrap
symbol is multiplied by the conjugate of the previous symbol
and the result is obtained as follows,

rn(k) = yn(k)y∗n−1(k)

= Hn(k)H∗n−1(k)e
j2π

k(Mn−Mn−1)
NFFT

= Hn(k)H∗n−1(k)e
j2π kM̃n

NFFT ,

(11)

where M̃n is the relative cyclic shift of the n-th symbol
and rn(k) is preprocessed data of the n-th symbol and k-th
subcarrier. And then, the real part and the imaginary part of
rn(k) are arranged sequentially, for the deep neural network.

Fig. 3 shows theDNN-based detectionmodel for ATSC 3.0
and this model consists of single input layer, single output
layer and two hidden layers. Each layer except output layer
has 512 nodes and this model uses tanh function as an acti-
vation function. Unlike other layers, output layer has 2048
nodes that perform classification of relative cyclic shift, and
uses softmax function as an activation function. Also, it uses
cross-entropy error as a loss function and adaptive moment
estimation algorithm (Adam) which is an optimization algo-
rithm.

In contrast to the ML method, the receiver does not know
information for all transmitted signals in the DNN-based
model. Therefore, since the receiver does not need to
have information for all signals that are transmitted, the
DNN-based detection model can adapt to the changing stan-
dard of ATSC 3.0. However, since the DNN-based model
has very poor detection performance compared to the ML
method, the method to improve detection performance is
required.

TABLE 1. Architecture details of the CNN.

C. CNN FOR BOOTSTRAP DETECTION
In contrast to the CNN-based detection model, the demerit
of DNN-based detection model is that the correlation of
input data is ignored. For instance, image data has a two-
dimensional shape (horizontal and vertical), and this shape
has a spatial structure. Also, image data cells that are spatially
close have similar or high correlation values. In the case of
CNN, since the shape of the spatial structure of the input data
is maintained and the correlation of data is transferred to the
next layer, it can be said that there is a high possibility that can
properly learn the shape data like image data. In the case of
ATSC 3.0 bootstrap, since the duration of bootstrap symbol
is shorter than the frame of entire bootstrap during bootstrap
frame transmission, the channel information is considered
to be invariant while the transmitter transmits the frame. In
other words, it can be assumed that channel characteristics
between adjacent symbols is similar. Also, bootstrap symbols
are encoded according to the level of the relative cyclic shift
of the current and previous symbols. For these two reasons,
adjacent bootstrap signals have a high correlation. Therefore,
the CNN-based detection technique is used to take advantage
of the high correlation characteristics of these adjacent sym-
bols.

Fig. 5 shows the CNN model for ATSC 3.0 bootstrap and
TABLE 1 shows architecture details of CNN model. In this
model, 3 convolution layer, 2 fully connected layer and 1
classification layer are used for bootstrap signal detection.
3 convolution layers are used for using the correlation of
adjacent symbols. Since the ATSC 3.0 bootstrap is encoded
via relative cyclic shift and the channel environment is static
or slow fading, adjacent symbols are considered to be cor-
related. 2 fully connected layer and the number of neuros in
each layer are determined by the empirical trials. The pooling
layer is skipped to prevent the loss of information. As shown
in Fig. 6, filter size of the first convolution layer is 2 × 16
and the number of filter is 32. Stride which is the distance
between the positions that filters are applied is (2, 8). In order
to prevent unnecessary information affecting on the output,
padding which avoids the reduction of the output data size
is set to 0. The output size of the convolution layer can be
calculated as follows,

RowSize =
⌊
r − Fr
Strider

⌋
+ 1

ColumnSize =
⌊
c− Fc
Stridec

⌋
+ 1, (12)
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FIGURE 4. The two dimensional input data array of the CNN.

FIGURE 5. The structure of the CNN model for ATSC 3.0.

FIGURE 6. The first convolution layer architecture for bootstrap detection.

FIGURE 7. The alternately arranged input data array of the CNN.

where r and c are row and column size of the input data, Fr
and Fc are row and column size of the filter, and Strider and
Stridec are the row and column stride of the filter, respec-
tively. bxc operator is floor function. With a consequence
of (12), the output size of the first convolution layer is

1× 511× 32 that row and column size and the number of
filter are 1, 511 and 32, respectively. This output is used
for the input of the second convolution layer. In the second
and third convolution layer, filter size is 1 × 16, stride is
(1, 8) and the number of filters is 32. By equation (12), the
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FIGURE 8. Block diagram to detect bootstrap signals based on CNN.

output size of the second and third convolution layer are
1 × 62 × 32 and 1 × 6 × 32, respectively. After performing
the third convolution layer, a flatten layer is performed to
convert 1 × 6 × 32 data into 192 1-dimensional data. And
then, two fully connected layers have 1024 nodes. Lastly the
classification layer has 2048 class to estimate the relative
cyclic shift.

IV. PROPOSED CNN FOR BOOTSTRAP DETECTION
Deep Learning have shown great performance in various
fields such as pattern recognition [22], [23]. In this aspect, this
paper deal with convolutional neural network (CNN) among
deep learning technologies for detection of bootstrap signal.
The why using CNNmodel is two. The first, While the major
or minor version of ATSC 3.0 is evolved, hardware module
using traditional detection scheme should be designed newly.
But, If CNN-based detection model is used, the flexibility
can be maintained without redesigning the hardware module
by simply modifying the weights. The second is that the
performance of DNN-based detection scheme is remarkably
degraded compared to one of ML detection scheme. Since
the bootstrap symbols has correlation with adjacent symbols,
CNN-based model that can be utilized correlation property is
used to improve the performance.

In this section, sequential array input is presented. And
alternative array input data and corrupted by additive white
Gaussian noise (AWGN) on purpose are proposed to improve
the performance of CNN-based detection model using
sequential array input.

A. STRUCTURE OF CNN MODEL
In this subsection, the structure of CNN model for detecting
bootstrap symbol is described by the two-stage.

1) INPUT OF THE CNN
Fig. 8 shows the block diagram of the receiver to detect
bootstrap signals based on CNN. The bootstrap detector con-
sists of preprocessing and CNN module for detection of the
bootstrap symbol. First, it is assumed that AWGN does not
exist and synchronization is perfect. The received bootstrap
symbol can be represented as follows,

Rn(k) = Hn(k)Sn(k)e
j2π kMn

NFFT +Wn(k), (13)

where Rn(k), Hn(k), Sn(k) and Wn(k) are the received boot-
strap symbol, channel, the bootstrap sequence and AWGN of
the n-th symbol and k-th subcarrier, respectively. Mn is the

absolute cyclic shift of the n-th symbol. When the received
bootstrap symbol Rn(k) is compensated by S∗n (k), the result
is as follows,

yn(k) = Rn(k)S∗n (k)

= Hn(k)Sn(k)S∗n (k)e
j2π kMn

NFFT +W ′n(k)

= Hn(k)e
j2π kMn

NFFT +W ′n(k), (14)

where yn(k) is compensated bootstrap symbol and W ′n(k) is
Wn(k)×S∗n (k). In order to make the received bootstrap signals
into the input of CNN model, the received bootstrap signals
are rearranged to a two-dimensional array. In the ATSC 3.0
system, channel information is considered invariant while the
transmitter transmits the frame since the bootstrap symbol
duration is short compared to the whole bootstrap frame
duration to transmit the bootstrap frame. In other words,
it can be assuming that the channel characteristic between
adjacent symbols is similar. Additionally, the bootstrap sym-
bol is encoded according to the relative cyclic shift of the
current and previous symbol. For these two reasons, adjacent
symbols are considered to be correlated. CNN-based detec-
tion scheme is used to utilize the correlation of the adjacent
symbols.

Fig. 4 shows the two-dimensional input data array of the
CNN. The row of Fig. 4 consists of real and imaginary
value for compensated bootstrap symbol y(k), and the column
is arranged for the previous and current bootstrap symbol
yn−1(k) and yn(k) of every subcarrier. Consequently, the size
of input data is 2× 4096.

2) ACTIVATION AND LOSS FUNCTION
Every layer except classification layer uses tanh function as
activation function. The tanh function is as follows,

tanh(x) =
ex − e−x

ex + e−x
. (15)

And classification layer uses softmax function performing
2048 classification. The softmax function σ(x) is as follows,

σ(x)i =
exi
n∑
j=1

exj
, (16)

where n is the number of nodes and i is i-th index of nodes.
Also, cross-entropy error function is used as a loss function
and is as follows,

E = −
∑
k

tk ln yk , (17)

where E is loss value, tk is true label and yk is the output of
neural network.

V. PREPROCESSING METHOD FOR CONVOLUTIONAL
NEURAL NETWORK
A. ALTERNATELY ARRANGED INPUT DATA
This subsection proposes an array structure for input data to
improve the detection performance. Unlike the array structure
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FIGURE 9. The loss using conventional and alternate arrange array.

of Fig. 4, the proposed array in Fig. 7 consists of rows
with alternately arranged real and imaginary values of all
subcarriers. The proposed array input data uses CNN model
in Fig. 5. Since the same size of input data and CNN model
is used, the sizes of output data for each layer are also
same. Consequently, the output sizes of the each layer are
1× 511× 32, 1× 62× 32 and 1× 6× 32, respectively.

Fig. 9 shows the loss of the sequential and alternate array
using CNN model in Fig. 5 for epochs. In this result, the
training and validation sets contain 350, 000 and 35, 000
samples, respectively. The loss of the sequential array is
saturated at about from 20 to 30 epochs and training termi-
nates at 30 epochs. Meanwhile, the proposed alternate array
is saturated at about 40 to 50 epochs and training terminates
at 50 epochs. According to these results, the training of the
sequential array ends earlier than the alternate array, but the
training of the proposed alternate array is more accurate.
When the compensated bootstrap signal used as the input to
CNN-based model is rearranged, a loss of the CNN-based
bootstrap signal detection model is improved.

B. INPUT DATA CORRUPTED BY NOISE
All the above input data used for training is pure data which
is not corrupted by noise. However, in practice, since the
received bootstrap symbols are corrupted by noise, corrupted
symbol is needed to be considered. Fig. 10 shows the example
of the received bootstrap symbols are corrupted by noise.

When the relative cyclic shift is assumed to be 2 bits,
Fig. 10 shows a constellation of the bootstrap symbol for each
subcarrier. In this figure, black dots indicate the position of
the relative cyclic shift p(k) which is transmitted for each
bootstrap symbol. It is represented by p(k) = ej2π

kMn
N ,Mn =

{0, 1, 2, 3}. Since the relative cyclic shift is affected by the
AWGN at the receiver, colored circles surrounding the black
dot indicate the possibility that a distorted signal can be
detected. the pilot signal with AWGN is represented by

FIGURE 10. The example of constellation of the 2-bit relative cyclic shift.

P′(k) = ej2π
kMn
N +W (k). In this case, the relative cyclic shift

is detected within the boundary which is black line axis as
threshold. Additionally, when the subcarrier of the bootstrap
symbols is considered, the boundary of threshold can be
extended. Even if the bootstrap signal received for some sub-
carriers exceeds the threshold boundary, the bootstrap signal
can be accurately detected when the bootstrap signal received
for themost of subcarriers is within the threshold boundary. In
order to train the threshold boundary, the input data corrupted
by noise is used for offline learning.

For instance, if the proposed CNN-based model is trained
by pure input data, the threshold boundary can be trained
to gray dashed axes which are not able to provide proper
separation. On the other hand, if the proposed CNN model
is trained with the input data corrupted by noise (i.e. colored
dots), it is able to train the proper threshold boundary such as
black line axes. Consequently, through the proper threshold
boundary, the practical received bootstrap signal is detected
more precisely. On the contrary, if the noise power of the
training data is too large, the size of the colored circle shown
in Fig. 10 increases and is overlapped with each other. In this
case, since the overlapping area is increased, it is difficult to
find the proper threshold boundary.

In the off-line learning step, the received bootstrap signal
Rn(k) is used to pure data and it used for training. But, in
practice, Rn(k) is corrupted by thermal noise (i.e, AWGN).
Therefore, Rn(k) with AWGN is as follows,

Rn(k) = Hn(k)Sn(k)e
j2π kMn

NFFT +Wn(k), (18)

where Rn(k), Hn(k), Sn(k) and Wn(k) are the received boot-
strap symbol, channel, the bootstrap sequence and AWGN of
the n-th symbol and k-th subcarrier, respectively. Mn is the
absolute cyclic shift of the n-th symbol. When the received
bootstrap symbol Rn(k) is compensated by S∗n (k), the result
is as follows,

yn(k) = Rn(k)S∗n (k)

= Hn(k)Sn(k)S∗n (k)e
j2π kMn

NFFT +W ′n(k)

= Hn(k)e
j2π kMn

NFFT +W ′n(k), (19)
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FIGURE 11. The loss of proposed CNN-based model trained by the noise
data.

where yn(k) is compensated bootstrap symbol and W ′n(k)
is Wn(k) × S∗n (k). For off-line learning, yn(k) is arranged
alternately, and then it is used to input of CNN in Fig. 5. Since
the size of input data is same to alternately arranged input data
and sequential arranged input data, the alternately arranged
input data is trained in the same way as in section V-A.
Fig. 11 shows the loss performance of proposed

CNN-based model according to the noise level of training
data in the off-line training step. This result is simulated
with 350, 000 training sets and 35, 000 validation sets. When
the training data is too damaged by noise, the proposed
CNN-based model is hard to train the threshold boundary.
In this result, the proposed CNN-based model with training
15dB noise is too damaged to train the threshold boundary.

VI. SIMULATION RESULTS
For evaluating the proposed alternate array input data and
with noise data, symbol error rate is measured. The simu-
lations are based 1 × 1 SISO system and assumed that the
synchronization is perfect. The major and minor version are
set to 0, in other words, root q is 147 and initial state rinit
is 413.

Fig. 12 shows the comparison of symbol error rate (SER)
performance between the sequential array and the alternate
array under pure data. Fig. 13 shows the SER performance
of the replacement array according to the level of distor-
tion caused by noise. For evaluating the performance of
CNN-based model, Fig. 14 shows iterative ML detection
scheme and DNN-based. Fig. 12, 13 and 14 are simulated
under 20-path Rayleigh channel.

For CNN model using sequential array in Fig. 12, since
the training loss value which shows in Fig. 9 is lower than the
case using alternate array, the SER performance of sequential
array is degraded compared to alternate array. Consequently,
this simulation result shows that the structure of the proposed
alternate array is more efficient than sequential array.

FIGURE 12. The SER performance of CNN model with sequential and
alternate array.

FIGURE 13. The SER performance of CNN model with alternate array
according to the level of noise.

Fig. 13 shows the SER performance according to the level
of noise of training data using alternate array. For comparison,
the performance of alternate data without noise is inserted.
The degree of noise is expressed as the signal to noise
power ratio. According to this result, by increasing the SNR
of proposed training data, the SER performance generally
increases. However, the SER performance with low SNR
of the proposed training data is poor. Because the alternate
array that is distorted too much by noise is hard to train the
threshold boundary among the different symbols.

Fig. 14 shows the SER performance of iterative ML
method, DNN-based model and proposed CNN-based model
with training 10dB noise data according to SNR. Since
the CNN-based model utilizes the correlation between adja-
cent symbols, the SER performance of proposed CNN-based
model trained with −10dB data is better than DNN-based
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FIGURE 14. The SER performance comparison of DNN-based model, ML
method and proposed CNN-based model.

FIGURE 15. The normalized throughput performance comparison of
DNN-based model, ML method and proposed CNN-based model.

model. On the other hand, the SER performance of proposed
CNN-based model is degraded about 1.5dB compared toML.
However, the proposed CNN-based model is flexible for the
change of the standard. By software update for the model
weights, the receiver can adapt the change of the standard
with the similar performance to the ML method. On the other
hand, the ML method needs new scheme when the standard
is changed.

Fig. 15 shows the normalized throughput performance for
DNN-based model, iterative MLmethod and proposed CNN-
based model with 10dB noise data according to SNR. To
show that the throughput of the CNN-based method has
similar performance with the ML method, throughput per-
formance for the proposed CNN-based model with training
10dB noise is compared with ML method, which is well
known as the optimal method in the detection of digital signal

[10]–[12]. On the other hand, the throughput performance of
proposed CNN-based model provides improved throughput
performance compared to the DNN-based model at SNR
under −2dB.

VII. CONCLUSION
This paper proposes CNN-based bootstrap detection model
with two preprocessing methods for ATSC 3.0 systems. By
using the proposed CNN-based model, this paper maintains
the flexibility of the bootstrap signal and improve the perfor-
mance of CNN-based detection model through two proposed
preprocessing methods. First, by rearranging the array of the
received bootstrap symbol which is used for the input of
the CNN model, the CNN-based signal detection has better
performance than the sequential array. Second, in the offline
learning, by using the received bootstrap symbol corrupted
by noise, the boundary of threshold is expanded and the
SER performance of the CNNmodel is improved. Simulation
results show that that the performance improvement for the
CNN-based bootstrap signal detection is remarkable in ATSC
3.0 system.
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