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ABSTRACT Class imbalance learning is an important research problem in data mining and machine
learning. Most solutions including data levels, algorithm levels, and cost sensitive approaches are derived
using multi-class classifiers, depending on the number of classes to be classified. One-class classification
(OCC) techniques, in contrast, have been widely used for anomaly or outlier detection where only normal
or positive class training data are available. In this study, we treat every two-class imbalanced dataset as
an anomaly detection problem, which contains a larger number of data in the majority class, i.e. normal or
positive class, and a very small number of data in the minority class. The research objectives of this paper
are to understand the performance of OCC classifiers and examine the level of performance improvement
when feature selection is considered for pre-processing the training data in the majority class and ensemble
learning is employed to combine multiple OCC classifiers. Based on 55 datasets with different ranges of
class imbalance ratios and one-class support vector machine, isolation forest, and local outlier factor as the
representative OCC classifiers, we found that the OCC classifiers are good at high imbalance ratio datasets,
outperforming the C4.5 baseline. In most cases, though, performing feature selection does not improve
the performance of the OCC classifiers in most. However, many homogeneous and heterogeneous OCC
classifier ensembles do outperform the single OCC classifiers, with some specific combinations of multiple
OCC classifiers, both with and without feature selection, performing similar to or better than the baseline
combination of SMOTE and C4.5.

INDEX TERMS Data mining, one-class classifiers, class imbalance, machine learning, ensemble learning.

I. INTRODUCTION
Many real-world domain problem datasets are class imbal-
anced, meaning that the numbers of data in different classes
are not the same. For example, for two-class classification
problems, the imbalance ratio in cancer diagnosis datasets
can range from 1.29 to 26.13 [1], [2] from 1.51 to 43.73 in
software defect prediction datasets [3], 4565 in the malware
detection dataset [4], and from 1.24 to 25 in a wide variety of
behavior datasets [5].

In general, each class imbalanced dataset has at least one
of the following three characteristics, small sample size, over-
lapping (or class separability), and small disjuncts [6], [7].
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A small sample sizemeans that there are not enough examples
in the minority class, which can cause an imbalanced class
distribution. In overlapping, examples in the minority and
majority classes may be overlapped, which makes it hard
to deduce discriminative rules. As a result, more general
rules are deduced that may lead to the misclassification of
many minority class instances. In small disjuncts, the concept
represented by the minority class is formed of sub-concepts,
which are located differently in the feature space and the
amount of instances among them is not usually balanced. This
also increases the complexity of the problem to be solved.

Due to the above characteristics in class imbalanced
datasets, minority class instances aremore oftenmisclassified
than those from the other classes. To this end, there are three
types of solutions, which are the data level, algorithm level,
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and cost-sensitive methods [6], [7]. The data level approaches
as data pre-processing techniques focus on balancing the
amount of data between different classes in order to decrease
the skewed class distribution. The algorithm level approaches
are based on creating or modifying the algorithms to bias the
learning toward the minority class, such as non-iterative neu-
ral networks, SGTM (Successive Geometric Transformations
Model) neural-like structure, and boosting classifier ensem-
bles. Cost-sensitive methods consider different misclassifica-
tion costs for each class in the learning phase. In particular,
higher costs for the misclassification of the examples in the
minority class are considered.

In related studies, novel approaches have been developed
by considering one of three types of solutions, using a variety
of two-class classification domain problem datasets for per-
formance evaluation [8]–[16]. For example, Koziarski et al.
propose Radial-Based Oversampling (RBO) method to find
regions in which the synthetic objects from the minority
class should be generated [8]. In Kumar et al., Tomek-link
undersampling-based boosting (TLUSBoost) algorithm is
proposed, which uses Tomek-linked and redundancy-based
undersampling (TLRUS) for data sampling and AdaBoost
technique for boosting [9]. Piri et al. propose a new syn-
thetic informativeminority over-sampling (SIMO) algorithm,
which are based on over-sampling the minority examples
close to the support vector machine (SVM) decision bound-
ary [12]. Tsai et al. combing clustering and instance selection
to under-sample the majority class where noisy or outliers in
the majority class are removed [14].

On the other hand, Liu and Zio combine amodified Feature
Vector Selection (FVS) method with maximal between-class
separability and an easy-tuning of SVM, where a small
number of data points are selected to represent linearly
all the dataset in the Reproducing Kernel Hilbert Space
(RKHS) [10]. In Mahani and Baba-Ali, a three-phase-rule-
based extraction process is introduced. Initially, the clas-
sification rules representing only majority instances are
extracted, and then, the majority instances that are well clas-
sified by these rules are deleted to produce a balanced dataset.
Finally, the balanced dataset is used to produce related rules to
represent both majority and minority instances [11]. Sundar
and Punniyamoorthy make two major modications to Wang’s
Boosted SVM (WBSVM) algorithm to improve the clas-
sification performance without increasing its existing time
complexity [13]. In Wang et al., a learning framework con-
sisting of fisher kernel and Bi-Bagging is proposed, where
the generated fisher vector contains better discriminatory
information for Bi-Bagging to generate multi-view data and
balanced training subsets [15]. Wang and Yang propose a
novel loss function to combine with SVM, which results in
a Bayes optimal classifier [16].

The two-class imbalance problem is similar to the anomaly
detection (or outlier detection) in one-class classification
problems, which focus on identifying rare items, events or
observations from the majority of the data [17], [18]. For
example, in bank fraud detection andmachine fault detection,

the anomalies can be regarded as the data in the minority
class and the normal items are the data in the majority class.
In particular, one-class classification (OCC) techniques are
one major type of anomaly detection technique, where only
data from the normal class (i.e. positive or majority class)
are available for training the classifier and the trained one-
class classifier is able to distinguish between the data from
the majority and minority classes [19].

Despite OCC techniques having shown their potential
for specific outlier detection and class imbalance prob-
lems [20]–[24], their applicability to various two-class imbal-
anced domain datasets with different imbalance ratios has not
been fully explored. The OCC techniques are rarely consid-
ered in the above related works proposing novel approaches
based on the data level, algorithm level, or cost-sensitive types
of solutions. Moreover, ways to enhance the performance
of one-class classifiers for two-class imbalanced domain
datasets have not been examined. The performance of var-
ious classifiers can be improved by using feature selection
to reduce feature dimensionality [25], [26] and ensemble
learning by combining multiple classifiers [27], [28].

Therefore, three research questions which have never
been answered before are formulated in this paper. First,
can one-class classifiers perform better than the conven-
tional two-class classifiers over various two-class imbalanced
datasets? Second, can performing feature selection improve
the performance of one-class classifiers over class imbal-
anced datasets? Third, can one-class classifier ensembles
outperform the single best one-class classifier?

Consequently, the contribution of this paper is two-fold.
First, the research findings should allow us to understand
whether the OCC techniques provide a suitable type of the
algorithm level based solution for class imbalanced datasets.
In other words, besides C4.5, which is a widely used baseline
classifier, the optimal one-class classifier can be identified
as another baseline classifier for future researches. Second,
performing feature selection to filter out unrepresentative
features in the majority class and employing ensemble learn-
ing techniques appropriately to combine multiple one-class
classifiers can further enhance the performance of single one-
class classifiers.

The rest of this paper is organized as follows. Section II
overviews the concept of one-class classification and related
techniques. Section III describes the experimental procedures
used to develop the one-class classifiers related to the three
research questions. Section IV presents the experimental
results and Section VII concludes the paper.

II. ONE-CLASS CLASSIFICATION
A. THE BASIC IDEA
In one-class classification (OCC), in the classifier training
stage, it is assumed that the objects only come from a single
class, which is called as the target class (or positive class).
In other words, the target class is well characterized by the
training data, while the negative class has either no training
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instances or very few of them. As a result, a decision bound-
ary enclosing all of the training data in the positive class as a
data description can be created.

New objects need to be classified for the classification
stage, which are either new instances in the target class or
unknown instances outside the created decision boundary.
In particular, a one-class classifier can assign an anomaly
score to each new object, where a threshold is defined
for the decision boundary to separate normal data from
outliers [19], [29].

OCC is different from the conventional multi-class classi-
fication problem. In the traditional two-class or multi-class
classification problem, the training data from two or more
classes are available to create a decision boundary for each
class. Classifiers can thus be developed to classify a new
and unknown object into one of several pre-defined classes.
However, since most conventional classifiers assume that the
training data in each class are more or less equally balanced,
they cannot perform well when the classes are extremely
imbalanced [6]. In other words, OCC is very suitable for
handling class imbalanced datasets with highly imbalance
ratios [17], [18].

B. ONE-CLASS CLASSIFIERS
In the related literature, there are many types of outlier detec-
tion algorithms that can be used to construct one-class clas-
sifiers. Domingues et al. [30] divided them into probabilistic
methods, distance-based methods, neighbor-based methods,
information theory, neural networks, domain-based methods,
and isolation methods. Specifically, they compared 14 well-
known algorithms based on extent of scalability, memory
consumption, and robustness testing. Of these methods, three
good performing algorithms are chosen for examination in
this paper, including local outlier factor (LOF), one-class
support vector machine (OCSVM), and isolation forest
(IFOREST) methods. They are overviewed below.

• LOF: The local outlier factor (LOF) is one of the
neighbor-based methods, which focuses on searching
the neighborhood of each data point to identify outliers.
In other words, the degree to which a testing data point
is identified as an outlier is computed based on the
Euclidean distance between the testing data and its k
closest neighbors. This degree is called the local outlier
factor of the testing data. In other words, the degree is
determined by how isolated the testing data point is in
relation to the surrounding neighborhoods [31].

• OCSVM: The one-class support vector machine
(OCSVM) is one of the domain-based methods that
functions by constructing a decision boundary, so that
any data falling outside of the boundary are regarded as
outliers. OCSVM is a special application of SVM for
one-class problems. It is based on the use of support
vector data description (SVDD) to identify the smallest
hypersphere (i.e. the minimum radius) consisting of all
the data points. Consequently, the SVDD classifier can

detect a testing data point as the outlier if it falls outside
the hypersphere [32].

• IFOREST: Isolation forest (IFOREST) is one of the
isolation methods, where an isolation score is computed
for each teasing data point based upon the construction
of an ensemble of trees (or random forests). The IFOR-
EST algorithm recursively generates partitions on the
data points by randomly selecting an attribute value, and
then randomly selecting a split value for the attribute.
As a result, multiple trees are built in order to isolate
any testing data from the rest of the data. Specifically,
the isolation score for the testing data is based on the
average path length from the root of the tree to the
node containing the single point. The testing data which
have short average path lengths from multiple trees are
regarded as outliers [33].

III. EXPERIMENTAL STUDIES AND PROCEDURE
In order to answer the three research questions described
in Section 1, three corresponding experimental studies are
designed.1 All of the experiments are based on 55 different
domain datasets, which are collected from KEEL-dataset
repository.2 These datasets are widely used for performance
comparison between different approaches, techniques, and/or
algorithms [6]–[8], [10], [11], [13]–[15], [34], [35]. The
imbalance ratios of these datasets range from 1 to 130.

A. THE FIRST EXPERIMENTAL STUDY
The aim of the first experimental study is to compare the
performance of OCC techniques, including LOF, OCSVM,
and IFOREST, with conventional two-class classification
techniques. Figure 1 shows the experimental procedure in the
first study.

FIGURE 1. The experimental procedure for study one.

First of all, each dataset is divided into 80% training and
20% testing sets by the 5-fold cross validation method. Next,
for the 80% training set of each fold, the data in the majority
class are selected in order to construct the three one-class
classifiers based on LOF, OCSVM, and IFOREST, respec-
tively. Therefore, the numbers of training data to construct
one-class classifiers are smaller than the ones to construct
general two-class classifiers. Note that the imbalance ratios

1The computing environment is based on Intel(R) Core(TM)
i7-3770CPU@3.4GHz with the 16GB memory, and the implementation
software is based on Python scikit-learn package.

2https://sci2s.ugr.es/keel/datasets.php
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of the training and testing sets are almost the same. Then, the
testing set is used to test the one-class classifiers, where the
performance of these classifiers is determined by examining
the area under the curve (AUC) based on the receiver oper-
ating characteristic (ROC) curve [36]. This evaluation metric
is widely used in related works to assess the performances of
different classifiers over class imbalanced datasets [6].

According to Domingues et al. [30], these chosen algo-
rithms have flexible parameters and perform very well with-
out extensive tuning. More specifically, the parameters of
LOF are k = 10 and the Euclidean distance function,
OCSVM is based on the RBF kernel, v = 0.5, and gamma =
1/no. of features, and IFOREST is based on maximum sam-
ples = 100, numbers of trees = 100, and contamination =
0.5, respectively.

About the baseline two-class classifiers, C4.5 and SMT
are used, where SMT is based on performing SMOTE3

to pre-process the class imbalanced training set to become
balanced, and then C4.5 is trained by the balanced train-
ing set. These two techniques have been widely used as
the baseline classifiers in various class imbalanced domain
datasets [3], [6], [12]–[14], [34], [35]. Different from
OCSVM, LOF, and IFOREST, the construction of the two
baseline classifiers are based on both the majority and minor-
ity classes in the training set are used.

B. THE SECOND EXPERIMENTAL STUDY
The aim of the second experimental study is to examine the
effect of performing feature selection on the performance
of one-class classifiers. Therefore, feature selection is only
executed over the training data in the majority class before
classifier training. Since feature selection algorithms can be
divided into three types, namely filter, wrapper, and embed-
ded methods, principal component analysis (PCA), genetic
algorithms (GA), and C4.5 are chosen for each type of
method, respectively.

As the given training set for feature selection only con-
tains one class, it is not possible for the supervised learning
based methods, i.e. GA and C4.5, to accomplish the feature
selection task. According to the work of [14] that focusing
on filtering out noisy data in the majority class by perform-
ing instance selection, supervised learning based instance
selection algorithms also cannot directly handle the dataset
containing only one class. Therefore, we followed the work
of [14] to employ the k-means clustering algorithm to group
the training data into different clusters, i.e. sub-concepts of
the majority class. Then, these sub-concepts can be regarded
as ‘pseudo’ classes, making the original one-class training set
become a ‘pseudo’ multi-class training set. The maximum
number of similar data to be grouped into one cluster by
k-means clustering can be defined differently. As there is no
ground truth answer for each dataset, in this work, 10, 50,
and 100 are considered for performance comparison. Thus,
given a one-class training set, three different clustering results

3SMOTE: Synthetic Minority Oversampling Technique

are produced, which become three different ‘pseudo’ multi-
class training sets. These are then used as the inputs for GA
and C4.5 to perform the feature selection task. As a result,
three different feature subsets are generated by GA and C4.5,
respectively.

On the other hand, PCA and GA require some pre-defined
parameters. In PCA, after computing the eigenvalues and
eigenvectors of the principal components, each of the origi-
nal features is associated with a level of variance. The first
principal component accounts for as much of the variabil-
ity in the data as possible, and each succeeding component
accounts for as much of the remaining variability as possible.
Thus the definition and computation of principal components
are straightforward. Therefore, keeping the top N% feature
variances lead to the representative features selected. In Chen
et al. [37], the top 80%, 65%, and 50% of feature variances
are kept and compared. They found that the best performance
is obtained when keeping the top 80% of feature variance.

GA for feature selection is based on searching for the best
feature subsets that can maximizes the predictive accuracy
and minimizes irrelevant features according to a chosen fit-
ness function. The parameters of GA including the number of
iterations, population size, crossover rate, and mutation rate,
are set to be 5, 10, 0.9, and 0.01 respectively. Note that we
tested different population sizes and numbers of iterations,
ranging from 10 to 30 and 5 to 100, respectively. The results
show no significant differences between the nine different
parameter settings in terms of the AUC. That is, the AUC
differences between them are less than 0.025. In addition,
the fitness function is based on logistic regression since it
requires relatively lower computational cost if compared with
other machine learning based classification techniques, such
as SVM, neural networks, etc. Note that the implementation
of GA is based on the DEAP (Distributed Evolutionary Algo-
rithms in Python) framework.

For C4.5, since the nodes of the constructed tree over a
given training set represent the attributes for the decision
rules, they are used as the features to be selected from the
training set.

Finally, the reduced feature subsets of the training data
in the majority class produced by PCA, GA, and C4.5 are
used to train the one-class classifiers. For classifier testing,
the feature subsets of the testing data are reduced to be
the same as their corresponding training data for successful
testing of the constructed one-class classifiers. Consequently,
the performance of the one-class classifiers with and without
feature selection can be compared. Note that since performing
feature selection over the 55 Keel datasets (which do not
contain very high dimensional features) does not significantly
affect the performance of the two-class baseline classifiers,
i.e. C4.5 and SMT [6], their results based on feature selection
are not compared in this paper.

C. THE THIRD EXPERIMENTAL STUDY
The third experimental study focuses on employing the
ensemble learning techniques to construct one-class classifier
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ensembles. The final classification result for the testing data
point is based on the outputs produced by multiple classifiers,
specifically by the voting method which is a simple and
straightforward approach for combining multiple outputs.

Twelve one-class classifiers are chosen from previous
studies as the candidates for constructing different types of
one-class classifier ensembles. They include the three base
classifiers, i.e. LOF, OCSVM, and IFOREST, and PCA, GA,
and C4.5 combined with each base classifier. Note that for
GA and C4.5, as there are three different settings for the
k-means resulting in three different classifiers. For GA and
C4.5, respectively, we only consider the best setting that
provides the highest AUC rate.

From the twelve constructed one-class classifiers, two
types of classifier ensembles are constructed, namely,
homogeneous and heterogeneous ensembles. Homogeneous
ensembles are based on combing the same base classifiers
with PCA, GA, and C4.5 (c.f. Table 1). On the other hand,
two to three different base classifiers are combined as the
heterogeneous ensembles (c.f. Table 2). In addition, the com-
bination of multiple OCC classifiers is based on the vot-
ing method. Note that the homogeneous and heterogeneous
ensembles are all based on the bagging approach.

TABLE 1. Homogeneous Ensembles.

TABLE 2. Heterogeneous Ensembles.

It should be noted that since the outputs generated by
different classification techniques are different, i.e. the prob-
ability scores used to decide whether the testing data belong
to the majority and minority classes are different (they are
normalized on a scale of 0 to 1). The final output of the
classifier ensembles is based on the average of the normalized
probability scores as follows:

output =

∑N
i=1 normalized probability scores

N
(1)

where N is the number of classifiers combined. If the output
is equal to or larger than 0.5, then the testing data point is
classified into the majority class; otherwise, it is classified
into the minority class.

IV. RESULTS AND DISCUSSION
A. RESULTS FROM STUDY I
The imbalance ratios (IR) for the 55 chosen datasets range
from 1.82 to 129.44. In order to understand the performance
of the OCC techniques, the datasets are divided into ‘low’
and ‘high’ imbalance ratio groups. Specifically, the threshold
imbalance ratio for these two groups is 27.34. As a result,
there are 26 and 29 datasets for the low and high imbalance
ratio groups, respectively, where the imbalance ratio of the
former group ranges from 1.82 to 26.63, and the latter group
ranges from 27.77 to 129.44. Table 3 shows the AUC rates for
different classifiers over the 55 datasets. It should be noted
that the average results are only used for comparing different
techniques efficiently and making initial conclusions for the
general circumstance.

The results are very interesting in that, for the low imbal-
ance ratio datasets, the three OCC classifiers do not perform
better than the baselines, not even the C4.5 classifier with-
out data re-sampling. However, for the high imbalance ratio
datasets, the three OCC classifiers significantly outperform
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TABLE 3. AUC rates of different classifiers.

C4.5 (p < 0.05) based on the Wilcoxon rank-sum test,
in which IFOREST performs very similar to the SMT base-
line with no significant difference in the level of performance.
The results indicate that OCC classifiers are suitable for the

datasets with high imbalance ratios. This finding is consis-
tent with related works of anomaly detection where OCC
classifiers usually perform better than traditional multi-class
classifiers for highly imbalanced datasets [17].
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TABLE 4. AUC rates of different classifiers with feature selection.

Further examination of the average differences in per-
formance from low to high imbalance ratio datasets shows
degradation in performance when the imbalance ratio
increases. This indeed occurs in the C4.5 and SMT baselines.

In contrast, the OCC classifiers, especially OCSVM and
IFOREST, provide better and more stable performance than
the baselines over high imbalance ratio datasets. Among the
three OCC classifiers, IFOREST is the better choice, which
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performs significantly better than OCSVM and LOF (p <

0.05). This indicates that tree-based learning techniques are
good candidate for class imbalanced datasets. Related works
of using multi-class classifiers also show that C4.5 perform
reasonably well, which are widely used as the one represen-
tative baseline classifier [6].

In short, the OCC classifiers are very suitable for the
class imbalanced datasets with high imbalance ratios. More
specifically, without the help of data re-sampling to balance
the class imbalanced datasets, the OCC classifiers, especially
IFOREST, have the potential to outperform the C4.5 baseline
with a performance similar to the SMT baseline. This moti-
vates us to further study the possibility of improving the per-
formances of the OCC classifiers, for example, by performing
feature selection over the training data in the majority class
(c.f. Study II) or constructing one-class classifier ensembles
(c.f. Study III).

B. RESULTS FROM STUDY II
The focus in this study is on performing feature selection
by PCA, GA, and C4.5 on the training data in the majority
class. For GA and C4.5, the clustering analysis by k-means
is based on setting the number of clusters at 10, 50, and 100,
i.e. sub-classes. Only the best clustering settings for GA and
C4.5 are provided here. Table 4 shows the performance results
for the OCC classifiers with feature selection. Note that due
to the limitations of space; the 55 datasets are listed based
on the imbalance ratios from 1.82 to 129.44, and they are
divided into low and high imbalance ratio groups, which are
the same as Table 3. In addition, ‘base’ means the baseline
OCC classifiers without performing feature selection.

As we can see, the combination of feature selection with
the OCC classifiers does not necessarily lead to better perfor-
mance than for the baseline OCC classifiers. For the example
of the datasets with low and high imbalance ratios, after
performing PCA, the AUC rates provided by the three OCC
classifiers are slightly worse than for the baseline classifiers.

One possible reason for these results is that the dimen-
sions of the 55 datasets only range from 7 to 41, where the
average dimension is 12. This indicates that performing fea-
ture selection over relatively lower dimension datasets does
not produce certain performance improvement. Particularly,
after performing feature selection by PCA, GA, and C4.5,
the average feature reduction rates are 20%, 53%, and 45%,
respectively.

Although the results show that consideration of a data
pre-processing step, i.e. feature selection, for the majority
class does not always have a positive impact on the perfor-
mance of OCC classifiers, it should be noted that the feature
dimensions of these 55 datasets are not high, ranging from
5 to 41. This may be a major reason for the lack of obvious
performance improvement after performing feature selection.

C. RESULTS FROM STUDY III
The aim of the third experimental study is to examine
the performance of OCC classifier ensembles constructed

TABLE 5. Average AUC rates of homogeneous classifier ensembles.

by combining multiple classifiers, as in previous studies.
As described in Section 3.3, there are homogeneous and
heterogeneous classifier ensembles, with each type of ensem-
ble including different combinations. Tables 5 and 6 show
the average AUC rates obtained with the homogeneous and
heterogeneous classifier ensembles over the 55 datasets. Note
that in Table 5, the performance of the classifier ensem-
bles, which is better than the corresponding base classifiers,
is underlined. In Table 6, the best performance for each type
of combinations is underlined.

Some specific homogeneous OCC classifier ensemble
combinations can provide slightly better performances than
the baselines. In particular, the IFOREST series include
the most combinations, which significantly perform better
than the IFOREST baseline (p < 0.05). Moreover, among
the 33 combinations, the best homogeneous OCC classifier
ensembles are based on IFOREST + IFOREST_PCA +
IFOREST_C4.5 for an average AUC rate of 0.799.

On the other hand, most of the heterogeneous OCC clas-
sifier ensembles combinations outperform the best homoge-
neous OCC classifier ensembles, i.e. 15 out of 19, with the
significant level of performance difference (p<0.05). These
results are consistent with those in the ensemble learning
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TABLE 6. Average AUC rates of heterogeneous classifier ensembles.

TABLE 7. Performance comparison of baselines, OCC classifiers, and their
ensembles.

literature, where it can be seen that the combined classifiers
should be as diversified as possible in order to obtain certain
performance improvement over single classifiers (Rokach,
2010; Wozniak et al., 2014). In this category, the best com-
binations are based on combining the top 3, 5, and 8 OCC
classifiers out of 12, which all provide an average AUC rate
of 0.819.

As we can see, for the datasets having low class imbalance
ratios, the best OCC classifier ensembles do not provide
much performance improvement over the best single OCC
classifier, i.e. LOF, specifically 0.808 vs. 0.801. Moreover,
the performance of the OCC classifiers and their ensembles
cannot competitive with the C4.5 and SMT baselines. How-
ever, the OCC classifier ensembles show their potential for
high class imbalance ratio datasets. In other words, for the
datasets with very high class imbalance ratio, IFOREST as
the single OCC classifier, is a good candidate for a baseline
classifier, whereas a carefully combined heterogeneous OCC
classifier ensemble can perform even better than IFOREST.

Table 7 shows comparative performance of the C4.5 and
SMT baselines, the three single OCC classifiers, and the best
homogeneous and heterogeneous OCC classifier ensembles.
Note that the best homogeneous and heterogeneous OCC

classifier ensembles are IFOREST + IFOREST_PCA +
IFOREST_C4.5 and LOF + LOF_C4.5 + IFOREST_C4.5,
respectively. For the best heterogeneous OCC classifier
ensembles, we only consider the combination of the top
3 classifiers due to the model complexity.

V. CONCLUSION
Many real-world domain problem datasets used for classifica-
tion problems suffer from the class imbalance problem.While
many related works focus on the data level, algorithm level,
and cost sensitivity solutions, very few consider one-class
classification (OCC) techniques, which have been widely
used in anomaly or outlier detection where only the normal
class data are available.

In this paper, we conduct an empirical study of the perfor-
mance of three representative OCC classifiers, i.e. OCSVM,
IFOREST, and LOF, and their ensembles based on 55 differ-
ent two-class datasets containing different imbalance ratios
ranging from 1.82 to 129.44. Unlike the conventional two-
class classifiers, OCC classifiers only take the training data
in the majority class during the classifier training stage.

The research findings can be summarized as follows. First,
the OCC classifiers are especially suitable for datasets hav-
ing very high class imbalance ratios. For lower class imbal-
ance ratio datasets, traditional approaches, such as C4.5 and
SMOTE+C4.5, can perform better than the OCC classifiers.
Second, using different algorithms to perform feature selec-
tion to filter out unrepresentative or noisy features from the
training data in the majority class does not improve the final
performance of the OCC classifiers for most datasets. Third,
OCC classifier ensembles constructed by combining different
OCC classifiers, with and without feature selection, have
shown their potential to improve the performances, especially
for high class imbalance ratio datasets.

There are several issues that can be considered in the future.
First, although the feature selection results are not promising,
this may be because the feature dimensions of the chosen
datasets are not high, ranging from 5 to 41. It is still worth
investigating the feature selection effect on the performance
of OCC classifiers for some specific domain problem datasets
or larger scale datasets that contain higher dimensional fea-
tures and larger numbers of data samples. On the other hand,
using the k-means algorithm to group the data in the majority
class may provide some bias clustering result for feature
selection. Further examinations should be considered, such
as using different clustering algorithms, such as affinity prop-
agation, or filtering out some noisy data (or outliers) from
the majority class first and then performing feature selection.
Second, instance selection is another important data pre-
processing step aimed at filtering out noisy data from a given
training set. It would be useful to perform instance selection
over the training data in the majority class to note the level of
performance improvement of OCC classifiers. Third, for the
problem of multi-class class imbalanced datasets, multiple
OCC classifiers may be constructed, in which each classifier
is trained by one specific class. In this case, the combination
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method becomes critical, such as what classifiers are com-
bined, the final output generated from multiple outputs
obtained by multiple classifiers, etc. Fourth, other super-
vised learning based classifiers, such as random forests, naïve
bayes, logistic regression, multilayer perceptron, etc. and fur-
ther modifications of the classifiers based on such as SGTM
(Successive Geometric Transformations Model) neural-like
structure can be considered for performance comparison.
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