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ABSTRACT In this paper, an integrated design scheme of fault estimation (FE) and fault-tolerant control
(FTC) is presented for a closed-loop system with uncertain short delay. Firstly, a closed-loop system with
uncertain short delay is modeled as a system with uncertain parameters, and a bi-directional robustness
interaction of uncertainty between the observer and the control system is analyzed. Then a fault estimation
observer and a fault-tolerant controller are constructed, and the integrated design problem is converted into a
robust control problem for the augmented system underH∞ performance index. Furthermore, the parameters
of the fault estimation observer and fault-tolerant controller are solved by Lyapunov function and relaxation
methods. Finally, the effectiveness and superiority of the proposed method are verified by an aircraft
simulation.

INDEX TERMS Uncertain short delay, integrated design, FE, FTC.

I. INTRODUCTION
Modern industrial systems are becoming more complex and
larger, and the probability of their failures is also increasing.
Even minor failures, if not detected and effectively addressed
in time, will propagate and evolve into catastrophic accidents.
Therefore, it is particularly important to study how to effec-
tively conduct fault detection and isolation (FDI), fault esti-
mation (FE) as well as fault-tolerant control (FTC) [1]–[4].

Modern industrial systems are usually characterized by
model uncertainty, system nonlinearity, strong coupling of
multiple variables, etc. In order to realize high precision
control, closed-loop control becomes an inevitable choice
[5]–[7]. At present, most fault diagnosis studies are carried
out for open-loop system without considering the influence
of feedback control [8], as the reasons follow: 1) Fault
diagnosis of open-loop system is relatively simple. Because
there is no feedback control in open-loop system, and fault
diagnosis performance cannot be suppressed. Once a fault
occurs, the output of open-loop system will deviate from the
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expected values evidently; 2) Under certain circumstances,
fault diagnosis of open-loop system and closed-loop sys-
tem are equivalent, which makes people mistakenly believe
that the fault diagnosis method of open-loop system can be
directly applied to closed-loop system for a long time. In fact,
the introduction of the feedback control usually makes the
systemmore robust to external disturbances, so when the fault
is in the early stage or the amplitude is small, the impact may
be masked by control signals. Furthermore, feedback may
lead to fault propagation in the system, as well as abnormal
signals. Therefore, the fault diagnosis methods for open-loop
system may not be applicable and need to be redesigned in
closed-loop system [9]. Unfortunately, fault diagnosis studies
in closed-loop system are still limited. In [8], a simulation of
a three-capacity water tank system with model uncertainty
was studied, which proved that open-loop fault diagnosis
method degrades or even disabled the system performance.
In [10], the impact of feedback control on faulted induc-
tion machine behavior was presented, and the diagnostic
indexes usually used for open-loop operation were no longer
effective. In [11], considering the additive and multiplicative
faults in the system, the influence of closed-loop control on
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fault diagnosis was analyzed by simulation experiments in
open-loop system and closed-loop system respectively. The
residual signals of closed-loop system and open-loop system
are almost equal when the additive faults occur, but for the
multiplicative faults, the residual signals of both systems are
proportional to each other. In [12], it was shown that feedback
control can make fault isolation more difficult.

Furthermore, owing to the advantages of lower cost, easy
maintenance and simplicity in installation, the networked
control system (NCS) are widely applied in many fields,
such as unmanned aerial vehicle (UAV) [13], [14]. The
communication between the components of UAV is realized
through the network, which may lead to time delay caused
by the limitation of network bandwidth and channel capacity.
Furthermore, when the UAV system is disturbed by external
faults or changed by the working state, the signal measured
by sensors cannot be fed back to the controller and actua-
tor timely, so the fault detection and control system cannot
respond accurately and timely. All these lead to the degra-
dation of system performance and even failure [15], [16].
It is usually assumed that the delay is fixed or random
under known probability distribution characteristics in the
existing analysis and comprehensive design of delay systems
[17]–[20]. For uncertain delay with unknown statistical char-
acteristics, researches on fault diagnosis of closed-loop sys-
tems are insufficient. In [21], the performance of time-delay
networked control system with random faults was analyzed,
but only the feedback control method based on system static
output was given. In [22], network delay was defined as a
bounded random number, on this basis, a robust FTC for
actuator fault in discrete uncertain networked control systems
was designed.

FE and FTC are usually designed separately. However, due
to the uncertainty caused by time delay, FE and FTC influence
each other, which results in an integrated design of FE/FTC.
The main contributions of the paper are

1) The influence of uncertainty caused by time delay on
fault diagnosis performance is analyzed, considering
its bi-directional robustness interaction between the
observer and the control system, the integrated design
of FE/FTC is proposed.

2) The integrated design problem is formulated as solving
a robust control problem based on observer under an
H∞ performance index, the Lyapunov functions and
relaxation methods are used to solve the design param-
eters simultaneously.

The paper is organized as follows. In Section II, the math-
ematical model of a closed-loop system with uncertain
short delay is established, and the influence of uncertainty
caused by time delay on fault diagnosis performance is ana-
lyzed. Then the integrated design of FE and FTC is carried
out in Section III. Finally, the effectiveness and superior-
ity of the proposed method are verified by simulation of
the morphing aircraft under the longitudinal short period
motion in Section IV, followed by some concluding remarks
in Section V.

FIGURE 1. Closed-loop systems with uncertain short delay.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
A. SYSTEM DESCRIPTION
In this section, a closed-loop control system with time delay
is discussed as shown in Fig. 1, where τsc is the time delay
between sensors and controllers, τca is the time delay between
controllers and actuators. The state equations of the control
system are{

ẋ(t) = Acx(t)+ Bcu(t)+ Dcf f (t)+ Dcdd(t)
y(t) = Cx(t)

(1)

where x ∈ Rn denotes the state vector, u ∈ Rm denotes the
input vector, y ∈ Rl denotes the measured output vector,
f ∈ Rq represents the fault vector (the fault may occur in
the plant, actuators, and sensors), and d ∈ Rp represents the
external disturbance. The matrices Ac, Bc, C , Dcf and Dcd
have appropriate dimensions.
Assumption 1: The sensor is time-driven, and the controller

and actuator are event-driven.
Assumption 2: The total time delay τk = τsc + τca of the

control system is a short time delay, which occurres between
the controller and the actuator, and τk is time-varying and
bounded.

The control system (1) is dispersed at the sampling
period h [23], and the equations are
x(k + 1) = Ax(k)+B0(τ (k))u(k)+B1(τ (k))u(k− 1)

+Df f (k)+ Ddd(k)
y(k) = Cx(k)

(2)

where A = eAch, B0(τ (k)) =
∫ h−τ (k)
0 eActdt · Bc, B1(τ (k)) =∫ h

h−τ (k) e
Actdt ·Bc, Df =

∫ h
0 e

Actdt ·Dcf and Dd =
∫ h
0 e

Actdt ·
Dcd . Since the time delay τ (k) is time-varying, B0(τ (k))
and B1(τ (k)) are parameter uncertainty matrices. Therefore,
the generalized controlled plant of the closed-loop control
system is constructed as a discrete linear system with uncer-
tain time-varying parameters. Let

B0(τ (k)) =
∫ h−τ (k)

0
eActdt · Bc

=

∫ h−τ̄ (k)

0
eActdt · Bc +

∫ h−τ (k)

h−τ̄ (k)
eActdt · Bc

= B0 + DF(τ (k))E
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FIGURE 2. Diagram for fault estimation of an uncertain system.

Similarly,

B1(τ (k)) = B1 − DF(τ (k))E

where τ̄ (k) = (τmin + τmax) /2, B0 =
∫ h−τ̄ (k)
0 eActdt · Bc,

B1 =
∫ h
h−τ̄ (k) e

Actdt · Bc, D = I , F(τ (k)) =
∫ h−τ (k)
h−τ̄ (k) e

Actdt
and E = Bc.

System model (2) can be rewritten as the following system
x(k + 1) = Ax(k)+ (B0 +1τ (k)) u(k)

+ (B1−1τ (k)) u(k−1)+Ddd(k)+Df f (k)
y(k) = Cx(k)

(3)

where 1τ (k) = DF(τ (k))E .
Lemma 1 [24]: Consider the uncertain item F(τ (k)),

it satisfies

σmaxF(τ (k)) ≤ δ,∀k

where

δ =
eσmax(A)(h−τmin(k)) − eσmax(A)(h−τ̄ )

σmax(A)

Lemma 2 [25]: Given matrices G, D, and E of compatible
dimensions with G sysmmetric, then

G+ DF(τ (k))E + DTF(τ (k))TET < 0

holds for all F(τ (k)) satisfying σmaxF(τ (k)) ≤ δ if and only
if there exists a constant λ > 0 such that

G+ δ2λDDT +
1
λ
EET < 0

B. ANALYSIS OF FAULT DIAGNOSIS PERFORMANCE
OF UNCERTAIN SYSTEMS
In this section, the influence of uncertainty caused by time
delay on fault diagnosis performance is analyzed. In this
connection, system (3) is written as the following transfer
function

y(z) = Gu1(z)u(z)+ Gf (z)f (z)+ Gd (z)d(z) (4)

whereGu1(z) = Cz−1(zI−A)−1 (zB0(1)+ B1(1)),Gf (z) =
C(zI − A)−1Df , Gd (z) = C(zI − A)−1Dd .
For the uncertain system (4), its fault estimation structure

is shown in Fig. 2. where F(z) and K (z) denote the fault

estimator and the feedback controller respectively, u(z) =
K (z)y(z), and substituting this into (4) yields

y = (I − Gu1K )−1 Gdd + (I − Gu1K )−1 Gf f

The fault estimation error is then given by

eclose(z) = f − f̂ = f − F(z) (y− Guu)

= f − F(z) (I − GuK ) y

=

[
I − F(z) (I − GuK ) (I − Gu1K )−1 Gf

]
f

−F(z) (I − GuK ) (I − Gu1K )−1 Gdd

where Gu(z) = Cz−1(zI − A)−1 (zB0 + B1). Obviously,
the system uncertainty 1, disturbance d , and fault f affect
the fault estimation performance.
According to the above analysis, there exists a bi-

directional robustness interaction between the observer and
the control system in (3), which breaks down the Separation
Principle. Thus it is necessary and important to develop the
integrated design of FE/FTC.

III. INTEGRATED DESIGN OF FE AND FTC
FE and FTC unit are usually designed separately in the
active fault tolerant control systems [26]. Considering the
bi-directional robustness interaction caused by short delay
on fault estimation observer and fault tolerant controller,
the integrated fault estimation observer is designed as follows


x̂(k + 1) = Ax̂(k)+ B0u(k)+ B1u(k − 1)+ Df f̂ (k)

+L(y(k)− ŷ(k))
ŷ = Cx̂(k)
f̂ (k + 1) = f̂ (k)+M (y(k)− ŷ(k))

(5)

where x̂(k) ∈ Rn denotes the estimated state vector,
f̂ (k) ∈ Rq denotes the estimated fault vector, L ∈ Rn×m and
M ∈ Rq×mdenote the matrices to be designed.
Lemma 3 [27]: Assuming that rank (B0,F) = rank (B0),

there exists a matrix B†0 ∈ Rm×n satisfying the following
equation (

I − B0B
†
0

)
F = 0

A fault compensation controller based on output feedback
is designed as follows

u(k) = K1y(k)+ K2u(k − 1)+ K3 f̂ (k) (6)

where K1 ∈ Rq×n is the matrix to be designed. According to
Lemma 3, the matrice K2 and K3 are given by

K2 = −B
†
0B1,K3 = −B

†
0Df

VOLUME 9, 2021 12991



J. Chen et al.: Integrated Design of FE and FTC for Closed-Loop Systems With Uncertain Short Delay

By substituting (6) into (3) and (5), integrated design of FE
and FTC can be described as

x(k + 1) = Ax(k)+ B0 (K1y(k)+ K2u(k − 1)+ K3f (k))
+B1u(k − 1)+1τ (k)(u(k)− u(k − 1))
+Ddd(k)+ Df f (k)

x̂(k + 1) = Ax̂(k)+ B0 (K1y(k)+ K2u(k − 1)+ K3f (k))
+B1u(k − 1)+ Df (k)f̂ (k)+ L(y(k)− ŷ(k))

ŷ(k) = Ĉ x̂(k)
f̂ (k + 1) = f̂ (k)+M (y(k)− ŷ(k))

(7)

Define the state estimation error vector ex(k) = x(k) − x̂(k)
and the fault estimation error vector ef (k) = f (k)− f̂ (k), then
(7) can be rewritten as

x(k + 1) = (A+ B0K1C) x(k)+ Df ef (k)
+1τ (k)(u(k)− u(k − 1))+ Ddd(k)

ex(k + 1) = (A− LC)ex(k)+1τ (k)(u(k)− u(k − 1))
+Df ef (k)+ Ddd(k)

ef (k + 1) = ef (k)−MCex(k)+1f (k)
y = Cx(k)

(8)

where 1f (k) = f (k + 1)− f (k).
Define dτ (k) = 1τ (k)1u(k), where 1u(k) = u(k) −

u(k − 1). Now, let the augmented state vector

ζ (k) =
[
xT (k) eTx (k) eTf (k)

]T
and the the augmented generalized disturbance vector

w(k) =
[
d(k) dτ (k) 1f (k)

]T
Then, from (8), the following augmented system is obtained

ζ (k + 1) = Āζ (k)+ B̄w(k)
ef (k) = C̄f ζ (k)
y(k) = C̄ζ (k)

(9)

where

Ā =

A+ B0K1C 0 Df
0 A− LC Df
0 −MC Iq


B̄ =

Dd Im 0
Dd Im 0
0 0 Iq


C̄f =

[
0 0 Iq

]
C̄ =

[
C 0 0

]
Remark: 1u(k) = u(k) − u(k − 1) is considered as a

part of the external interference in (9), for the variation of
control input is generally bounded at adjoining times and the
boundedness of the input signal is ensured by the saturation
characteristics of actuators. Thus the assumption is reason-
able in actual situation.

Now, the main work of the paper is an integrated design for
FE in (5) and FTC in (6) to make the augmented system (9)

stable, as well as minimize the influence of disturbance w(k)
on fault estimation error ef (k) and output y(k). It is that there
exist constants γz > 0 and γe > 0, the matrices L, M and K1
should be designed to satisfy the following conditions

1) The augmented system in (9) is stable.
2) y(k) is robust to w(k), and the following H∞ perfor-

mance index is satisfied.

yT (k)y(k) ≤ γ 2
z w

T (k)w(k) (10)

3) And ef (k) is robust to w(k) and the following H∞
performance index is satisfied.

eTf (k)ef (k) ≤ γ
2
e w

T (k)w(k) (11)

Lemma 4 [28]: The following conditions are equivalent
1) There exists a positive definite symmetric matrixP > 0

such that

ATPA− P < 0

2) There exists a positive definite symmetric matrixP > 0
and a matrix G such that[

−P ATG
GTA −G− GT + P

]
< 0

Theorem 1: Given constants γz > 0, γe > 0 and η > 1,
if there exist positive definite symmetric matrices Pt , Qt , Gt
(t = 1, 2, 3) and matrices Ĝ1, X , Y , Z , the following LMIs
hold [

−ηIn GT1 B0 − B0Ĝ1
∗ −ηIr

]
< 0[

4e 0

∗ 9e

]
< 0[

4z 0

∗ 9z

]
< 0

where

4e=

P1 − He (G1) 0 0
0 P2 − He (G2) 0
0 0 P3 − He (G3)



9e=



P1 0 0 0 0 0 0
0 P2 0 0 0 0 0
0 0 P3 0 0 0 Iq
0 0 0 − γ 2

e Ip 0 0 0
0 0 0 0 − γ 2

e Im 0 0
0 0 0 0 0 − γ 2

e Iq 0
0 0 0 0 0 0 − Iq



9z=



Q1 0 0 0 0 0 CT

0 Q2 0 0 0 0 0
0 0 Q3 0 0 0 0
0 0 0 − γ 2

z Ip 0 0 0
0 0 0 0 − γ 2

z Im 0 0
0 0 0 0 0 − γ 2

z Iq 0
0 0 0 0 0 0 − Iq



4z =

Q1 − He (G1) 0 0
0 Q2 − He (G2) 0
0 0 Q3 − He (G3)


12992 VOLUME 9, 2021
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Then, the augmented system in (9) satisfies the H∞ perfor-
mance indices in (10) and (11). Further, the gains L, M and
K1 are given 

K1 = Ĝ−11 X

L =
(
GT2
)−1

Y

M =
(
GT3
)−1

Z

(12)

Proof: First, the fault estimation performance of the
system is considered. Define the Lyapunov function

Ve(ζ (k)) = ζ T (k)P(k)ζ (k)

whereP(k) is a positive definite symmetricmatrix. According
to (9), the following expression is obtained

Ve(ζ (k + 1))− Ve
(
ζ (k)+ eTf (k)ef (k)− γ

2
e w

T (k)w(k)
)

= ζ T (k + 1)Pζ (k + 1)− ζ T (k)Pζ (k)+ ζ T (k)C̄T
f C̄f ζ (k)

− γ 2
e w

T (k)w(k)

= (Āζ (k)+ B̄w(k))TP(Āζ (k)+ B̄w(k))

− ζ T (k)Pζ (k)+ ζ T (k)C̄T
f C̄f ζ (k)− γ

2
e w

T (k)w(k)

= ζ T (k)
(
ĀTPĀ− P+ C̄T

f C̄f
)
ζ (k)+ ζ T (k)ĀTPB̄w(k)

+wT (k)B̄TPĀζ (k)+ wT (k)
(
−γ 2

e + B̄
TPB̄

)
w(k)

=

[
ζ (k)
w(k)

]T
�1

[
ζ (k)
w(k)

]
where

�1 =

[
ĀTPĀ− P+ C̄T

f C̄f ĀTPB̄
B̄TPĀ −γ 2

e + B̄
TPB̄

]
According to Schur complement lemma, then the following
inequation can be obtained

Ve(s(k + 1))− Ve
(
s(k)+ eTf (k)ef (k)− γ

2
e w

T (k)w(k)
)
< 0

According to Lemma 4 and Schur complement lemma, �1
can be converted to

−P PĀ PB̄ 0
ĀTP −P 0 C̄T

f
B̄TP 0 −γ 2

e I 0
0 C̄f 0 −I

 < 0 (13)

Now, we can conclude that the augmented system in (9)
is stable and the fault estimation error ef (k) is robust to
disturbance w(k).

Next, the fault-tolerant control performance of the system
is proved. Define the Lyapunov function

Vz(s(k)) = ζ T (k)Q(k)ζ (k)

Similar to the above deduction, the following inequation can
be obtained

Vz(ζ (k + 1))− Vz
(
ζ (k)+ yT (k)y(k)− γ 2

z w
T (k)w(k)

)
=

[
ζ (k)
w(k)

]T
�2

[
ζ (k)
w(k)

]
< 0

where

�2 =

[
ĀTQĀ− Q+ C̄T C̄ ĀTQB̄

B̄TQĀ −γ 2
z + B̄

TPB̄

]
According to Lemma 4 and Schur complement lemma, �2
can be converted to

−Q QĀ QB̄ 0
ĀTQ −Q 0 C̄T

B̄TQ 0 −γ 2
z I 0

0 C̄ 0 −I

 < 0 (14)

Suppose that 3 = diag
{
GTP−1, I , I , I

}
and (13) is mul-

tiplied by 3 on the left and on the right, and the following
equation can be obtained

−GTP−1G GT Ā GT B̄ 0
ĀTG −P 0 C̄T

f
B̄TG 0 −γ 2

e I 0
0 C̄f 0 −I

 < 0 (15)

Since the matrices P and G are positive definite symmetric
matrices, it can be obtained that

(P− G)TP−1(P− G) ≥ 0

which can be expanded to

GTP−1G ≥ −P+ G+ GT

Define He(X ) = XT + X and (15) can be converted to
P− He(G) GT Ā GT B̄ 0

ĀTG −P 0 C̄T
f

B̄TG 0 −γ 2
e I 0

0 C̄f 0 −I

 < 0 (16)

Similarly, inequation (14) can be converted to
Q− He(G) GT Ā GT B̄ 0

ĀTG −Q 0 C̄T

B̄TG 0 −γ 2
z I 0

0 C̄ 0 −I

 < 0 (17)

Define

G =

G1 0 0
0 G2 0
0 0 G3



0 =

GT1 A+ B0XC 0 GT1Df GT1Dd GT1 0 0
0 GT2 A− YC GT2Df GT2Dd GT2 0 0
0 −ZC GT3 0 0 GT3 0


VOLUME 9, 2021 12993
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According to Schur complement lemma, inequation (16)
and (17) can be converted to[

4e 8

∗ 9e

]
< 0[

4z 8

∗ 9z

]
< 0

where

8 =



GT1 A+ G
T
1 B0K1C 0 0

0 GT2 A− G
T
2 LC −GT3MC

GT1Df GT2Df GT3
GT1Dd GT2Dd 0

GT1 GT2 0

0 0 GT3
0 0 0



T

According to the approaches in [29] and LMIs in Theorem 1,
it can be obtained that

GT1 B0 ≈ B0Ĝ1

Further, define X = Ĝ1K1, Y = GT2 L, Z = GT3M , then
the matrix 8 is equivalent to the matrix 0. Now, the proof
of Theorem 1 is complete.

IV. SIMULATION EXAMPLE
In this section, the longitudinal short-period movement of
the morphing aircraft in [30] is utilized to demonstrate the
applicability and effectiveness of the proposed results.
Considering its strong nonlinearity, the dynamic model of

the system is linearized at the equilibrium point with a flight
altitude of 6000 meters, a sweep angle of 15 degree and the
Mach number of 0.5, then the small linear perturbation model
is as follows

ẋ(t) =
[

−Zα 1
M̄α − M̄α̇Zα M̄q + M̄α̇

]
x(t)

+

[
−Zδe

M̄δe − M̄α̇Zδe

]
u(t)

where x =
[
1α 1q

]T denotes state vector, α denotes attack
angle, q denotes velocity of pitch angle, the control input u
denotes the yaw angle of the elevator, Zα , M̄α , M̄α̇ , M̄q, Zδe
and M̄δe denote dynamics derivatives.
The discretization of the system with a sampling period

of 1 seconds results in the following system matrices

A =
[
0.2759 0.1839
0.1379 0.0921

]
B0 =

[
0.2256
0.4234

]
B1 =

[
0.1359
0.6671

]
C =

[
1 0

]

According to Lemma 1, it can be obtained

δ = 0.3202, E =
[
0 1

]T
, D = I

Assume that the fault occurred in the yaw angle of the elevator
at k = 20 sampling time shown as follows

f (k) =
{
2◦ k ≥ 20
0◦ else

Choose wind disturbance [31] as the system disturbance,
which can be described as

s(k + 1) =

[
0.9922 0.1247
−0.1247 0.9922

]
s(k)

d(k) =
[
0.1 0

]
s(k)

where the initial value of s(k) is defined as
[
0.01 0

]T .
The disturbance matrix and the fault matrix are respectively
given as

Df =
[
0.2123
0.2169

]
, Dd =

[
0

0.2169

]
According to Theorem 1, the parameters of the fault

estimation observer and fault tolerant controller can be
obtained as

L =
[

0.0124
−0.0008

]
, M = 0.8486, K = −11.2657. (18)

The performance of fault estimation in integrated design
and separate design are compared in Fig. 3. The results show
that the integrated designmethod can estimate the error signal
more quickly.

FIGURE 3. Performance of FE in integrated design and separate design.

The output response characteristics of the system under
integrated design and separate design are respectively showed
in Fig. 4 and Fig. 5, where Fig. 4 denotes the attack angle
and Fig. 5 denotes the pitch angle rate. Obviously, the fault-
tolerant controller obtained by the integrated design method
enables the system to maintain better performance in case
of failure. Furthermore, although the fault-tolerant controller
designed according to the separation principle can also make
the system stable when the fault occurs, the uncertainty of the
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FIGURE 4. The response result of the Angle of attack when the fault
occurs.

FIGURE 5. The response result of pitch Angle rate when the fault occurs.

system is magnified due to the propagation of the uncertainty
between the observer and the controller, which causes the
system take longer to restore stability.

V. CONCLUSION
In this paper, integrated design of the optimal fault esti-
mation and fault tolerant control for discrete linear systems
with uncertain short delay are studied. Firstly, a closed-loop
system with uncertain short delay is modeled as the param-
eter uncertainty system. Then the influence of uncertainty
caused by time delay on fault diagnosis performance is ana-
lyzed, and there exists a bi-directional robustness interaction
between the observer and the control system, the integrated
design of FE/FTC is proposed. Furthermore, the controller
is designed to compensate the delay signal and eliminate
the bi-directional robustness interaction under H∞ perfor-
mance index, the relaxation method is used to solve the
system parameters. Finally, a comparative simulation case
between the proposed integrated design method and the sepa-
rate design method is presented to prove the superiority of the
integrated design method for fault diagnosis and fault tolerant

control. The extension of the proposed FE/FTC scheme to
systems with uncertain long delay seems significant and chal-
lenging, which will be our main focus in the future work.
In addition, packet loss usually exists in NCS and should be
considered in the FE/FTC design, which is also a promising
direction for future research.
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