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ABSTRACT Implementing integrated electric-heat systems (IEHSs) with coupled power distribution
networks and district heating networks is an essential means to solve current energy problems. However,
prosumers with multiple energy forms coupled and renewable energy sources with natural uncertainties
pose challenges to the operation of IEHSs. This paper proposes a joint energy and reserve dispatch model
for IEHSs based on transactive energy, which is a coordinated combination of a bi-level Stackelberg game and
two-stage robust optimization. The bi-level Stackelberg game is used to realize the equilibrium of interests
among three transacting parties, namely, integrated energy service provider (IESP), multi-carrier prosumer
(MCP), and load aggregator (LA). The two-stage robust optimization is employed to ensure the reliability
of the system operation under renewable energy uncertainty. In the upper level of the Stackelberg game,
the IESP perform pricing and reserve dispatch, while the MCP and LA maximize their benefits via energy
management in the lower level. Linearization techniques are utilized to approximate the bi-level Stackelberg
game model into a single-level mixed-integer linear programming problem. The converted single-level
game model is subsequently regarded as the first stage, while the real-time feasibility check is regarded
as the second stage to form a two-stage robust optimization model, which is solved by a modified C&CG
algorithm. Case studies demonstrate that the proposed joint energy and reserve dispatch method effectively
achieves economic and reliable operation.

INDEX TERMS Integrated electric-heat system, transactive energy, joint energy and reserve dispatch,
Stackelberg game, two-stage robust optimization.

I. INTRODUCTION
In response to the energy crisis and environmental concerns,
investigators have begun to explore integrated energy systems
to facilitate energy transformation and efficiency [1]. Con-
structing the integrated electric-heat system (IEHS), the mar-
ket energy transaction also develops, and prosumers become
more and more involved. Prosumers have source and charge
attributes and are susceptive to value signals. However, due to
limited capacity and lower position in the system, prosumers
are short of the motivation to respond to market prices, bring
many problems to the optimal operation of IEHS. An adaptive
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energy sharing framework transactive energy (TE) [2] is
employed for solving these problems. Transactive energy is
a mechanism to realize system equilibrium by economic and
control means. Transactive energy regulate s the prosumers
through the value signals so that the resource flexibility
and the ability to promote the system safety can be utilized
reasonably. Consequently, it is of profound significance
to study the optimal operation of IEHS supported by the
transactive energy.

With the advancement of market transactions, researchers
devote themselves to studying the modeling, planning, and
operation of the IEHS in the market and dispose of many
economic, security problems in the operation of the IEHS
through centralized dispatch, market equilibrium, and other
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methods. For economic operation, reference [3] studied the
market operation strategy minimizing the operation cost.
Reference [4] proposed an integrated energy micro-grid
system design scheme minimizing total investment. For
planning, the optimal capacity of the integrated energy
system was discussed in [5]. A method for integrated energy
systems expansion planning using linearized load energy
curves was proposed in [6]. The optimal programming
model of reliability perception was proposed in [7] and [8]
to design integrated energy systems. For mathematical
modeling, reference [9] provided a comprehensive mathe-
matical model and calculation method for market clearing
to study the unregulated market perspective in integrated
energy systems. Reference [10] improved the optimal heat
flow model and optimal power flow model for market
clearing. Reference [11] proposed a two-stage hybrid random
information gap decision theory model for the market
clearing. Reference [12] established a bi-level Stackelberg
game model between energy retailers and consumers. Refer-
ence [13], [14], and [15] presented the optimization planning
model of energy transactions.

In the research mentioned above, an implicit assumption
is that a central organization operates the whole system.
However, in current practice, the electric-heat network
and prosumers are managed by different sectors and no
longer accept mandatory orders. When a central organization
operates the whole system, the lack of unity and coordination
among multiple parties will lead to problems such as the
system’s uneconomic and insecure operation. Therefore,
it is crucial to construct a multiple transaction parties
model. In recent research, transactive energy has been
utilized to develop regional energy markets and empower
market participants to engage in energy markets to achieve
dynamic energy balances reliably and sustainably. Some
studies applied transactive energy to different organizational
patterns, [16] proposed a new distributed energy cluster
organization to participate in the day-ahead market. Refer-
ence [17] and [18] presented the transactive energy supported
multi-micro network system organization. For the balance
of supply and demand, the power balance controller was
proposed to eliminate the difference between the actual
energy demand and purchase in the real-time stage in [19]
and [20]. For the way of information transaction, based on
multi-level transaction platforms, market operators directly
coordinated and controlled prosumers by providing pricing
guide in [17], [21], and [22], but [18] and [23] proposed
the indirect coordination strategy that operators provided
intelligent contract or price to guide electricity generating
and using decisions of prosumers. Simultaneously, from the
role of the transacting parties to analyze the flexibility of
its operation, reference [24] proposed a trading mechanism
between operators and aggregators of energy allocation
among prosumers. Reference [25] presented a bi-level trading
model in which prosumers are the upper leaders and
users are the lower followers. Reference [26] designed an
agent alliance mechanism between prosumers and operators.

These different types of transacting parties have solved the
system problem to some extent. However, the study of the
types is not comprehensive. The potential of different types
of transacting parties needs to be further explored.

Most research above focuses on the system’s economic
operation, but the uncertainty caused by the high propor-
tion of intermittent renewable energy cannot be ignored.
In terms of this, [27], [28] considered collaborative optimiza-
tion of energy and single reserve to deal with the effects of
uncertainty. However, a single reserve limits the flexibility of
resource allocation in multiple transacting party system. The
joint energy and multiple reserve dispatch model in the IEHS
proposed in this paper is a promising study.

In this paper, we establish a joint energy and reserve dis-
patch model of the IEHS under the transactive energy, which
integrates a reserve dispatch strategy with a flexible selection
of reserve resources while considering the market pricing
and dispatch of the day-ahead energy market. The model
combines a bi-level Stackelberg game model and a two-stage
robust optimization model. The bi-level Stackelberg game
model is used to explain the equilibrium of interests of
each transacting party, and the two-stage robust optimization
model is used to ensure the safety and reliability of the system
in uncertain scenarios. For the bi-level Stackelberg game
model, the upper level is the pricing and dispatch decision
of the integrated energy service provider (IESP), while the
lower level is the energy management of the multi-carrier
prosumer (MCP) and load aggregator (LA). The KKT
condition and binary expansion technology are employed in
this paper to approximately transform the bi-level Stackelberg
game model into a mixed-integer linear programming model.
Then the mixed-integer linear programming model is deemed
as the first stage model and the real-time feasibility check
as the second stage to form a two-stage robust model. The
modified C&CG algorithm is utilized for processing the
two-stage robust optimization model. The contributions of
this paper are as follows.

1)It proposes a joint energy and reserve dispatch model
of the IEHS. This model is supported by transactive energy,
combines a bi-level Stackelberg game model and a two-stage
robust optimization model. The KKT condition, the binary
expansion technology, and the modified C&CG algorithm are
utilized to solve this model.

2)It establishes a center-coordinationated featured system
containing three types of transacting parties: MCP, LA, and
IESP.

3)It considers the flexible reserve resources, so the IEHS
can be flexible in choosing reserve service among the MCP,
the LA, and the power company.

The rest of this paper is organized as follows. The
framework of the transactive energy system is explained
in Section II. The mathematical model for energy and
reserve optimization of the integrated electric-heat system is
presented in Section III. The solution method of the model
is proposed in Section IV. Case studies are conducted in
Section V, followed by conclusions in Section VI.

14492 VOLUME 9, 2021



W. Zhao et al.: Transactive Energy-Based Joint Optimization of Energy and Flexible Reserve for Integrated Electric-Heat Systems

FIGURE 1. The framework of transactive energy.

II. DESCRIPTION OF TRANSACTIVE ENERGY SYSTEM
A. OPERATING FRAMEWORK
The framework of the transactive energy system proposed
in this paper is shown in Figure. 1. Most of the transactive
energy functions, such as the implementation of transaction
processes, calculation of transaction costs, and payment of
funds, are realized through the transactive energy platform.
As the information transfer station of the system dispatcher,
the transactive energy platform transmits information such
as energy price, energy plan, and reserve capacity to the
transacting parties. The primary transacted commodities on
the transactive energy platform are electricity, heat, natural
gas, and reserve services. The transacting parties served by
the platform include an integrated energy service provider
(IESP), multi-carrier prosumers (MCPs), load aggregators
(LAs), power company, and gas company.

1)As the organizing entity of the IEHS, the IESP aims to
meet the electric and heat needs of local consumers while
minimizing economic costs. The IESP has various energy
production and conversion equipment, such as distributed
generation, heat pumps, and gas boilers, to service the local
energy system.

2)The MCP integrates various energy production and con-
sumption, has independent decision ability, and is sensitive to
value signals. Guided by the price signal, the MCP submits
power plans and reserve service to the transactive energy
platform in line with its profit maximization.

3)The LA integrates multiple loads, acts as an intermediary
between the IEHS and demand response resources, and takes
part in the local energy market on behalf of multiple energy
users. During the transactive energy operation, the LA uses
demand response to minimize the energy purchase cost and
takes advantage of controlling load to provide reserve service
for IESP to get paid.

4)The power company benefits by selling electric power
from the power grid to the IESP at the wholesale price. The
gas company gets benefit by selling gas fuel from the gas grid
to the IESP at the wholesale price. Besides, the IESP buys a
specific reserve capacity from the power company to ensure
the system is safe and reliable.

Supported by transactive energy, these transacting parties
are linked together with the center-coordinationated feature.
The implementation is as follows:

Firstly, the IESP transmits information such as the electric-
heat networks model and operating state to the transactive
energy platform used in pricing. Secondly, the MCP and the
LA make their own energy plans based on the price signals
of the transactive energy platform and submit transaction
energy plans and reserve capacity to the transactive energy
platform. Thirdly, the IESP adjusted the operating state of the
IEHS according to the energy plan and reserve capacity of
MCP and LA. After such multiple information transactions,
the energy market completes the price clearing, and the IEHS
completes the day-ahead energy and reserve dispatching. This
center-coordinationated feature makes transacting parties
interrelate to each other to ensure the economical and safe
operation of the IEHS and enables them to make independent
decisions and realize the equilibrium of interests of all
transacting parties.

B. SETTINGS AND ASSUMPTIONS
Corresponding to the above operating framework of transac-
tive energy, the settings and assumptions are made as follows.

1)The physical layer of the transactive energy system.
The power distribution network (PDN) and district heating
network (DHN) in IEHS are connected by the MCP, LA,
and other coupling units. The power distribution network
is connected to a high proportion of renewable energy. The
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district heating network is connected to the gas boiler, which
supplies most of the heat demand as the primary heat source.
The power flow state of the power distribution network is
represented by the linearized branch flowmodel [29], the heat
flow state of the district heating network is described by
the thermodynamic equation of temperature control, and the
energy hub (EH) [30] model is used to describe the internal
energy flow state of the MCP.

2)The information layer of the transactive energy system.
The operation of transactive energy needs the support of
information and communication technology. It is assumed
that no communication delays and packet losses when the
transacting parties deliver the information through the IEP.

3)Local energy market model. The constraint relation
among transacting parties is regarded as a Stackelberg game
between single leader and multi-follower, and a bi-level
optimizationmodel can be established to explain it. The upper
level (IESP) strategy serves as the parameter of the lower
level (MCP, LA), and the lower level serves as the constraint
of the upper level. The upper level can predict the response
of the lower level when the lower level optimal strategy is
unique. The MCP and LA take electric prices and heat prices
as foregone conditions when determining energy plans, but
the IESP needs to take into account the response of MCP
and LA to energy prices when pricing. The equilibrium of
the Stackelberg game determines the reasonable energy price
and energy transaction scheme of the IEHS. In equilibrium,
the interests of each transacting party are optimal, and neither
party can gain profits by unilaterally changing the strategy.

4)The transaction between the MCP and LA. MCP signed
the energy contract with LA, and LA buys electric energy
and heat energy from MCP at the contract price. The energy
transaction between MCP and LA is bound to affect the
interests of IESP, so it is indispensable to study the energy
transaction between MCP and LA. However, it makes the
model more complex and challenging to solve. This paper
assumes that the energy price of the MCP and LA transaction
is a constant value and does not participate in the price
clearing of the day-ahead market.

5)Reserve services. This paper focuses on the day-ahead
energy and reserve dispatch and takes no account of reserve
market clearing. The reserve capacity price is a definite value
in our model. The reserve capacity for IEHS is provided by
the MCP, LA, and power company. In view of the MCP and
LA contain more flexible resources, such as cogeneration,
heat pumps, and elastic loads, so the IEHS is not considered
to provide the reserve services for MCP and LA.

The following describes the mathematical model and
solution of the IEHS energy and reserve joint optimization
supported by transactive energy in detail.

III. MATHEMATICAL FORMULATION
A. OPERATING MODEL OF MCP
From the perspective of mathematical modeling, the MCP
can be regarded as an energy hub with multiple energy inputs
and outputs, so we use the energy hub model to describe the

energy state. Its electric energy and gas energy inputs are
supplied by the power distribution network and gas company,
respectively, and its electric energy and heat energy output to
the IESP and LA. In addition, the gas turbine (GT) and heat
pump (HP) in the MCP provide reserve capacity for the IESP.

The MCP operation model is given below. Equation (1)
defines the electric power, heat energy, and gas fuel balance
inside the MCP. (2) and (3) determine the equipment model
of GT and HP. The reserve capacity constraints of GT and HP
are limited in (4) and (5). (6) represents the reserve capacity
provided by MCP to IESP.

PI2Mt + PGTt − P
HP
t = PM2I

t + PM2L
t + PMCPload

t , ∀t,
(1a)

HGTre
t + HHP

t = HM2I
t + HM2L

t + HMCPload
t , ∀t, (1b)

PMCPgas
t = PGTgast , ∀t, (1c)

PGTt = PGTgast ηGT, ∀t, (2a)

HGT
t = kPGTt , ∀t, (2b)

HGT
t = HGTre

t + HGTdi
t , ∀t, (2c)

0 ≤ HGTre
t ≤ βHGT

t , ∀t, (2d)

HHP
t = PHPt ηHP, ∀t, (3)

PGTt + R
GT+
t ≤ PGTmax, ∀t, (4a)

PGTmin ≤ P
GT
t − R

GT-
t , ∀t, (4b)

0 ≤ RGT+t ≤ Rupt , ∀t, (4c)

0 ≤ RGT-t ≤ Rdownt , ∀t, (4d)

(PGTt−1 + R
GT+
t−1 )− (PGTt − R

GT-
t ) ≤ Rdownt , ∀t, (4e)

− (PGTt−1 − R
GT−
t−1 )+ (PGTt + R

GT+
t ) ≤ Rupt , ∀t, (4f)

PHPt + R
HP+
t ≤ PHPmax, ∀t, (5a)

PHPmin ≤ P
HP
t − R

HP-
t , ∀t, (5b)

RMCP+
t = RGT+t + RHP-t , ∀t, (6a)

RMCP−
t = RGT-t + R

HP+
t , ∀t, (6b)

where the superscript X2Y means X to Y , representing
the energy flow from X to Y , X ∈ {IESP,MCP}, Y ∈
{IESP,MCP,LA}, for convenience, take the first letter of X
or Y ; the same applies elsewhere in this paper. The decision
variable PX2Yt represents the amount of electric power from
X to Y at time t , HX2Y

t represents the amount of heat energy
from X to Y at time t . PGTt , HGT

t , PHPt , HHP
t are electric

power and heat energy of GT and HP. PMCPload
t andHMCPload

t
are MCP electric load and heat load. PGTgast is the gas fuel
consumed by the GT. HGTre

t and HGTdi
t are the recycling and

discarded amount of heat energy of GT. ηGT is the electric
efficiency of GT. ηHP is the heat efficiency of HP. k is
the ratio of heat energy and electric power of GT. β is the
discarded heat energy rate.Rupt andRdownt are the up and down
ramp rate of the GT unit. RGT+t /RGT-t and RHP+t /RHP-t are the
upward/downward reserve capacity of GT and HP.

In the energy transaction of the market, the objective of
MCP is maximizing its interest, and the objective function is
shown in equation (7). In (7), the first line is the profit ofMCP
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from the transaction with the LA; the second line is the profit
of MCP from the transaction with IESP; the third line is the
reward of MCP for providing reserve service; the fourth line
is the cost of MCP buying gas fuel from the gas company.

maxCMCP =
∑
t

(CM2L
e PM2L

t + CM2L
h HM2L

t

+ψM2I
t PM2I

t + ζM2I
t HM2I

t − ψ I2M
t PI2Mt

+CMCP
re (RMCP+

t + RMCP-
t )

−Cgas
t PMCPgas

t ) (7)

where price variables ψM2I
t , ψ I2M

t , ζM2I
t , Cgas

t are electric
offering price, electric purchasing price, heat offering price,
and gas price of MCP at time t in the day-ahead market,
respectively. CM2L

e and CM2L
h are electric power and heat

energy contract prices between MCP and LA. CMCP
re is the

reserve capacity price supply for MCP.

B. OPERATING MODEL OF LA
The load types of LA are uncontrollable load and controllable
load. For controllable load, we consider it the transferrable
load. The operation model of LA is below. Equation (8)
represents the electric power and heat energy balance. The
load transfer rate is limited in (9). (10) represents LA reserve
capacity constraint.

PM2L
t + PI2Lt = (1− DLe

t )PLAloadt , ∀t, (8a)

HM2L
t + H I2L

t = (1− DLh
t )HLAload

t , ∀t, (8b)

DLe
min ≤ D

Le
t ≤ D

Le
max, ∀t, (9a)

DLh
min ≤ D

Lh
t ≤ D

Lh
max, ∀t, (9b)∑

t

DLe
t P

LAload
t = 0, ∀t, (9c)∑

t

DLh
t HLAload

t = 0, ∀t, (9d)

RLA+t ≤ (DLe
max − D

Le
t )PLAloadt , ∀t, (10a)

RLA-t ≤ (DLe
t − D

Le
min)P

LAload
t , ∀t, (10b)

where PI2Lt andH I2L
t are electric power and heat energy input

to LA by IESP, respectively. PLAloadt and HLAload
t are the

electric load and heat load in LA. DLe
t and DLh

t are electric
load and heat load transfer rate respectively, DLe,DLh

∈

R, When they are positive, it means load cutting at time t,
otherwise, load picking up. RLA+t and RLA-t are upward and
downward reserve capacity of LA.
The objective function of LA is shown in equation (11).

In (11), the first line is the cost of LA purchasing electric
power and heat energy from MCP; the second line is the
cost of LA purchasing electric power and heat energy from
IESP; the third line is the reward of LA for providing reserve
service.

minCLA =
∑
t

(CM2L
e PM2L

t + CM2L
h HM2L

t

+ψ I2L
t PI2Lt + ζ

I2L
t H I2L

t

−CLA
re (RLA+t + RLA-t )) (11)

where PI2Lt and H I2L
t are the electric power and heat energy

demand of LA to IESP. ψ I2L
t and ζ I2Lt are the electric power

and heat energy purchasing price from IESP for LA. CLA
re is

the reserve service price for LA.

C. OPERATING MODEL OF IESP
The objective of IESP is to minimize cost while the system
operates safely. The revenue of IESP mainly comes from
selling electric power and heat energy, and the cost mainly
comes from buying electric power, heat energy, gas fuel, and
reserve service. The objective function of IESP is shown in
equation (12a), which is divided into two parts. The first
part in (12b) represents the cost of the energy transaction,
and the second part in (12c) represents the cost of reserve
services.

minCIESP

= Cenerg + Cre (12a)

Cenerg

=

∑
t

(ψM2I
t · PM2I

t − ψ I2M
t PI2Mt + ζM2I

t HM2I
t

−ψ I2L
t PI2Lt + ζ

I2L
t H I2L

t + C
gas
t Pgast + C

grid
t Pgridt ) (12b)

Cre

=

∑
t

(CMCP
re (RMCP+

t + RMCP-
t )

+CLA
re (RLA+t + RLA-t )+ Cgrid

re (Rgrid+t + Rgrid-t )) (12c)

where Cenerg is the function of energy transaction cost. Cre is
the cost of reserve service. Pgast is the gas fuel inflow of GB.
Pgridt is the amount of electric power obtained from the power
company. Cgrid

t is the electric power price provided by the
power company. Cgrid

re is the reserve service price provided
by the power company. Rgrid+t and Rgrid-t are the upward and
downward reserve capacity of MCP.

1) NETWORK CONSTRAINS
The IEHS energy network is composed of the power
distribution network and district heating network. The
mathematical models of the district heating network and
power distribution network are shown in equation (13) and
equation (14), respectively. (13a) is the heat flow balance
of node of heat pipeline, (13b) is the temperature drop of
water in the pipeline. Equations (14a) and (14b) represent the
balance of active and reactive power of the bus. (14c) is the
voltage equation of the bus. Upper and lower voltage limits
are in (14d).∑
L:(L,i)∈Ztoheat

(cwGL,tT cL,t )+ H
g
i,t − H

load
i,t

=

∑
L:(L,i)∈Zfrheat

(cwGL,t )Ti,t , ∀i, ∀t, (13a)

Ti,t − T en
L,t = (T c

L,t − T
en
L,t )e

λσL
cwGL,t , i ∈ Z fr

heat(L), ∀L, ∀t,
(13b)

Ti,t,min ≤ Ti,t ≤ Ti,t,max, ∀i, ∀t, (13c)
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∑
l:(l,j)∈Z to

ele

Pfl,t + P
g
j,t − P

load
j,t =

∑
l:(l,j)∈Z fr

ele

Pfl,t , ∀j, ∀t,

(14a)∑
l:(l,j)∈Z to

ele

Qf
l,t + Q

g
j,t − Q

load
j,t =

∑
l:(l,j)∈Z fr

ele

Qf
l,t , ∀j, ∀t,

(14b)∑
j:(l,j)∈Z fr

ele

Vj,t −
∑

j:(l,j)∈Z to
ele

Vj,t =
rlPfl,t + xlQ

f
l,t

Vn
, ∀l, ∀t,

(14c)

Vj,min ≤ Vj,t ≤ Vj,max, ∀l, ∀t, (14d)

where i and j are the node of district heating network (DHN)
and the bus of power distribution network (PDN), respec-
tively. L and l are the pipeline in DHN and the line in PDN,
respectively. Ztoheat/Z

fr
heat are themapping of the set of pipelines

into the set of pipeline outlet/inlet nodes. cw is the specific
heat capacity of water,GL,t is the mass flow rate of pipeline L
at time t. T cL,t is the outlet temperature of pipeline L. Ti,t is the
inlet temperature of pipeline L, and the temperature of node
i. Ten,t is the ambient temperature. Hg

i,t and H
load
i,t are the heat

energy generation and heat load of node i at time t. λ is heat
conductivity of the pipeline. σL is the length of the pipeline.
Ztoele/Z

fr
ele are the mapping of the set of electric lines into the

set of electric line end/head buses. Pfl,t /Q
f
l,t are active/reactive

power in distribution lines. Pgj,t /P
load
j,t andQg

j,t /Q
load
j,t are active

and reactive power generation/load at bus j at time t . Vj,t /Vn
are voltage magnitude at bus j/slack bus. rl and xl are line
resistance and reactance.

2) TRANSACTIVE CONSTRAINS
IESP should also specify the maximum amount of energy
transaction when making the energy transaction price so as
to avoid the risk due to the energy transaction. Equation (15)
represents the upper and lower limits of the transactive power
between the electric power and heat energy.

0 ≤ Pdt ≤ P
d
t ,qua,

∀d ∈ {I2M,M2I,I2L} , ∀t, (15a)

0 ≤ Hd
t ≤ H

d
t,qua,

∀d ∈ {M2I,I2L} , ∀t, (15b)

where the superscript d is the direction of energy flow.
It should be noted that Pdt ,qua and Hd

t ,qua are the variables
in the upper level of the IESP model. Pdt and Hd

t are the
variables in the lower level of MCP and LA models. Besides,
the transaction energy between IESP and MCP needs to be
constrained so that the energy purchase and sale do not exist
simultaneously. The expression is shown in (16).

0 ≤ PI2Mqua,t ≤ MZ
IM
t , ∀t, (16a)

0 ≤ PM2I
qua,t ≤ M (1− Z IM

t ), ∀t, (16b)

where Z IM
t is a binary variable, When the value is 1,

the energy is sold by IESP to MCP, and vice versa.

3) RESERVE CONSTRAINS
The reserve capacity for IEHS is provided by the power
company in addition to the MCP and LA. Equation (17)
represents the constraint of reserve capacity provided by the
power company. Equation (18) indicates that MCP and LA
provide reserve services according to the demands of IESP;
that is, the reserve capacity provided by MCP and LA should
not be more than the reserve demands of IESP.

Pgridt + Rgrid+t ≤ Pgridmax, ∀t, (17a)

Pgridt − Rgrid-t ≥ Pgridmin, ∀t, (17b)

0 ≤ Re+t ≤ R
e+
t,qua, ∀e ∈ {MCP, LA} , ∀t, (18a)

0 ≤ Re−t ≤ R
e−
t,qua, ∀e ∈ {MCP, LA} , ∀t, (18b)

where the superscript e represents the transacting parties in
the transactive energy system. It should be noted that Re+t,qua
and Re−t,qua are reserve demand variables of the IESP model.
Re+t and Re−t are reserve variables of the MCP and LA
models.

D. REAL-TIME FEASIBILITY CHECK
Considering the impact of the forecast error of renewable
energy on system security, the operation of IEHS based on
robust optimization should have at least one feasible state
in the real-time stage. Therefore, the following constraints
are added to ensure the viability of IEHS operating in the
real-time stage. JSP is the objective function of the feasibility
check problem in (19). When JSP = 0, it means that
when the uncertain parameter is set at any value within
the fluctuation interval, the power deviation and voltage
deviation of the system are zero; that is, the system can still
operate stably in the worst scenario. Equation (20) represents
the electric power balance constraint and voltage constraint
with uncertain parameters added. Equation (21) is the
relationship between the power adjustment amount of system
flexibility resources and reserve capacity. Equation (22) is the
set of uncertain parameters.

JSP = max
P̂WT
t ∈U

min
1P̂ej,t ,ŝ

+

j,t ,ŝ
−

j,t

V̂+j,t ,V̂
−

j,t

∑
t

∑
j

(V̂
+

j,t + V̂
−

j,t + ŝ
+

j,t + ŝ
−

j,t )

(19a)

JSP = 0 (19b)∑
l:(l,j)∈Z fr

ele

P̂fl,t −
∑

l:(l,j)∈Z to
ele

P̂fl,t + P
load
j,t − P

g
j,t

= 1P̂ej,t + P̂
WT
j,t + ŝ

+

j,t − ŝ
−

j,t , ∀j, ∀t, ∀l (20a)

ŝ+j,t , ŝ
−

j,t ≥ 0, ∀j, ∀t, (20b)∑
j:(l,j)∈Z fr

ele

V̂j,t −
∑

j:(l,j)∈Z to
ele

V̂j,t =
rl P̂fl,t + xlQ

f
l,t

Vn
∀j, ∀t, ∀l,

(20c)

Vmin − V̂
−

j,t ≤ V̂j,t ≤ Vmax + V̂
+

j,t , ∀j, ∀t, (20d)

V̂+j,t , V̂
−

j,t ≥ 0, ∀j, ∀t, (20e)
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− Re−j,t ≤ 1P̂
e
j,t ≤ R

e+
j,t , ∀e ∈ {MCP, LA, grid} , ∀j, ∀t,

(21)

U = {P̂WT
t = PWT,0

t + αWTPWT,0
t (z+k,t − z

−

k,t ), ∀k, ∀t,
(22a)

z+k,t , z
−

k,t ∈ {0, 1} , z
+

k,t + z
−

k,t ≤ 1, ∀k, ∀t, (22b)∑
t

(z+k,t + z
−

k,t ) ≤ 0T , ∀k, ∀t (22c)∑
k

(z+k,t + z
−

k,t ) ≤ 0K , ∀k, ∀t.} (22d)

where P̂WT
t is the uncertain parameter at time t , PWT,0

t is
the expected value of the uncertain parameter. U is the set
of uncertainties. αWT is the forecast error ratio of wind
power, which can be obtained through a statistical analysis
of historical data. z+k,t and z

−

k,t denote the robust adjustment
coefficient of uncertain parameters. 0T and 0K are the tem-
poral and spatial uncertainty budgets, respectively. k and K
are any equipment and equipment set that bring uncertainty,
respectively. 1P̂ej,t is the amount of power adjustment to
deal with uncertainties. e is the set of the MCP, LA, and
power company. V̂+j,t /V̂

−

j,t and ŝ
+

j,t /ŝ
−

j,t are the positive/negative
slack variables of voltage and power balance constraints,
respectively. P̂fl,t and V̂j,t are the real-time stage variables,
which are the active power in electric line l and the voltage
of bus j.
To sum up, the IEHS energy and reserve joint optimization

model established in this paper can be expressed as equa-
tion (23). The model considers the balance of interests of
all parties in transactive energy and the safe operation with
uncertainties.

min CIESP(12) (23a)

s.t. Network constraints(13), (14) (23b)

Transactive constraints(15), (16) (23c)

Reserve constraints(17), (18) (23d)

MCP operation model(1)− (7) (23e)

LA operation model(8)− (11) (23f)

Real-time feasibility check(19)− (22) (23g)

Upper and lower limits of other variables. (23h)

The (23) model is a nonlinear programming problem,
and the nonlinearity is reflected in three main parts. Part 1,
the bilinear term is composed of price variable and energy
transaction variable in (23a). Part 2, the addition of (23e) and
(23f) makes the model become a bi-level Stackelberg game
problem. Part 3, the addition of (23g) makes the model a
two-stage robust problem.

Next, we will deal with the nonlinear part of the model
properly so that the model can be resolved reliably.

IV. SOLUTION METHODOLOGY
For the above nonlinear model, the solution is as follows.
First, the linearization method deals with part 1 and part 2:
The KKT condition is used to process the linear MCP and LA

models, making the bi-level Stackelberg game a single-level
model. The bilinear term in (23a) is approximately converted
into a linear term using binary expansion technology.
Secondly, a two-stage robust model is established, and
the modified column and constraint generation (C&CG)
algorithm is used to solve the model effectively. The solution
method is introduced in detail below.

A. LINEARIZATION METHODOLOGY
The Stackelberg game relation of the transacting parties can
be described by a bi-level model. (23a), (23b), (23c), and
(23d) constitute the upper level model for decisions made
by IESP, (23e) and (23f) constitute the lower level model for
decisions made by MCP and LA. It should be noticed that the
MCP and LAmodels of the lower level are linear, so the KKT
condition can be used to convert the lower level model into
constraints. The MCP and LA models are abstracted into the
following expressions.

min(
[
cTyToob

] [ xlir
xlre

]
) (24a)

s.t.
[
A1 A2
B1 B2

] [
xlir
xlre

]
≤

[
b
yoie

]
, (24b)[

D1
E1

D2
E2

] [
xlir
xlre

]
=

[
yoe
m

]
, (24c)

where x is the vector variable, represents the decision
variables of the lower level model. xlir/xlre are the decision
variables of the lower level model that are irrelevant/related
to the decision variables of the other level models, such
as decision variables PI2Lt and H I2L

t belong to xlre in LA
model. y is the decision variable of other level models.
yoob is the decision variable of other level models in the
objective function, such as the variables ψM2I

t , ψ I2M
t , and

ζM2I
t of the upper level IESP in the objective function of
MCP. yoie is the decision variable of other level models in
the inequality constraint, such as decision variable PI2Mt,qua of
IESP inMCPmodel. yoe is the decision variable of other level
models equality constraint, such as decision variables PM2L

t
and HM2L

t of LA in MCP model.
By introducing these four sets of Lagrangian multipliers

such as µ1, µ2, λ1, λ2, the Lagrangian equation is as follows:

L (xlir, xlre) = cTxlir + yToobxlre + µ
T
1 (A1xlir + A2xlre − b)

+µT
2 (B1xlir + B2xlre − yoie)+ λT1 (D1xlir

+D2xlre − yoe)

+λT2 (E1xlir + E2xlre −m). (25)

Get the following constraints by KKT transformation:

c+ AT
1µ1 + BT

1µ2 + DT
1λ1 + ET

1λ2 = 0, (26a)

yoob + AT
2µ1 + BT

2µ2 + DT
2λ1 + ET

2λ2 = 0, (26b)

µT
1 (A1xlir + A2xlre − b) = 0, µ1 ≥ 0, (26c)

µT
2 (B1xlir + B2xlre − yoe) = 0, µ2 ≥ 0, (26d)

Original constraints(24b), (24c). (26e)
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Another difficulty is coming from the bilinear term in
equation (23a), such as ψM2I

t PM2I
t and ψ I2M

t PI2Mt , which
are described by xy. In this paper, the big-M and binary
expansion technology are adopted for processing the bilinear
term. Particularly, we use 2K discrete points to approxi-
mate possible values of y in its feasible interval

[
yl, ym

]
.

The approximation accuracy of binary expansion can be
controlled by the number of expansion segments. After
introducing the auxiliary variable vk , the bilinear term can be
expressed in the following equation (27).

xy = xyl +1y(20v0 + 21v1 + · · · + 2kvk ), (27a)

vk = xzk , (27b)

1y =
ym − yl

2k − 1
, (27c)

xk −M (1− zk ) ≤ vk ≤ xk +M (1− zk ), ∀k, (27d)

−Mzk ≤ vk ≤ Mzk , ∀k, (27e)

where k = 1, 2, 3 . . . n, z is a binary variable with the same
dimension of x and y. As long as the M parameter is large
enough, this transformation is exact, and no accuracy is lost.

B. MODIFIED C&CG ALGORITHM
After the linearization above, equation (23) becomes a two-
stage robust model, equations (23a) - (23f) constitute the
first stage, equation (23g) constitutes the second stage. In the
optimization of the two-stage robust model, the day-ahead
scheduling stage (first stage) decision results are obtained by
taking the system economy as the optimization objective, and
the real-time scheduling stage (second stage) decision results
can be obtained based on the determined first-stage decision
variables even in the worst scenario.

The proposed two-stage robust model can be described
by equation (28). (28a) means to minimize the energy
and reserve cost of IEHS, and the bilinear term can be
linearized through (27). (28b) represents the compact form
of system operation constraints in the first stage, which are
corresponding equations (23e) - (23f) processed by the KKT
condition and equations (23b) - (23d). Equation (28c) is the
compact form of system operation constraints with uncertain
parameters in the second stage, the corresponding equation
(23g) specifically. Equation (28d) represents the value range
of the variable, the corresponding equation (23h) specifically.

min
p,h,r

ψTp+ ζTh+ CTr (28a)

s.t. ATp+ BTh+ ETr+ FTu0 ≤ b, (28b)

∀u ∈ U , ∃1 : GT1 ≤ b− FTu− ATp− BTh− ETr,

(28c)

p ∈ P,h ∈ H , r ∈ R, (28d)

where ψ and ζ are the price vectors. p is the electric power
vector. h is the heat energy vector. r is the reserve capacity
vector. u0 is the expected value of wind power. u is the
uncertain variable of wind power. 1 is the amount of power
adjustment in the real-time stage.

For the two-stage robust optimization problem, the specific
steps of the modified C&CG algorithm are described as
follows.

Algorithm 1TheModified C&CGBased Solution Procedure
Initialization: set k = 0, JSP0 = +∞.
Repeat
á solve the following master problem:

MP: minψTp+ ζTh+ CTr
s.t. ATp+ BTh+ ETr ≤ b− FTu0,
ATp+BTh+ETr+GT1l

≤ b−FTu∗l ,∀1 ≤ l ≤ k
p ∈ P,h ∈ H , r ∈ R
Derive an optimal solution ([p∗k+1, h

∗

k+1, r
∗

k+1,
ψ∗k+1, ζ

∗

k+1, 1
1∗, 12∗, . . . , 1k∗]).

á Calculate
SP: JSP(p∗k+1,h

∗

k+1, r
∗

k+1)
If JSP(p∗k+1,h

∗

k+1, r
∗

k+1) > ε, create variables
1k+1

and add the following constraints to MP:
ATp+ BTh+ ETr+GT1k+1

≤ b− FTu∗k+1,
where u∗k+1 is the scenario generated from the
solution for JSP(p∗k+1,h

∗

k+1, r
∗

k+1). Note that dual-
ity

is used to solve the max-min problem in this paper.
Until JSP ≤ ε, return [p∗k+1, h

∗

k+1, r
∗

k+1, ψ
∗

k+1,
ζ ∗k+1], and terminate.

In conclusion, the essence of the two-stage robust opti-
mization is to decompose the energy and reserve joint
optimization problem of IEHS into economic operation in the
first stage and safe operation in the second stage. In the first
stage (day-ahead stage), according to the Stackelberg game
model converted by the KKT condition, the optimal solution
of energy, price, and the reserve is solved, and the optimal
solution is returned to the SP model. By solving the second
stage (real-time stage) model after duality, the algorithm
determines whether the solution of the first stage satisfies the
power balance and voltage limitation of the system. If the
power balance and voltage limits are not met, the worst
scenario obtained in the second stage is returned to MP,
and MP is solved again to obtain a first-stage solution. The
iteration cycle of the optimized solution is not completed until
a solution satisfying the requirements is found.

V. CASE STUDIES
A. BASIC CONFIGURATIONS
The system consists of a modified IEEE 33-bus power
distribution network (PDN) and a 32-node district thermal
network (DHN) [13]. The prosumer connects to the PDN
at Bus 12 and the DHN at Node 31. The load aggregator
connects to the PDN at Bus 29 and the DHN at Node 1. Two
wind turbines are connected to the PDN Bus 13 and Bus 28,
respectively. The system topology is shown in Figure 2.
The parameters of the prosumer and the DHN are shown
in Tables 1 and 2, respectively, and the bounds of other
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FIGURE 2. The topology of the system.

TABLE 1. Parameters of the MCP.

TABLE 2. Parameters of the heat sources in DHN.

TABLE 3. Bounds of other variables.

variables are shown in Table 3. The electric load, heat load,
and the forecasts for wind turbines are shown in Figure 3.
The flexible electric load controllable periods of the load
aggregator are 3, 7, and 20, and the flexible thermal load
controllable periods are 1, 15, and 17. The electric price in
the wholesale electric market, the gas price in the wholesale
gas market, and the contract price signed between the MCP
and the LA are shown in Figure 4. The prices for the
prosumer, the load aggregator, and the main grid to provide
reserve ancillary services are taken as 70, 50, and 80$/MW,
respectively.

In our checks, 128 discrete points (K = 7) are used for the
binary expansion scheme. All the simulations are written in
YALMIP by calling Gurobi on a computer with 2.6 GHz and
8 GB RAM.

FIGURE 3. Electric load, heat load and wind power forecast profiles.

FIGURE 4. The known price curves.

1) Set different forecast error ratios of wind power.
By setting different wind power forecast error ratios, we can
get different reserve capacity dispatch conditions. Here,
we set the forecast error ratios αWT as 5%, 10%, 15%, 20%
and 25% orderly. The temporal uncertainty budget 0T takes
24, and the spatial uncertainty budget0K takes 2. The forecast
error ratio for the benchmark case takes 15%.

2)Set different contract prices. The electric and heat con-
tract prices between theMCP and the LA vary proportionally.
The contract prices aremultiplied by the same variation factor
αcontract , which increases from 0.2 to 3 orderly. The variation
factor αcontract of the benchmark scenario is 1.
3)Set different optimization models. We build the deter-

ministic energy and reserve optimization model (shortened to
DM) and the conventional energy and reserve optimization
model (shortened to CM), respectively, and compare these
two models with the model proposed in this paper. The DM
does not consider the real-time feasibility check, and the
following equation (29) limit its reserve capacity:

RGT+t + RHP-t + RLA+t + Rgrid+t ≥ 0.15PWT,0
t , ∀t, (29a)

RGT-t + R
HP+
t + RLA-t + Rgrid-t ≥ 0.15PWT,0

t , ∀t, (29b)

The CM is divided into two separate models that are the
day-ahead energy optimization and reserve optimization. The
model of the CM does not consider the influence of reserve
dispatching on the day-ahead energy market. The model
firstly conducts the pricing and dispatch of the day-ahead
energy market without considering the uncertainty of renew-
able energy to obtain the day-ahead energy market operation
results and then conducts two-stage robust optimization of
the reserve capacity based on the operation results of the
day-ahead energy market so as to obtain the reserve results.
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B. RESULTS
1) THE BENCHMARK CASE
The electric and heat prices, the transactive electric power,
and heat energy of the IEHS are shown in Figures 5, 6, 7,
and 8. If the price of a certain period is 0, it means no energy
transaction.

FIGURE 5. Electric price results for the benchmark case.

FIGURE 6. Electric power transaction results for the benchmark case.

FIGURE 7. Heat price results for the benchmark case.

FIGURE 8. Heat energy transaction results for the benchmark case.

In periods 1-5, the electric price provided by the IESP to the
MCP is higher than the price in the wholesale electric market,
and the IESP sells electric power to the MCP to increase its
revenue. In periods 7-23, the electric price purchased by the

IESP from the MCP is lower than the price in the wholesale
electric market, and the IESP reduces its own cost of electric
purchase by purchasing electric power from the MCP.

From the perspective of the LA, in periods 1-7, the heat
energy price sold by the IESP is lower than the heat contract
price of the MCP, so the LA chooses to purchase heat energy
from the IESP instead of the MCP, thus reducing its own heat
purchasing cost. In periods 8-22, the electric price sold by the
IESP is lower than the electric contract price sold by theMCP,
so the LA chooses to purchase electric power from the IESP,
thus reducing its cost of electric power purchasing.

From the perspective of the MCP, in periods 1-5, the MCP
purchases a certain amount of electric power from the IESP
at 43$/MWh, which is mainly used for heat pump heat
production, while the MCP sell the produced heat to the IESP
at the price of 14.5$/MWh. The calculation based on the
heat pump efficiency (ηHP = 3) shows that the MCP can
make some profits by producing heat efficiently through the
heat pump and using the price difference between the electric
power and heat energy for arbitrage.

Thus, it is known that the IEHS supported by the
transactive energy uses the value to ensure that transacting
parties are profitable and to motivate them to participate in
the optimal operation of the IEHS effectively.

FIGURE 9. Reserve dispatch results under different wind power forecast
errors.

2) IMPACT OF WIND POWER FORECAST ERRORS
The reserve dispatching of the IEHS for different wind
power different forecast error ratios is shown in Figure 9.
Due to the lower cost of the IESP to purchase reserve
capacity from MCP and LA, most of the reserve capacity
is provided by MCP and LA. During periods of high wind
power expectations, for example, in periods 0-5 and 15-18,
the IEHS requires more reserve capacity. In periods of
low wind power expectation, for example, in periods 7-10,
the IEHS requires less reserve capacity. It shows that the
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wind power expectation level affects the amount of reserve
capacity. The reserve dispatch is not only related to wind
power expectations but also related to thewind power forecast
error ratio range. As the wind power forecast error ratio
increases, more reserve capacity is required for the IEHS.

TABLE 4. Cost of IESP and run time under different contract prices.

3) IMPACT OF CONTRACT PRICE
Since the energy purchase strategy of the LA is related to
the offered electric and heat energy prices of IESP and MCP,
the contract prices between MCP and LA will have an impact
on the revenue of the IESP. The operating costs of the IESP
and run time in different contract prices are shown in Table 4.
It is clear that when contract prices between the MCP and
the LA are meager, the LA hardly buys energy from the
IESP, and the total cost of the IESP is the highest at this
time. As contract prices increase, the LA gradually purchases
electric power and heat energy from the IESP, and the total
cost of the IESP decreases. When contract prices increase to
a certain value, the revenue of the IESP from the LA is stable
at $2382, and the total cost of the IESP is stable at $2481.
Thus, the contract prices between MCP and LA affect the
share of energy supplied by the IESP to the LA, which affects
the total cost of the IESP in turn. The higher the contract price
is, the more revenue the IESP receives from the LA, and the
lower the total cost of the IESP is. We should also note that
the change in the contract price also affects the solution time
of the model.

4) COMPARISON OF DIFFERENT MODELS
We analyze the operation risk of the model proposed in this
paper, the DM and the CM. First, 100 possible actual wind
power scenarios are obtained by random sampling. Then,
based on the sampled wind power scenarios, the real-time
feasibility checks are performed according to the above three
optimization results, and the values of the objective function
Jsp are calculated and shown in Figure 10. It indicates that the
real-time scheduling stage cannot meet the security operation
requirements when the value of Jsp is more than 0. As we
can see from Figure 10, the proposed model in this paper
and the CM meet the security operation requirements in each
scenario, while the DM fails to meet the security operation
requirements in some scenarios.

FIGURE 10. Real-time feasibility check results.

In scenario 51, although the operation strategy obtained
by the DM can meet the real-time power balance constraint,
the voltage magnitude of PDN buses 31-33 is lower than
0.93 at period 13. It is because that the DM does not consider
the redistribution of power flow after power adjustment. So,
even though the reserve capacity is numerically sufficient,
the DM cannot guarantee the security of the dispatch strategy
and cannot satisfy the voltage constraint in the real-time
stage. The model proposed in this paper and the CM can
realize the security operation of the IEHS.

FIGURE 11. Comparison of energy transaction cost and reserve cost
results of the proposed model and the CM under different wind power
forecast error ratios.

By varying the forecast error ratio, the costs of energy
transaction and reserve of the model proposed and the CM
are shown in Figure 11. When the forecast error of wind
power is small, there is almost no difference between the
energy transaction cost and reserve cost of IEHS of the
two models. However, when the forecast error ratio of
wind power is large (the forecast error ratio is more than
30%), the energy transaction cost of the proposed model
decreases to a certain extent. It is because that the proposed
model optimizes the energy and reserve joint dispatching
of the IEHS, which improves the economy of operation.
When the forecast error ratio of wind power increase to
more than 45%, the reserve dispatching of the CM becomes
unsolvable, while the proposed model can still solve the
reserve results. Therefore, the model proposed in this paper
is more advantageous to the security and reliability of IEHS
operation with the condition of high uncertainties.

VI. CONCLUSION
This study proposes a joint energy and reserve dispatch
model for an IEHS under transactive energy, with a modified
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C&CG algorithm and linearization techniques such as the
KKT condition and the binary expansion method to solve
it. In the proposed transactive energy system framework
with center-coordinationated feature, each transacting party
is motivated to participate in supply and demand balancing
and optimal dispatch proactively. Case studies show that
the multi-carrier prosumer utilizes its energy conversion
equipment and energy prices at different periods to achieve
arbitrage. The load aggregator flexibly chooses energy
suppliers and energy purchase periods to reduce costs. The
IESP could flexibly select reserve resources, such as reserve
services from multi-carrier prosumers and load aggregators.
Besides, the transaction price between the multi-carrier
prosumer and the load aggregator could affect the share of
energy supplied by the IEHS to the load aggregator, which
affects the economic benefits of the IESP. The proposed
method achieves economic operation of the IEHS by using
price signals to guide the energy management of multi-carrier
prosumer and load aggregator, as well as guarantees high
reliability of the system under uncertain operating conditions
through reserve dispatch and robust optimization.
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