
Received December 24, 2020, accepted January 12, 2021, date of publication January 18, 2021, date of current version January 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051984

A Nearer Optimal and Faster Trained
Value Iteration ADP for Discrete-Time
Nonlinear Systems
JUNPING HU1, GEN YANG 1,2, ZHICHENG HOU 2, (Member, IEEE),
GONG ZHANG2, (Member, IEEE), WENLIN YANG2, (Member, IEEE),
AND WEIJUN WANG 2,3
1College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
2Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China
3Shenzhen CAS Derui Intelligent Technology Company Ltd., Shenzhen 518000, China

Corresponding author: Zhicheng Hou (zc.hou@giat.ac.cn)

This work was supported in part by the China Postdoctoral Science Foundation under Grant 2019M662848, and in part by the Natural
Science Foundation of Guangdong Province under Grant 2018A030310046.

ABSTRACT Adaptive dynamic programming (ADP) is generally implemented using three neural networks:
model network, action network, and critic network. In the conventional works of the value iteration ADP,
the model network is initialized randomly and trained by the backpropagation algorithm, whose results
are easy to get trapped in a local minimum; both the critic network and action network are trained in
each outer-loop, which is time-consuming. To approximate the optimal control policy more accurately
and decrease the value iteration ADP training time, we propose a nearer optimal and faster trained value
iteration ADP for discrete-time nonlinear systems in this study. First, before training the model network
with a backpropagation algorithm, we use a global searching method, i.e., genetic algorithm, to evolve the
weights and biases of the neural network for a few generations. Second, in the outer-loop training process,
we propose a trigger mechanism to decide whether to train the action network or not, which can save much
training time. Examples of both linear and nonlinear systems are induced to verify the superiority of the
proposed method compared with the conventional value iteration ADP. The simulation results show that
the proposed algorithm can provide a nearer optimal control policy and save more training time than the
conventional value iteration ADP.

INDEX TERMS ADP, value iteration, genetic algorithm, trigger mechanism.

I. INTRODUCTION
Discrete-time systems are more suitable for computer pro-
cessing than the continuous-time systems [1]. In practice,
the continuous-time system control problems are mostly dis-
cretized into discrete-time system control [2]–[5]. Adaptive
dynamic programming (ADP) proposed by Werbos [6] is
an effective method for solving the optimal control prob-
lems for discrete-time systems [5], [18]–[24]. ADP can
also be described as adaptive critic designs [7]–[9], neu-
ral dynamic programming [10], or reinforcement learning
[11]–[14]. There are two principal schemes of ADP algo-
rithms, which are the policy iteration algorithm [15]–[18]

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Luo .

and the value iteration algorithm [19]–[22]. A policy iteration
algorithm requires an initial stabilizing control action [18],
whereas a value iteration algorithm does not [19]. In this
research, we utilize the promising value iteration algorithm.

In the research of value iteration ADP (VI-ADP),
Al-Tamimi et al. [19] prove the convergence of VI-ADP for
discrete-time nonlinear systems. This work provides a theo-
retical foundation for VI-ADP research. Different from [19],
where the initial cost function (also called value func-
tion [24] or performance index function [18]) is set as 0,
Li et al. [22] propose a general VI-ADP that initializes
the cost function with a Lyapunov function. Compared
with VI-ADP, the general VI-ADP is able to guarantee the
stability of the system with a finite iterative control policy.
Still, it is required that V0(xk ) ≥ V1(xk ) holds for any

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 14933

https://orcid.org/0000-0001-8606-5523
https://orcid.org/0000-0002-5319-9856
https://orcid.org/0000-0001-6011-2598
https://orcid.org/0000-0003-2143-2438


J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

controllable xk , which is hard to satisfy. Considering the
existence of approximation errors of the neural networks,
Heydari [4] analyzes the stability of VI-ADP. It is proved
that if the initial iterative cost function V0(·) belongs to an
admissible control policy, the iterative control policies remain
stable. As most previous works are operated on the whole
state space in each iteration,Wei et al. [5], [23] develop a local
VI-ADP that the iterative cost functions and control policy
are both updated in a given subset of the state space in each
iteration. Since the real-world systems generally operate in
a subset of the state space in each iteration period, the local
VI-ADP is more suitable for real-world applications. After
that, Li et al. [24] propose an online VI-ADP algorithm that
combines the local VI-ADP with a gaussian distribution that
treats the current states as the expected value. This algorithm
can update the cost function and control policy at each run-
ning step of the system.

However, most of the previous studies on VI-ADP algo-
rithms update both the iterative cost function (critic network)
and the iterative control policy (action network) in each outer-
loop, i.e., train two neural networks in each outer-loop. High
order control systems require a large amount of state data
to build the approximation structures to approximate the
iterative cost function and iterative control policy [5]. Even
though VI-ADP is often used as an offline ADP scheme,
it costs too much time when implementing VI-ADP in the
high order systems. Furthermore, in the training process
of the model network, the weights and biases are always
initialized randomly. A genetic algorithm (GA) is a kind
of evolutionary algorithm that works well in global opti-
mization [28]. Compared with the BP neural network whose
weights and biases are initialized randomly, the one whose
weights and biases are initialized by GA (GA-BP) has a better
approximation accuracy and fault tolerance ability [26]–[28].
However, it is uncommon in the literature to utilize GA-BP
to train the model network. Moreover, in the conventional
GA-BP algorithm, GA often evolves BP neural network
parameters for large numbers of generations, i.e., 500 gen-
erations in [26] and 1000 generations in [28], which is also
time-consuming.

In this study, to approximate the optimal control policy
more accurately and decrease the training time of VI-ADP,
we propose a nearer optimal and faster trained VI-ADP
(NoFt-VI-ADP) algorithm for discrete-time nonlinear sys-
tems. The main contributions of this research are summarized
as follows:

1) Different from previous works that initialize the
weights and biases of the model network randomly,
we implement GA to evolve these parameters before
being tuned by the BP algorithm.

2) Unlike previous GA-BP works that evolve the param-
eters of BP neural network for large numbers of gen-
erations, we only evolve these parameters for a few
generations.

3) Different from the conventional works that train the
critic network and action network in each outer-loop,

we propose a novel trigger mechanism that only trains
the action network when there is a trigger signal.

4) The proposed NoFt-VI-ADP performs in a data-driven
way that does not require the knowledge of system
dynamics.

The organization of this article is as follows: In sect. 2,
the less evolved GA-BP algorithm is implemented to train
the model network. In sect. 3, the trigger mechanism is used
to train the outer-loop. In sect. 4, the overall NoFt-VI-ADP
algorithm is given. In sect. 5, linear and nonlinear exam-
ples are illustrated to show the superiority of the proposed
NoFt-VI-ADP compared with VI-ADP. The conclusions are
given in sect.6.

II. TRAIN THE MODEL NETWORK WITH A LESS EVOLVED
GA-BP ALGORITHM
In most cases, since the real dynamics of a system are difficult
to obtain, the neural network is used to approximate the
dynamics of the system [19]–[22]. As shown in Fig. 1, a large
number of

(
xs, us, x ′s

)
are sampled from the system, where

xs represents the current state vector, us is the control vector,
and x ′s is the corresponding successor state vector. The nota-
tion s stands for the sampled data. With these data, we train a
three layers model network (as shown in Fig. 2) with the input
[xTs , u

T
s ]
T and the target x ′s to approximate the dynamics of

the system. The output of the model network is expressed as
follows:

x̂ ′js = W jTσ (Z j), (1)

FIGURE 1. Flow chart of sampling offline data.

FIGURE 2. Neural network diagram.

where j is the training iteration index, x̂ ′js is the estimation of
x ′s, W

j is the hidden-to-output-layer weights matrix, σ is a
tanh(·) function, i.e., σ (x) =

[
(ex − e−x)/(ex + e−x)

]
, Z j =

Y jT [xTs , u
T ]T + bj, Y j is the input-to-hidden-layer weights

matrix, bj is the input-to-hidden-layer biases matrix. Then we
define the error function of the neural network as:

ej = x̂ ′js − x
′
s. (2)

14934 VOLUME 9, 2021



J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

The objective function to be minimized in the neural network
training process is expressed as:

E j =
1
2
(ej)T (ej). (3)

Remark 1: In this article, all the matrix differentiation is in
the denominator layout form.

Therefore,W j is updated as follows:

W j+1
= W j

+1W j

= W j
− α

[
∂E j

∂W j

]
= W j

− α

[
∂ x̂ ′js
∂W j

∂ej

∂ x̂ ′js

∂E j

∂ej

]
= W j

− ασ (Z j)ejT , (4)

where α > 0 is the learning rate. Herein, we prove the
convergence of the model network as follows:

A. CONVERGENCE ANALYSIS OF THE MODEL NETWORK
Theorem 1: Let the neural network target be expressed by

x ′s = W ∗Tσ (Z ). (5)

Let the model network be trained by (4). If the learning rate
α is small enough, then the neural network weights W is
asymptotically convergent to the optimal weightsW ∗. [18]

Proof: Let W
j
= W j

−W ∗. From (4) we have

W
j+1
= W

j
− ασ (Z j)ejT . (6)

Consider the following Lyapunov function candidate:

L(W
j
) = tr

{
W

jT
W

j
}
. (7)

where tr means the trajectory of the matrix. When W j
=

W ∗,the term L(W
j
) is 0. Then, the difference of the Lyapunov

function candidate is given by:

1L(W
j
) = tr

{
W

(j+1)T
W

(j+1)
−W

(j)T
W

(j)
}

= tr
{
W

(j+1)T
W

(j+1)
}
− tr

{
W

(j)T
W

(j)
}

= tr{−2W
(j)T

[
ασ (Z j)ejT

]
+α2

[
σ (Z j)ejT

]T
σ (Z j)ejT }

= tr
{
−2α

[
ejejT

]
+ α2

[
σ (Z j)ejT

]T
σ (Z j)ejT

}
= α

∥∥∥ej∥∥∥2 (−2)+ α2 ε,l∑
t1=1,t2=1

[
σ (Z j)(t1) · ej(t2)

]2
= α

∥∥∥ej∥∥∥2 (−2)+ α2 ∥∥∥ej∥∥∥2 ∥∥∥σ (Z j)∥∥∥2
= α

∥∥∥ej∥∥∥2 (−2+ α ∥∥∥σ (Z j)∥∥∥2) , (8)

where ε is the number of hidden layer neurons, l is the
number of output layer neurons. According to the definition

of σ (·), we know that σ (Z j) is finite for ∀Z j. Thus, if α is
small enough that satisfy α ≤ 2/

∥∥σ (Z j)∥∥2, then we have

1L(W
j
) ≤ 0, and W

j
will converge to 0, which means W

is asymptotically convergent to the optimal weightsW ∗. The
proof is completed.

So, the model network asymptotically converges to the
dynamics of the system.

B. A LESS EVOLVED GA-BP ALGORITHM
GA can search points over the entire domain, whereas the
BP algorithm can locally optimize the points. The procedure
of GA-BP is mainly in two steps. Firstly, we use GA to
generate the fittest chromosome to initialize the weights and
biases of the neural network. Secondly, we train the neural
network with gradient-based BP algorithms.

In the conventional GA-BP algorithms, GA often evolves
for hundreds or thousands of generations to improve the
performance of the neural network, whereas it is still time-
consuming. Herein, we utilize a less evolved GA that only
evolves the weights and biases of the model network for a few
times, i.e., 20 to 50 generations. Although the less evolved
GAwill not obtain the globally optimal values, it can generate
a group of parameters that performs much better than chosen
randomly, which is illustrated in Fig. 3. The mains elements
of GA are explained as follows:

FIGURE 3. Global searching by GA and local optimization by BP.

1) ENCODING
The most crucial part of GA is to translate the parameters of a
real problem into a chromosome. In GA-BP, a chromosome is
a binary string composed of all the weights and biases of the
BP neural network (illustrated in Fig. 4). Each chromosome
represents a neural network, and all the chromosomes in the
same generation constitute a population.

2) FITNESS FUNCTION
In GA, chromosomes in a population compete and exchange
information with each other. The fitness function determines
the survival probability of each chromosome. A chromosome
with a higher fitness has a bigger probability to survive in the

VOLUME 9, 2021 14935



J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

FIGURE 4. Illustration of a GA-BP chromosome.

next generation. In this study, we define the fitness function
as follows:

fh =
1

EMSEh

, (9)

where fh represents the fitness of the h-th chromosome,
EMSEh represents the mean square error (MSE) of the neural
network corresponding to the h-th chromosome expressed as:

EMSEh =
1
2N

N∑
z=1

(x̂ ′(z)sh − x
′(z)
s )T (x̂ ′(z)sh − x

′(z)
s ), (10)

where N is the total groups of the sampled state vectors,
x̂ ′(z)sh is the output of the model network corresponding to the
h-th chromosome.

3) SELECTION
Select K chromosomes from the previous generation popula-
tion. During the selection, the chromosome with the largest
fitness is retained, and the others are obtained by roulette
wheel selection.

4) CROSSOVER
Randomly choose a pair of chromosomes from the population
with the probability of Pc for K times. Each group of chro-
mosome constitutes a couple of parents. Through single-point
crossover, these parents generate offspring. After that, all the
offspring are added to the population.

5) MUTATION
Mutate genes of every chromosome with the probability
of Pm. After that, add the mutation results to the population.
At last, a summary of the less evolved GA-BP is given in

algorithm 1. In this process, the model network is trained by
a less evolved GA-BP algorithm.

III. TRAIN THE OUTER-LOOP WITH TRIGGER
MECHANISM
In this section, firstly, we review the value iteration scheme
for solving the Bellman equation of discrete-time systems.
Then, we introduce the trigger mechanism in the outer-loop
training process.

A. THE VALUE ITERATION SCHEME
Consider the following discrete-time system

x(k + 1) = f (x(k))+ g(x(k))u(k), k = 0, 1, 2, . . . , (11)

Algorithm 1 Train the Model Network With the Less
Evolved GA-BP
Step 1. Determine the topology of themodel network. Provide

themaximum generationG (20 to 50), the crossover prob-
ability Pc, the mutation probability Pm and the population
size Q. Set g = 0.

Step 2. Randomly generate K groups of real number weights
and biases as individuals of the population.

Step 3. Calculate the fitness of all the individuals, select
K individuals from the population. During the selection,
the individual with the largest fitness is retained, and the
others are obtained by roulette wheel selection.

Step 4. Code the selected individuals into binary string chro-
mosomes, crossover with a probability of Pc, mutate with
a probability of Pm, add the offspring to the population.
Then decode all the chromosomes into real number indi-
viduals.

Step 5. If g = G, go to step 6; else g = g+ 1, and go back to
Step 3.

Step 6. Calculate all the individuals’ fitness, initialize the
weights and biases of the model network with the fittest
individual.

Step 8. Train the model network with gradient-based BP
algorithms until meeting the termination conditions.

Step 7. Finish the algorithm.

where x(k) ∈ Rl is the state vector at time step k , u(k) ∈ Rr is
the control vector, f (x(k)) ∈ Rl represents the drift dynamics,
and g(x(k)) ∈ Rl×r represents the input coupling function.
Both f (·) and g(·) are unknown. Assume that the system is
Lipschitz continuous on a compact set� ∈ Rl containing the
origin.

The goal is to find a state feedback control policy π∗(x(k))
that to any x(k) ∈ �, it can generate a control sequence
{u∗(k), u∗(k + 1), u∗(k + 2), . . .} to stabilize the system (11)
and simultaneously minimize the infinite-horizon cost func-
tion given by:

V (x(k), u(k)) =
∞∑
j=0

U (x(k + j), u(k + j)), (12)

where U is the utility function expressed as follows:

U (x(k), u(k)) = xT (k)Qx(k)+ uT (k)Ru(k), (13)

Q ∈ Rl×l and R ∈ Rr×r are both positive-definite matrices.
Definition 1: A control policy π (·) is admissible [19], [21]

with respect to system (11) on a compact set � if π (·) is
continuous on �, π (0) = 0, π (x) stabilizes (11) on �, and
V (x, π(x)) is finite, ∀x ∈ �.
Let�π be the set of admissible control policies associated

with the state set �. We define the optimal cost function as
follows:

V ∗(x(k)) = inf
π
{V (x(k), π(x(k))) : π ∈ �π }. (14)

14936 VOLUME 9, 2021



J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

According to [31], the optimal cost function V ∗(x(k)) satis-
fies the Bellman equation:

V ∗(x(k)) = min
u(k)
{U (x(k), u(k))+ V ∗(x(k + 1))}. (15)

The optimal control vector u∗(k) should satisfy

u∗(k) = argmin
u(k)
{U (x(k), u(k))+ V ∗(x(k + 1))}. (16)

Note that u∗(k) satisfies the first-order necessary condition,
which is given by the gradient of the right-hand side of (16)
to u(k) as follows:

∂(xT (k)Qx(k)+ uT (k)Ru(k))
∂u(k)

+

(
∂(x(k + 1))
∂u(k)

)T
∂V ∗(x(k + 1))
∂x(k + 1)

= 0. (17)

That is

2Ru(k)+ gT (x(k))
∂V ∗(x(k + 1))
∂x(k + 1)

= 0. (18)

Then we can obtain the optimal control vector at time step k
as follows:

u∗(k) = −
1
2
R−1gT (x(k))

∂V ∗(x(k + 1))
∂x(k + 1)

. (19)

As the optimal cost function (15) is nonanalytic, it is
nearly impossible to obtain V ∗(x(k)) by solving this function
directly [5]. Therefore, we use the VI algorithm [22], [30]
to obtain the optimal cost function and the optimal control
policy as follows:

The initial cost functionV0(·) is set 0, and the initial control
policy π0(x(k)) is solved by:

π0(x(k)) = u0(k)

= argmin
u(k)
{xT (k)Qx(k)+uT (k)Ru(k)+V0(x(k+1))},

(20)

Then for the iteration index i = 1, 2, 3, . . . , the value itera-
tion algorithm iterates between the cost function update

Vi(x(k)) = min
u(k)
{xT (k)Qx(k)+ uT (k)Ru(k)

+Vi−1(x(k + 1))}

= xT (k)Qx(k)+ uTi−1(k)Rui−1(k)

+Vi−1(x(k + 1))

= xT (k)Qx(k)+ πTi−1(x(k))Rπi−1(x(k))

+Vi−1(x(k + 1)), (21)

and the control policy improvement

πi(x(k)) = ui(k) = −
1
2
R−1gT (x(k))

∂Vi(x(k + 1))
∂x(k + 1)

. (22)

Remark 2: k is the time step, whereas i stands for the
iteration index of the outer-loop.

According to [19], as the outer-loop runs to infinite itera-
tions, the cost function and the control policy will approach
their optimal value. i.e., Vi→ V ∗ and πi→ π∗, as i→∞.

B. THE TRIGGER MECHANISM
Since Vi is a mapping between the state vector and the cost
function, πi is a mapping between the state vector and the
control vector, ADP uses a critic network and an action
network to approximate (21) and (22), respectively. In this
way, as the outer-loop runs to infinite iterations, the critic
network can approximate to the optimal cost function V ∗,
and the action network can approximate to the optimal control
policy π∗.
Remark 3: Training the outer-loop means training the

critic network to approximate (21) and the action network to
approximate (22) alternately.

First, we train the model network to approximate the
dynamics function (11) as follows:

x̂(k + 1) = W Tσ (Y T [x(k)T , uT ]T + b), (23)

where x̂(k+1) is an estimate of x(k+1). Since g(x(k)) in (11)
is only a function of x(k), we can simply set

u(k) = u = [0,0, . . . ,0] , (24)

and calculate g(x(k)) as follows:

g(x(k)) =
∂x(k + 1)
∂u(k)

∣∣∣∣
u(k)=u

(25)

So, we can use ĝ(x(k)) to approximate g(x(k)) as follows:

ĝ(x(k)) =
∂ x̂(k + 1)
∂u(k)

∣∣∣∣
u(k)=u

= WT
[
1− tanh2(Y T[x(k)T , uT ]T + b)

]
(26)

· Y T ∂[x(k)
T , u(k)T ]T

∂u(k)

∣∣∣∣
u(k)=u

, (27)

where
∂[x(k)T , u(k)T ]T

∂u(k)
=

[
0l×r
Ir

]
, the term Ir ∈ Rr×r

represents an identity matrix.
After that, we train the outer-loop. As VI is an

offline algorithm, we use tuples to represent a group of
state vectors or control vectors. We use ν̂i−1, χi, νi, and
χ̂ ′i to represent {û(1)i−1, û

(2)
i−1, . . . , û

(p)
i−1}, {x

(1)
i , x(2)i , . . . , x(p)i },

{u(1)i , u
(2)
i , . . . , u

(p)
i }, and {x̂

′(1)
i , x̂ ′(2)i , . . . , x̂ ′(p)i }, respectively,

where p is the number of samples.
When i = 0, the cost function is set as V0(·) = 0, and the

initial updated control vector tuple ν0 is calculated by (20).
For i = 1, 2, 3, . . ., train the critic network with the input χi,
and the target

Vi(χi) = χiTQχi + ν̂Ti−1Rν̂i−1 + V̂i−1(χ̂
′
i ), (28)

The output of the critic network is expressed as:

V̂i(χi) = W cT
i tanh(Y cT

i χi + b
c
i ), (29)

where W c
i ,Y

c
i , b

c
i are the weights and biases of the critic

network at i-th iteration.
Then it comes to the core problem of how to obtain ν̂i−1

in (28). There are mainly two methods, i.e., a policy-based
method and an algebra method.

VOLUME 9, 2021 14937



J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

1) A POLICY-BASED METHOD
In this method, the action network works as a control policy at
each outer-loop. For i = 1, 2, 3, . . ., the control vector tuple
at i-th iteration ν̂i−1 is obtained as follows:

ν̂i−1 = π̂i−1(χi). (30)

The control policy π̂i−1(·) is the action network trained at
(i− 1)-th iteration, which is trained with the input χi−1, and
the target expressed as:

νi−1 = −
1
2
R−1ĝT (χi−1)

∂V̂i−1(χ̂ ′i−1)

∂χ̂ ′i−1
, (31)

where ĝT (χi−1) is calculated by (27) with the input of χi−1,

the term
∂V̂i−1(χ̂ ′i−1)

∂χ̂ ′i−1
can be calculated by the chain rule of

the critic network as follows:

∂V̂i−1(χ̂ ′i−1)

∂χ̂ ′i−1
= W cT

i−1

(
1− tanh2(Y cT

i−1χ̂
′

i−1 + b
c
i−1)

)
Y cT
i−1.

(32)

Then the term ν̂i−1 can be expressed as follows:

ν̂i−1 = π̂i−1(χi)

= W aT
i−1 tanh(Y

aT
i−1χi + b

a
i−1), (33)

where W a
i−1,Y

a
i−1 and b

a
i−1 are the weights and biases of the

action network at (i− 1)-th iteration.
The scheme is illustrated in Table 1, where the letters in

bold are obtained by training the neural network. In this
scheme, the action network works as a control policy that
maps the state vector tuples to the control vector tuples. Even
though the input state vector tuple χi is changed, the control
policy can generate the corresponding control vector tuple
ν̂i−1 to update the critic network at the i-th iteration. i.e., the
state vector tuples can be different in each outer-loop.

The policy-based method can explore enough different
state vectors in the state space, so the control policy obtained
in this way has a good generalization ability. But in this
method, we train both the critic network and action net-
work in each outer-loop, which is time-consuming. Further-
more, there are action network approximation errors in each
outer-loop training process [4].

2) AN ALGEBRA METHOD
The other method is to utilize the (i − 1)-th updated control
vector tuple νi−1 as the control vector tuple at the i-th itera-
tion, i.e., ν̂i−1 = νi−1. νi−1 can be calculated directly by the
algebra function:

νi−1 = −
1
2
R−1ĝT (χi−1)

∂V̂i−1(χ̂ ′i−1)

∂χ̂ ′i−1
, (34)

The scheme is illustrated in Table 2. Since the (i − 1)-th
updated control vector tuple νi−1 is corresponding to xi−1,
if we want to utilize νi−1 as the control vector tuple
of i-th iteration ν̂i−1, χi must be the same with χi−1.

TABLE 1. Scheme of training the outer-loop with the policy-based
method.

TABLE 2. Scheme of training the outer-loop with the algebra method.

i.e., χi = xi−1 = . . . = χ2 = χ1 = χ0. This method
cannot explore enough state vectors in the state space, so the
control policy’s generalization ability is limited. But in this
method, only the critic network is trained in each outer-loop.
The outer-loop can be trained faster than the policy-based
way. Furthermore, since we calculate the control vector tuples
in an algebra way, there are no action network approximation
errors in the outer-loop training process.

3) THE PROPOSED TRIGGER MECHANISM
To keep a tradeoff between the generalization ability of the
obtained control policy and the time consumption of the
outer-loop training process, we propose a trigger mechanism.
The training scheme is shown in Table 3, where there is
a trigger signal at the i-th outer-loop. Generally, we keep
the state vector tuples fixed and train the outer-loop with
the algebra method. If the trigger signal is generated at the
i-th outer-loop, we train the action network with the input
χi−1 and the target νi−1 to obtain the control policy π̂i−1.
Then we feed the newly chosen χi into the action network
to obtain ν̂i−1, i.e., ν̂i−1 = π̂i−1(χi). It is paramount to
note that, the trigger signal can be in many forms, i.e., a
fixed interval outer-loop steps, or a pre-specified accuracy.

14938 VOLUME 9, 2021



J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

TABLE 3. Scheme of training the outer-loop with the trigger mechanism.

The trigger signal can also be a variable that changes along
with the outer-loop’s training process. Herein, we consider
a fixed interval outer-loop step. i.e., the trigger interval is a
fixed number σ .
Since we have implemented the trigger mechanism to the

outer-loop training process, the outer-loop can be trained
faster than the policy-based method and the obtained control
policy has a better generalization ability than the algebra
method. Note that both the policy-based method and the alge-
bra method are special cases of the proposed trigger mecha-
nism that the trigger interval is 1 and infinity, respectively.

IV. THE OVERALL NoFt-VI-ADP ALGORITHM
In the process of NoFt-VI-ADP, we first train the model
network with the less evolved GA-BP algorithm and then
train the outer-loop with the proposed trigger mechanism.
After that, we obtain a near-optimal control policy and use
it to control the system directly. To a specific system, if the
dimensions of the state vector and control vector are n1 and
n3, respectively, and the number of the hidden layer neurons
is selected as n2, then the action network is an n1 − n2 − n3
structure. The system decides both n1 and n3, and the
researchers only choose n2, then the time complexity of the
action network is illustrated as O(n1 × n2 + n2 + n2 × n3) =
O(n2) [33], [34]. The NoFt-VI-ADP algorithm scheme is
shown in Fig. 5, and a summary of the procedure is shown
in Algorithm 2.

V. CASE STUDY
In this section, to verify the superiority of the proposed
NoFt-VI-ADP algorithm compared with the
conventional VI-ADP, we apply both of them to a linear
system and a nonlinear system.

A. EXAMPLE 1: DISCRETE-TIME LINEAR SYSTEM
Considering a linear system [22]

x(k + 1) =
[
0 0.4
0.3 1

]
x(k)+

[
0
1

]
u(k), (35)

FIGURE 5. Scheme of the NoFt-VI-ADP algorithm. The model network
parameters are initialized by GA. Whether the action network is trained or
not in each outer-loop depends on the trigger signal.

where x(k) = [x1(k), x2(k)]T . The utility function keeps a
tradeoff between the state trajectory errors and the control
energy consumptions. In this example, the weight matrices
are given as follows:

Q =
[
0.2 0
0 0.2

]
, R = 1. (36)

Then, the utility function is expressed as follows:

U (x(k), u(k)) = 0.2x1(k)2 + 0.2x2(k)2 + u(k)2. (37)

The state space of the system is selected as � =

{(x1, x2) : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}. Hyper-parameters
required in this example are shown in Table 4.

Firstly, we train the model network. We randomly sample
N groups of

(
xs, us, x ′s

)
from the system and train the model

network with both the less evolved GA-BP and the randomly
initialized BP method. The convergence trajectories of the
first column of the less evolved GA-BPmodel network output
layer’s weights are shown in Fig. 6. It shows that the model

FIGURE 6. The model network weights convergence trajectories
of Example 1.

VOLUME 9, 2021 14939



J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

Algorithm 2 The NoFt-VI-ADP Algorithm
Step 1. Initialization: Construct the model network, the critic

network, and the action network. Initialize the parameters
N , p,Q,R, ξ, imax .

Step 2. Dataset of the model network: Sample N groups of
(xs, us, x ′s), from the system to constitute the dataset.

Step 3. Train the model network with GA initialization: Use
GA to initialize the weights and biases of the model
network with Algorithm 1. Then, train the model
network with the input (x, u) and the target x ′.

Step 4. Initialize the outer-loop: Randomly choose a vector
tuple of p state vectors χ0 = {x

(1)
0 , x(2)0 , . . . , x(p)0 } from the

state space. Set the outer-loop iteration index i = 0,
the initial cost V0(χ0) = 0 and calculate the initial control
vector tuple ν0 = {u

(1)
0 , u

(2)
0 , . . . , u

(p)
0 } by (20). Train

the critic network with the input χ0 and the target V0(χ0).
Calculate ĝ0(χ0) according to (27).

Step 5. i = i+ 1.
step 6. The trigger mechanism: If there is no trigger signal,

set χi = χi−1, ν̂i−1 = νi−1, ĝi(χi) = ĝi−1(χi−1) and
go to step 7. Otherwise, train the action network with the
input χi−1 and the target νi−1 to get the control policy
π̂i−1. Then randomly choose a new state vector tuple
χi from the state space, and feed χi into the action network
to obtain the corresponding control vector tuple
ν̂i−1 = π̂i−1(χi). Calculate ĝ(χi) according to (27).

Step 7. Train the critic network: Feed χi and νi−1 into the
model network to get χ ′i . Feed χ

′
i into the critic network

to get V̂i−1(χ ′i ), and calculate the target of critic network
Vi(χi) through (28). Train the critic network with the input
χi and the target Vi(χi).

Step 8. Update the control vector tuple: Calculate νi with (34).
Step 9. The terminal condition: If i = imax , or

max
(∣∣∣V̂i(χi)− V̂i−1(χi)∣∣∣) ≤ ξ,

go to Step 10; otherwise, go to Step 5.
Step 10. Train the action network: Train the action network

with the input χi and the target νi to obtain the control
policy πNoFt .

Step 11. Finish the algorithm.

network has converged in 200 iteration steps. The model net-
work performance comparison of these twomethods is shown
in Fig. 7. As shown in the figure, at the end of the training
process, the MSE of the randomly initialized BP method
is 10−7, whereas it is 10−10 for the less evolved GA-BP.
It indicates that the model network trained by the less evolved
GA-BP can approximate the dynamics of the system more
accurately than that of randomly initialized BP.

Thereafter, we train the outer-loop corresponding
to the former two trained model networks with the
trigger-mechanism and the policy-based algorithm to obtain
the control policies πNoFt and πVI. To compare the perfor-
mance of these two control policies, we randomly choose

FIGURE 7. The model network performance comparison of Example 1.

10 groups of initial state vectors from the state space. To each
group of these state vectors, we use πNoFt and πVI to control
the system for M time steps and calculate the multistep
lookahead cost as follows [18]

M∑
j=0

U (x(k + j), u(k + j)). (38)

In this way, we obtain the cost of πNoFt represented as VNoFt
and the cost of πVI represented as VVI, respectively. Since
it is a linear system and the utility function is in a quadratic
form, we can solve a corresponding Algebraic Riccati Equa-
tion (ARE) to obtain the optimal control policy

π∗(x) = [−0.1252,−0.4488]x. (39)

And the optimal cost

V ∗ = xT
[
0.2376 0.1346
0.1346 0.7165

]
x. (40)

Then we subtract V ∗ from VVI and VNoFt. The results are
shown in Fig. 8, where NoFt-σ means the trigger interval
of NoFt-VI-ADP is σ . As we can see from the figure, all
the NoFt methods can approximate the optimal control better
than VI-ADP. The best one is NoFt-4 in this example. When
the trigger interval is 4, it not only avoids too many times
of action network approximation errors in every outer-loop
training step but also explores enough different state vectors
in the state space. To the initial state x0 = [1,−1]T , the state
and control trajectories belong to πNoFt-4 and π∗ are shown
in Fig. 9 and Fig. 10, which imply that πNoFt-4 stabilizes
the system and its state and control trajectories are generally
coincide with that of π∗.
Finally, we compare the time consumption between NoFt-

VI-ADP and VI-ADP. The algorithms are implemented on a
computer with an Intel i7 CPU. As shown in Fig. 11, although
NoFt-VI-ADP costs more time than VI-ADP to train the
model network, it costs less in the outer-loop training process
when σ is bigger than 1. On the whole, the time consumption

14940 VOLUME 9, 2021



J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

FIGURE 8. The cost approximation errors comparisons of Example 1.
NoFt-σ means the trigger interval of NoFt-VI-ADP is σ . The differences are
obtained by subtracting the optimal costs V ∗ from the corresponding
near-optimal costs.

FIGURE 9. The state trajectories comparisons of Example 1 with σ = 4.

FIGURE 10. The control trajectory comparison of Example 1 with σ = 4.

of NoFt-VI-ADP is shorter than VI-ADP. i.e., NoFt-VI-ADP
can be trained faster than VI-ADP.

The numerical results illustrate that, compared with the
conventional VI-ADP, NoFt-VI-ADP can obtain a nearer
optimal control policy and be trained faster.

FIGURE 11. The time consumption comparisons of Example 1.

B. EXAMPLE 2: DISCRETE-TIME NONLINEAR SYSTEM
The nonlinear example is chosen from [32] with modifica-
tions. The system functions are given as follows:[
x1(k + 1)
x2(k + 1)

]
=

[
0.9x1(k)+ 0.1x2(k) cos(x1(k))

−0.05x1(k)+ 0.95x2(k)+ 0.1x2(k) sin(x1(k))

]
+

[
−0.1
0

]
u(k), (41)

and the utility function is in a quadratic form with

Q =
[
0.1 0
0 0.1

]
, R = 0.1. (42)

Then, the utility function is expressed as follows:

U (x(k), u(k)) = 0.1x1(k)2 + 0.1x2(k)2 + 0.1u(k)2. (43)

The state space of the system is selected as � =

{(x1, x2) : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}.We randomly choose
N groups of

(
xs, us, x ′s

)
from the system as the training

set. Hyper-parameters required in this example are shown
in Table 5.

TABLE 4. Parameters of the linear system.

First, we train themodel networkwith both the less evolved
GA-BP algorithm and the randomly initialized BP algorithm.

VOLUME 9, 2021 14941



J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

TABLE 5. Parameters of the nonlinear system.

The convergence trajectories of the first column of the less
evolved GA-BP model network output layer’s weights are
shown in Fig. 12. It shows that the model network has con-
verged in 200 iteration steps. The model network perfor-
mance comparison is shown in Fig. 13. As shown, at the end
of the training process, the MSE of the randomly initialized
BP algorithm is 10−6, whereas it is 10−8 for the less evolved
GA-BP algorithm. This implies that considering the nonlinear
system, the less evolved GA-BP can approximate its dynam-
ics better than the randomly initialized BP algorithm.

FIGURE 12. The model network weights convergence trajectories of
Example 2.

After that, we train the outer-loopwith the trigger-mechanism
and the policy-based algorithm to obtain πNoFt and πVI,
respectively. Then we use these control policies to control
the system to obtain their corresponding costs VNoFt and
VVI. To compare the approximation accuracy of πNoFt and
πVI, we subtract VNoFt from VVI. The results are shown
in Fig. 14. It shows that all the difference is positive, which
means that πNoFt approximates the optimal control policy
better than πVI. In this example, among all the trigger
intervals, the best trigger interval is 8. To the initial state

FIGURE 13. The model network performance comparison of Example 2.

FIGURE 14. The cost differences between VI-ADP and NoFt-VI-ADP of
Example 2. NoFt-σ means the trigger interval of NoFt-VI-ADP is σ . To each
group of the initial state vector, the difference is obtained by subtracting
the cost of NoFt-VI-ADP from the corresponding cost of VI-ADP.

FIGURE 15. The NoFt-VI-ADP state trajectories of Example 2 with σ = 8.

x0 = [1,−1]T , the state and control trajectories of πNoFt-8
are shown in Fig. 15 and Fig. 16, which imply that πNoFt-8
stabilizes the system.

14942 VOLUME 9, 2021



J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

FIGURE 16. The NoFt-VI-ADP control trajectory of Example 2 with σ = 8.

FIGURE 17. The time consumption comparisons of Example 2.

Besides, the time consumption comparison between
NoFt-VI-ADP andVI-ADP is demonstrated in Fig. 17. As we
can see, when σ is bigger than 1, the total time consumptions
of NoFt-VI-ADP are less than VI-ADP.

The numerical results illustrate that considering the nonlin-
ear system, the proposed NoFt-VI-ADP can generate a more
accurate control policy and be trained faster than VI-ADP.

VI. CONCLUSION
In this research, we proposed a nearer optimal and faster
trained VI-ADP algorithm NoFt-VI-ADP, for discrete-time
nonlinear systems. Before training themodel network, we use
a less evolved GA to evolve the weights and biases for a
few generations, which can improve the approximation accu-
racy of the model network. Different from the conventional
VI-ADP algorithm that trains the action network in each
outer-loop, we proposed a trigger mechanism to decide when
to train the action network, which can save much training
time. The simulation results show that the proposed algorithm
can generate a nearer optimal control policy and save more
training time than the conventional VI-ADP algorithm.

The proposed NoFt-VI-ADP algorithm relies on the com-
plete information about the state of the investigated system,

and it works only on offline ADP. The implementation of the
proposed methods on partial observation systems and online
optimal control problems will be researched in our future
works.

REFERENCES
[1] T. Nguyen-Van, ‘‘A discrete-time state estimation for nonlinear sys-

tems with noises,’’ IEEE Access, vol. 8, pp. 147089–147096, 2020, doi:
10.1109/ACCESS.2020.3014377.

[2] M. Ha, D. Wang, and D. Liu, ‘‘Generalized value iteration for discounted
optimal control with stability analysis,’’ Syst. Control Lett., vol. 147,
Jan. 2021, Art. no. 104847, doi: 10.1016/j.sysconle.2020.104847.

[3] Y. Wang, H. R. Karimi, H.-K. Lam, and H. Yan, ‘‘Fuzzy output tracking
control and filtering for nonlinear discrete-time descriptor systems under
unreliable communication links,’’ IEEE Trans. Cybern., vol. 50, no. 6,
pp. 2369–2379, Jun. 2020, doi: 10.1109/TCYB.2019.2920709.

[4] A. Heydari, ‘‘Stability analysis of optimal adaptive control using value
iteration with approximation errors,’’ IEEE Trans. Autom. Control, vol. 63,
no. 9, pp. 3119–3126, Sep. 2018, doi: 10.1109/TAC.2018.2790260.

[5] Q.Wei, F. L. Lewis, D. Liu, R. Song, andH. Lin, ‘‘Discrete-time local value
iteration adaptive dynamic programming: Convergence analysis,’’ IEEE
Trans. Syst., Man, Cybern. Syst., vol. 48, no. 6, pp. 875–891, Jun. 2018,
doi: 10.1109/TSMC.2016.2623766.

[6] P. J. Werbos, ‘‘Advanced forecasting methods for global crisis warning
and models of intelligence,’’ General Syst. Yearbook, vol. 22, pp. 25–38,
Jan. 1977.

[7] J. Liang, G. K. Venayagamoorthy, and R. G. Harley, ‘‘Wide-area measure-
ment based dynamic stochastic optimal power flow control for smart grids
with high variability and uncertainty,’’ IEEE Trans. Smart Grid, vol. 3,
no. 1, pp. 59–69, Mar. 2012, doi: 10.1109/TSG.2011.2174068.

[8] D. V. Prokhorov and D. C. Wunsch, ‘‘Adaptive critic designs,’’ IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997, doi: 10.1109/
72.623201.

[9] X. Xu, Z. Hou, C. Lian, and H. He, ‘‘Online learning control using
adaptive critic designs with sparse kernel machines,’’ IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 24, no. 5, pp. 762–775, May 2013, doi:
10.1109/TNNLS.2012.2236354.

[10] R. Enns and J. Si, ‘‘Helicopter trimming and tracking control using direct
neural dynamic programming,’’ IEEE Trans. Neural Netw., vol. 14, no. 4,
pp. 929–939, Jul. 2003, doi: 10.1109/TNN.2003.813839.

[11] J. Si and Y.-T. Wang, ‘‘On-line learning control by association and
reinforcement,’’ IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001, doi: 10.1109/IJCNN.2000.861307.

[12] M. Geist and O. Pietquin, ‘‘Algorithmic survey of parametric value func-
tion approximation,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 6,
pp. 845–867, Jun. 2013, doi: 10.1109/TNNLS.2013.2247418.

[13] K. Zhang, H. Zhang, Y. Mu, and C. Liu, ‘‘Decentralized tracking opti-
mization control for partially unknown fuzzy interconnected systems via
reinforcement learning method,’’ IEEE Trans. Fuzzy Syst., early access,
Jan. 13, 2020, doi: 10.1109/TFUZZ.2020.2966418.

[14] K. Zhang, H.-g. Zhang, Y. Cai, and R. Su, ‘‘Parallel optimal tracking
control schemes for mode-dependent control of coupled Markov jump
systems via integral RL method,’’ IEEE Trans. Autom. Sci. Eng., vol. 17,
no. 3, pp. 1332–1342, Jul. 2020, doi: 10.1109/TASE.2019.2948431.

[15] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, ‘‘Adap-
tive optimal control for continuous-time linear systems based on pol-
icy iteration,’’ Automatica, vol. 45, no. 2, pp. 477–484, Feb. 2009, doi:
10.1016/j.automatica.2008.08.017.

[16] D. Vrabie and F. L. Lewis, ‘‘Generalized policy iteration for continu-
ous time systems,’’ in Proc. Int. Joint Conf. Neural Netw., Jun. 2009,
pp. 3224–3231, doi: 10.1109/IJCNN.2009.5178964.

[17] K. G. Vamvoudakis and F. L. Lewis, ‘‘Online actor–critic algo-
rithm to solve the continuous-time infinite horizon optimal control
problem,’’ Automatica, vol. 46, no. 5, pp. 878–888, May 2010, doi:
10.1016/j.automatica.2010.02.018.

[18] D. Liu and Q. Wei, ‘‘Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014, doi: 10.1109/
TNNLS.2013.2281663.

[19] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, ‘‘Discrete-time nonlinear
HJB solution using approximate dynamic programming: Convergence
proof,’’ IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4,
pp. 943–949, Aug. 2008, doi: 10.1109/TSMCB.2008.926614.

VOLUME 9, 2021 14943

http://dx.doi.org/10.1109/ACCESS.2020.3014377
http://dx.doi.org/10.1016/j.sysconle.2020.104847
http://dx.doi.org/10.1109/TCYB.2019.2920709
http://dx.doi.org/10.1109/TAC.2018.2790260
http://dx.doi.org/10.1109/TSMC.2016.2623766
http://dx.doi.org/10.1109/TSG.2011.2174068
http://dx.doi.org/10.1109/72.623201
http://dx.doi.org/10.1109/72.623201
http://dx.doi.org/10.1109/TNNLS.2012.2236354
http://dx.doi.org/10.1109/TNN.2003.813839
http://dx.doi.org/10.1109/IJCNN.2000.861307
http://dx.doi.org/10.1109/TNNLS.2013.2247418
http://dx.doi.org/10.1109/TFUZZ.2020.2966418
http://dx.doi.org/10.1109/TASE.2019.2948431
http://dx.doi.org/10.1016/j.automatica.2008.08.017
http://dx.doi.org/10.1109/IJCNN.2009.5178964
http://dx.doi.org/10.1016/j.automatica.2010.02.018
http://dx.doi.org/10.1109/TNNLS.2013.2281663
http://dx.doi.org/10.1109/TNNLS.2013.2281663
http://dx.doi.org/10.1109/TSMCB.2008.926614


J. Hu et al.: Nearer Optimal and Faster Trained VI-ADP for Discrete-Time Nonlinear Systems

[20] T. Dierks, B. T. Thumati, and S. Jagannathan, ‘‘Optimal control of
unknown affine nonlinear discrete-time systems using offline-trained neu-
ral networks with proof of convergence,’’ Neural Netw., vol. 22, nos. 5–6,
pp. 851–860, Jul. 2009, doi: 10.1016/j.neunet.2009.06.014.

[21] H. Zhang, Y. Luo, and D. Liu, ‘‘Neural-Network-Based near-optimal
control for a class of discrete-time affine nonlinear systems with control
constraints,’’ IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1490–1503,
Sep. 2009, doi: 10.1109/TNN.2009.2027233.

[22] H. Li and D. Liu, ‘‘Optimal control for discrete-time affine non-linear
systems using general value iteration,’’ IET Control Theory Appl., vol. 6,
no. 18, pp. 2725–2736, Dec. 2012, doi: 10.1049/iet-cta.2011.0783.

[23] Q. Wei, D. Liu, and Q. Lin, ‘‘Discrete-time local value iteration adap-
tive dynamic programming: Admissibility and termination analysis,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 11, pp. 2490–2502,
Nov. 2017, doi: 10.1109/TNNLS.2016.2593743.

[24] C. Li, J. Ding, C. Liu, and F. L. Lewis, ‘‘A novel on-line VI-ADP for
nonlinear discrete-time Systems*,’’ in Proc. IEEE 15th Int. Conf. Control
Autom. (ICCA), Jul. 2019, pp. 1176–1190.

[25] B. Luo, Y. Yang, H.-N. Wu, and T. Huang, ‘‘Balancing value iteration and
policy iteration for discrete-time control,’’ IEEE Trans. Syst., Man, Cybern.
Syst., vol. 50, no. 11, pp. 3948–3958, Nov. 2020.

[26] H. Jing, X. Xu, and J. Wang, ‘‘Research on genetic neural network algo-
rithm and its application,’’ in Proc. Int. Conf. Virtual Reality Intell. Syst.
(ICVRIS), Aug. 2018, pp. 223–226.

[27] X. Dai, J. Wang, and J. Zhao, ‘‘Research on multi-robot task allocation
based on BP neural network optimized by genetic algorithm,’’ in Proc. 5th
Int. Conf. Inf. Sci. Control Eng. (ICISCE), Jul. 2018, pp. 478–481.

[28] Q. Jiang, R. Huang, Y. Huang, S. Chen, Y. He, L. Lan, and C. Liu,
‘‘Application of BP neural network based on genetic algorithm optimiza-
tion in evaluation of power grid investment risk,’’ IEEE Access, vol. 7,
pp. 154827–154835, 2019, doi: 10.1109/ACCESS.2019.2944609.

[29] R. K. Belew, J. Mcinerney, and N. N. Schraudolph, ‘‘Evolving networks:
Using genetic algorithm with connectionist learning,’’ in Proc. ICVIRS,
San Diego, CA, USA: Univ. California, Feb. 1991, p. 547.

[30] D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, ‘‘Value iteration ADP
for discrete-time nonlinear systems,’’ in Adaptive Dynamic Programming
With Applications in Optimal Control. Cham, Switzerland: Springer, 2017,
pp. 37–87.

[31] F. L. Lewis and V. L. Syrmos, Optimal Control, vol. 1, no. 2. New York,
NY, USA: Wiley, 1995, pp. 1045–1206.

[32] L. Dong, J. Yan, X. Yuan, H. He, and C. Sun, ‘‘Functional nonlin-
ear model predictive control based on adaptive dynamic programming,’’
IEEE Trans. Cybern., vol. 49, no. 12, pp. 4206–4218, Dec. 2019, doi:
10.1109/TCYB.2018.2859801.

[33] M. L. Lamali, N. Fergani, and J. Cohen, ‘‘Algorithmic and complex-
ity aspects of path computation in multi-layer networks,’’ IEEE/ACM
Trans. Netw., vol. 26, no. 6, pp. 2787–2800, Dec. 2018, doi: 10.1109/
TNET.2018.2878103.

[34] M. Bianchini and F. Scarselli, ‘‘On the complexity of neural network
classifiers: A comparison between shallow and deep architectures,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 25, no. 8, pp. 1553–1565, Aug. 2014,
doi: 10.1109/TNNLS.2013.2293637.

JUNPING HU was born in Shaoyang, China,
in 1965. He received the B.S., M.S., and Ph.D.
degrees in mechanical engineering from Central
South University, Changsha, China, in 1986, 1989,
and 1996, respectively. He is currently a Profes-
sor with Central South University. His current
research interests include intelligent control theory
and hydraulic technology.

GEN YANG was born in Zhangjiajie, China,
in 1989. He received the B.S. degree in mechanical
design, manufacturing, and automation from the
China University of Geosciences, Wuhan, China,
in 2013, and the M.S. degree in mechanical engi-
neering from Central South University, Changsha,
China, in 2016, where he is currently pursuing
the Ph.D. degree in mechanical engineering. His
research interests include adaptive dynamic pro-
gramming and reinforcement learning.

ZHICHENG HOU (Member, IEEE) received the
Ph.D. degree in control engineering from the
Université de Technologie de Compiègne, Com-
piègne, France, in 2016. He is currently an Asso-
ciate Professor with the Guangzhou Institute of
Advanced Technology, Chinese Academy of Sci-
ences, Guangzhou, China. His current research
interests include nonlinear control and multirobot
systems.

GONG ZHANG (Member, IEEE) was born in
Xiaogan, China, in 1979. He received the Ph.D.
degree in mechanical-electro-hydraulic hybrid
driving science from Southwest Jiaotong Univer-
sity, Chengdu, China, in 2009. He has served as
a Senior Engineer with Bosch Automotive Prod-
ucts (Changsha) Company Ltd., from 2009 to
2011. He joined the Guangzhou Institute of
Advanced Technology, Chinese Academy of Sci-
ences, in 2011, where he is currently an Associate

Professor. His main research interests include multi-robot intelligent collab-
oration and human–robot collaborative control. He was granted the Jiangsu
Double-Plan Talent, China, in 2016, and theGuangzhouHigh-Caliber Talent,
China, in 2019.

WENLIN YANG (Member, IEEE) received
the Ph.D. degree in machine-electronic from
the Shenyang Institute of Automation, Chinese
Academy of Sciences, Shenyang, China, in 2009.
He is currently an Associate Professor with
the Guangzhou Institute of Advanced Technol-
ogy, Chinese Academy of Sciences, Guangzhou,
China. His current research interests include new
underwater robot for inspection, maintenance and
repair, mobile, and operating robot.

WEIJUN WANG received the Ph.D. degree in
mechanical engineering from Hanyang Univer-
sity, Seoul, South Korea, in 2012. He is cur-
rently a Professor and the Center Chief of
the Guangzhou Institute of Advanced Technol-
ogy, Chinese Academy of Sciences, Guangzhou,
China, and the Chief Executive Officer of Shen-
zhen CAS Derui Intelligent Technology Com-
pany Ltd., Shenzhen, China. His research inter-
ests include intelligent robots, human–computer
interaction, and mechanical design.

14944 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.neunet.2009.06.014
http://dx.doi.org/10.1109/TNN.2009.2027233
http://dx.doi.org/10.1049/iet-cta.2011.0783
http://dx.doi.org/10.1109/TNNLS.2016.2593743
http://dx.doi.org/10.1109/ACCESS.2019.2944609
http://dx.doi.org/10.1109/TCYB.2018.2859801
http://dx.doi.org/10.1109/TNET.2018.2878103
http://dx.doi.org/10.1109/TNET.2018.2878103
http://dx.doi.org/10.1109/TNNLS.2013.2293637

