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ABSTRACT Polymers, like vulcanized rubber, bakelite, and poly-methyl methacrylate (PMMA), are widely
utilized as denture based materials, and their prominence has been nothing short of excellent. Recently,
Ahmad et al. [Open Chemistry 17(2019): 663-670] computed bond-additive invariants (BAIs) for the
molecular graph of bakelite. In the same paper, they proposed the comparative study of the aforementioned-
polymers using BAIs. This paper develops molecular graphs of vulcanized rubber and PMMA to estimate
M-Polynomial and the generalized Zagreb index. We derive numerous BAIs such as the first and the second
Zagreb, Re-defined Zagreb, general Randić, first general Zagreb, and symmetric division degree invariants
from the generalized Zagreb index. Moreover, we obtain the modified second Zagreb, inverse Randić,
harmonic, inverse sum, and augmented Zagreb invariants from the M-Polynomials. Besides, we compute
the atom bond connectivity, its fourth version ABC4, the geometric arithmetic, its fifth version GA5, and the
Sanskruti indices. Finally, we provide insight into the numerical comparison among several BAIs to establish
a relation for the underlying polymers’ various physicochemical properties.

INDEX TERMS Bond-additive invariants, denture basedmaterials, molecular descriptors, molecular graphs,
QSAR/QSPR, synthetic polymers.

I. INTRODUCTION
Polymers (macromolecule) either natural (carbohydrates,
proteins, nucleic acids) or synthetic (plastics, elastomers,
composites) are crucial for civilized life. Polymers play a vital
role in drug delivery and prosthodontic materials, and their
prominence has been nothing short of excellent. So, the selec-
tion of polymer is of key importance in drug and denture base
manufacturing. While selecting polymer care has to be taken
regarding its toxicity, drug compatibility, and degradation
pattern. The properties of polymeric networks (polymers)
rely not only upon the chemical structure but on how the
chains of isomers are linked together to develop a network [1].
There are mainly four types of dental materials: metals,
polymers, composites, and ceramics. Although complete den-
tures are formally created with some polymers [2], [3], and
expensive metal alloys [4]. However, the advantage of poly-
meric material over all other materials is due to their cost-
effectiveness. The development of polymeric based denture
materials, see Figure (1), is the result of the contemporary
needs of ideal material and for that matter, the initiation
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FIGURE 1. Advancement of polymers as denture base material.

of cutting-edge technologies [5]–[8]. This trend took almost
100 years to reach from vulcanite (vulcanized rubber) to
acrylic (poly-methyl methacrylate).

In the recent past, graph theory played a phenomenal role
in mathematical chemistry, and the resulting field is known
as chemical graph theory (CGT), which uses graph-theoretic
techniques and methods to model and get insights into the
properties of a chemical compound. In mathematical chem-
istry, drugs, polymers, and almost all chemical compounds
are oftenmodelled as differentω-cyclic, polygonal structures,
bipartite graphs, trees, and nanostructures. In CGT, a topo-
logical invariant (TI) is a type of molecular descriptor that is
computed from the 2D representation (molecular graph) of
a molecule. Various types of degree, distance, spectral, and
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counting polynomials based topological invariants of chem-
ical graphs are developed (IUPAC-International Union for
Pure and Applied Chemistry) in literature. Numerous studies
reveal a correlation between the physicochemical properties
such as boiling point, the melting point, similarity, stability,
connectivity, and chirality of the chemical compounds and
their TIs. TIs, being input in QSAR/QSPR modelling, play a
crucial role in developing a better understanding of the com-
plexity of molecules as well as biological, and physicochemi-
cal properties of the underlying chemical compound [9]–[16].
Discrete Adriatic indices is a family of 148 BAIs defined by
Vukičević [17]. These BAIs were tested on the benchmark
datasets provided by the IAMC (International Academy of
Mathematical Chemistry), and 20 of them were reported as a
significant predictor of physicochemical properties. Among
all degree-based TIs, a considerable and most important
class of descriptors is bond-additive, i.e., their computation
depends upon the sum of edges. Vukičević and Gašperov [18]
provide the general expression for bond-additive invariants
(BAIs) and is given as:

Des(0) =
∑

vw∈E(0)

f (0, vw) = θ (dv, dw). (1)

where E(0) is the edge set and θ : N × N → R is some
function of degrees of vertices.
A graph 0 is defined as an ordered pair (V (0),E(0)) where
V (0) is non-empty set of vertices and E(0) consists of
unordered pairs of distinct elements of V (0) (connections)
called edges. Two vertices u and v belonging to V (0) are
said to be adjacent if there is an edge uv between them. Two
edges e1 and e2 from E(0) are incident if they share a vertex.
Moreover, a vertex v and an edge e are incident if v is one
of the vertives e connects . The number of adjacent vertices
with v, is called vertex-degree and is denoted by dv. The
smallest and largest degree of v is denoted by δ(v) and 1(v),
respectively. The vertex set and the edge set partition of any
graph 0 can generally be defined as:

Vd = {v ∈ V (0) | dv = d}. (2)

Eij(0) = {vw ∈ E(VRnm) | (dv, dw) = (i, j)}. (3)

Now, we will define some specific and significant BAIs
related to our study.
Ivan Gutman and Trinajstić [19] introduced two BAIs called
the first and the second Zagreb indices. Soon after, these BAIs
were used to study ZE-isomerism, molecular complexity, and
the structure-dependency of the total π -electron of molecular
graph. First, second, and modified Zagreb indices are defined
as follows:

M1(0) =
∑

uv∈E(0)

(du + dv). (4)

M2(0) =
∑

uv∈E(0)

(dudv). (5)

mM2(0) =
∑

uv∈E(0)

1
(dudv)

. (6)

Milan Randić introduced a BAI which is known as Randić
index [20]. This index is the most studied vertex degree-
based BAI among others [21] and [22]. It is an outstanding
BAI in QSPR/QSAR analysis, and suitable for measuring the
extent of branching of the carbon atom skeleton of saturated-
hydrocarbons. Conventionally the Randić index for a molec-
ular graph 0 is defined as:

R(0) =
∑

vw∈E(0)

1
√
dvdw

. (7)

Böllöbás and Erdös [23] introduced general Randić index and
is defined as:

Rα(0) =
∑

vw∈E(0)

(
dvdw

)α
, α ∈ R. (8)

In [24], Zhou et al. offered an index known as generalized
sum-connectivity index which is defined as:

χα(0) =
∑

vw∈E(0)

(
dv + dw

)α
, α ∈ R. (9)

We get sum-connectivity index (SCI) χ(−12 ) for α = −1
2

and ‘‘hyper Zagreb index" [25] for α = 2. SCI gives high
correlation coefficient (0.99) for alkanes.
Li and Zheng [26] instigated the idea of first general Zagrab
index and is given by:

Mα
1 =

∑
v∈V (0)

(
dv
)α
=

∑
vw∈E(0)

(
dα−1v + dα−1w

)
. (10)

The concept of generalized Zagreb index was established by
Azari and Iranmanesh [27] and defined as:

Zr,s(0) =
∑

vw∈E(0)

(
d rv d

s
w + d

s
vd

r
w
)
, r, s ∈ Z+. (11)

Estrada et al. [28] initiated the famous atom-bond connectiv-
ity index ABC(0) and established its importance during study
of thermodynamic properties (stability) of alkanes [29], [30].
Geometric-arithmetic index GA(0) is an other widely used
degree-based BAI offered by Vukičević [31]. The formulas
of these indices are given as:

ABC(0) =
∑

vw∈E(0)

√
dv + dw − 2

dvdw
. (12)

GA(0) =
∑

vw∈E(0)

2
√
dvdw

dv + dw
. (13)

For the interested reader, we refer survey articles on the
Randić index and geometric-arithmetic index of graphs [32]
and [33]. The fourth version of atom-bond connectiv-
ity index ABC4 introduced by Ghorbani et al. [34],
fifth version of geometric-arithmetic index GA5 introduced
by Graovac et al. [35] and Sanskruti index proposed by
Hosamani [36] are based on sum of degree of vertices at unit
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distance from the end vertices of each edge. Their formulas
are given as:

ABC4(0) =
∑

vw∈E(0)

√
Sv + Sw − 2

SvSw
. (14)

GA5(0) =
∑

vw∈E(0)

2
√
SvSw

Sv + Sw
. (15)

SI (0) =
∑

vw∈E(0)

(
SvSw

Sv + Sw − 2

)3

. (16)

Another important BAI of molecular graph is called symmet-
ric division deg index SDD(0) and is defined as:

SDD(0) =
∑

vw∈E(0)

(
d2v + d

2
w

dvdw

)
. (17)

Few more BAIs of our interest having utmost importance are
defined below which include harmonic index (HI), inverse
sum index (ISI), and augmented Zagreb index (AZI).

HI (0) =
∑

vw∈E(0)

(
2

dv + dw

)
. (18)

ISI (0) =
∑

vw∈E(0)

(
dvdw

dv + dw

)
. (19)

AZI (0) =
∑

vw∈E(0)

(
dvdw

dv + dw − 2

)3

. (20)

In 2013, Ranjini et al., [37] initiated the concept of first, sec-
ond, and third Re-defined Zagreb indices and their formulas
are as follows:

ReZM1(0) =
∑

vw∈E(0)

(
dv + dw
dvdw

)
. (21)

ReZM2(0) =
∑

vw∈E(0)

(
dvdw

dv + dw

)
. (22)

ReZM3(0) =
∑

vw∈E(0)

(dvdw)(dv + dw). (23)

Clearly, ReZM1 = n and being constant it does not qualifies
the criteria of a TI. Moreover, ReZM2 is identical with pre-
viously defined TI called ISI. So, ReZM3(0) is the only new
TI and we call it Re-defined Zagreb index while using the
notation ReZM (0).
In the Table (1), we sum up the relation of GZI with certain
well known BAIs.

Deutsch and Klavžar [38] introduced M-polynomial for
graph 0 = (V ,E) as follows:

M (0; x, y) = f (x, y) =
∑
i≤j

mij(0)x iyj. (24)

wheremij(0) represent number of edges vw ∈ E(0) such that
{dv, dw} = {i, j}.
Some promising topological indices are worked out with the
help of M-polynomial and are depicted in the Table (2).

TABLE 1. Some special cases of generalized-Zagreb index.

TABLE 2. Formulae of certain essential topological descriptors in relation
with M-polynomial.

where DxM = x ∂M
∂x , DyM = y ∂M

∂y ,

SxM =
x∫
0

M (t,y)
t dt, SyM =

y∫
0

M (x,t)
t dt,

J (M (x, y)) = M (x, x), QαM = xαM .
Note: all formulae in Table (2) will be evaluated at x = y = 1.

Around 1947, theoretical chemists conceived that TIs
obtained from the molecular graph encode information
and properties of chemical compounds. Camarda and
Maranas [39] employed connectivity indices to design and
produce the polymers related to some optimal property.
We know that dendrimers are considered the ‘‘polymers of
the 21st century" and their popularity increased considerably,
which was revealed through the scientific publications and
patents registered. Wang et al. [40], presented the explicit
formula of the k-connectivity index for the class of polymeric
networks, namely, dendrimer and nanostars. Ali et al. [41]
computed general formulae of certain degree-based TIs for
some conjugated polymers (polyphenylene dendrimer nanos-
tars). Kang et al., Gao et al., and Liu et al. [42]–[44] investi-
gated topological properties of 2-D Silicon-Carbons, certain
dendrimers, and nanotubes, respectively. Shao et al. [45]
characterized the chemically oriented graphs with a maxi-
mum value of ABC index. Gao et al. [46] computed the
entropy and enthalpy per unit cell for two types of copper
oxides and compared them with ABC and Sanskruti indices.
Several mathematical, theoretical, and chemical aspects of
diverse TIs for molecular graphs of various chemical struc-
tures have been carried out in [47]–[54]. We intend to
develop molecular graphs of three pertinent polymers, com-
monly known as vulcanized rubber, bakelite, and poly-methyl
methacrylate (PMMA), to estimate several BAIs to examine
their structural properties.
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FIGURE 2. Vulcanization of natural rubber.

II. VULCANIZED RUBBER NETWORK
Vulcanite (vulcanized rubbers) is produced by the addition
reaction of polyisoprene (natural rubber) with sulfur under
steam pressure. The quantity of sulfur alters the hardness of
vulcanite by forming cross-links between the polyisoprene
chains to form a stiff, thick, and durable solid [55]. Vulcan-
ized rubbers manifest superior physicochemical properties
as compared to the natural rubbers. Vulcanite, introduced
by Charles Goodyear in 1839, was a pioneer polymer and
established to be a successful denture basematerial for almost
30 years. The vulcanite was acclaimed widely due to its
accurate fitting, and affordable cost [56]. Figure (2) illustrates
the vulcanization process during which polyisoprene chains
([C5H8]n) crosslinked with disulfide atoms [3]. Figure (3)
represents the (m, n) dimensional molecular graph of vulcan-
ite, where m is the number of rows having n dodecagons in
each row and is denoted by VRnm.

A. RESULTS FOR VULCANIZED RUBBER NETWORK VRn
m

The subsequent lemma exhibit some basic attributes of vul-
canized rubber network VRnm that are essential rather of key
importance for forthcoming results.
Lemma 1: Let VRnm be the vulcanized rubber network

illustrated in Figure (3) ((m,n)-dimensional molecular graph)
then total number of vertices and edges are 8mn+8m+6n+6
and 10mn+ 9m+ 6n+ 5, respectively.

Proof:We use the vertex set and edge set partition given
by Equations (2) and (3) for molecular graph VRnm. Now by
inspecting molecular graph VRnm, it can easily be observed
that there are four type of vertices having valencies 1, 2,
3, and 4 i.e., δ(VRnm) = 1 and 1(VRnm) = 4. Now using
simple counting technique, we obtain the vertex partition
and is given as follows. |V1| = 2m + 2n + 4, |V2| =
6mn + 4m + 2n, |V3| = 2n + 2, |V4| = 2mn + 2m.
Consequently, total number of vertices of VRnm, denoted by
|V (VRnm)| = 8mn+ 8m+ 6n+ 6.
Likewise, we recognize seven types of edges in VRnm relying
upon valencies of end vertices of each edge. We employ

FIGURE 3. Hydrogen depleted molecular graph of VRn
m.

TABLE 3. Edge partitioning on the basis of end vertex degrees of VRn
m.

combinatorial counting technique on network to achieve edge
partitioning as |E13| = 2, |E14| = 2m + 2n + 2, |E22| =
3mn+2m+2n, |E23| = 4n+2, |E24| = 6mn+4m−2n−2,
|E34| = 2n + 2, |E44| = mn + m − n − 1. As a result, total
number of edges of vulcanized rubber network, denoted by
|E(VRnm)| = 10mn+ 9m+ 6n+ 5. For the sake of simplicity
and further use, edge partition is illustrated in the Table (3).
Theorem 1: Let VRnm be a (m, n)-dimensional vulcanized

rubber network, then the generalized-Zagreb index Zr,s(VRnm)
is given by the formula:

Zr,s(VRnm) = (3+ 3× 2s + 3× 2r + 2r+s)2r+s+1mn

+
(
22s + 22r + 2r+s+1 + 22s+r+1 + 22r+s+1

+22(r+s)
)
2m+

(
22s(1− 2r + 3r )

+ 22r (1− 2s + 3s)+ 2r+s(2− 2r+s)

+ 2r+13s + 2s+13r
)
2n+ 2

(
3s(1+ 2r + 22r )

+ 3r (1+ 2s + 22s)+ 22s(1− 2r )

+ 22r (1− 2s − 22s)
)
.
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Proof: Using Table (3) and the formula given in
Equation (11), we compute the required result as follows:

Zr,s(VRnm) =
∑

vw∈E(VRnm)

(d rv d
s
w + d

r
wd

s
v)

=

∑
vw∈E13

(d rv d
s
w+d

r
wd

s
v)+

∑
vw∈E14

(d rv d
s
w+d

r
wd

s
v)

+

∑
vw∈E22

(d rv d
s
w+d

r
wd

s
v)+

∑
vw∈E23

(d rv d
s
w+d

r
wd

s
v)

+

∑
vw∈E24

(d rv d
s
w+d

r
wd

s
v)+

∑
vw∈E34

(d rv d
s
w + d

r
wd

s
v)

+

∑
vw∈E44

(d rv d
s
w + d

r
wd

s
v)

= 2(1r3s + 3r1s)+ (2m+ 2n+ 2)(1r4s + 4r1s)

+ (3mn+ 2m+ 2n)(2r2s + 2r2s)

+ (4n+ 2)(2r3s + 3r2s)

+ (6mn+ 4m− 2n− 2)(2r4s + 4r2s)

+ (mn+ m− n− 1)(4r4s + 4r4s)

+ (2n+ 2)(3r4s + 4r3s)

=
(
3× 2r+s+1 + 3× 22s+r+1 + 3× 22r+s+1

+ 22r+2s+1
)
mn+

(
22s+1 + 22r+1 + 2r+s+2

+ 22s+r+2 + 22r+s+2 + 22r+2s+1
)
m+

(
22s+1

+ 22r+1+2r+s+2+3s2r+2+3r2s+2−22s+r+1

− 22r+s+1 + 3r22s+1 + 3s22r+1 − 22r+2s+1
)
n

+
(
2× 3s + 2× 3r + 22s+1 + 22r+1 + 2r+13s

+ 3r2s+1 − 22s+r+1 − 22r+s+1 + 3r22s+1

+ 3s22r+1 − 22r+2s+1
)

= (3+ 3× 2s + 3× 2r + 2r+s)2r+s+1mn

+
(
22s + 22r + 2r+s+1 + 22s+r+1 + 22r+s+1

+ 22(r+s)
)
2m+

(
22s(1− 2r + 3r )

+ 22r (1− 2s + 3s)+ 2r+s(2− 2r+s)

+ 2r+13s + 2s+13r
)
2n+ 2

(
3s(1+ 2r + 22r )

+ 3r (1+ 2s + 22s)+ 22s(1− 2r )

+ 22r (1− 2s − 22s)
)
. (25)

Corollary 1: Using Equation (25) of generalized Zagreb
index for VRnm and formulae presented in the Table (1),
we derived following BAIs as below:

M1(VRnm) = Z1,0(VRnm) = 56mn+ 50m+ 32n+ 22.

M2(VRnm) =
1
2
Z1,1(VRnm) = 76mn+ 64m+ 32n+ 18.

F(VRnm) = Z2,0(VRnm) = 176mn+ 162m+ 80n+ 58.

ReZM (VRnm) = Z2,1(VRnm) = 464mn+ 392m+ 136n+ 68.

Mα(VRnm) = Zα−1,0(VRnm) = (3× 2α+1 + 4× 22α−1)mn

+ (2+ 22α+1 + 22α+2)m

+ (22α+2 + 2α+23α(1+ 2α−1)− 24α)n

+ (22α(2− 2α+1 − 22α)

+ 3α(2+ 2α+1 + 22α+1)).

SDD(VRnm) = Z1,−1(VRnm) = 23mn+
49
2
m+

55
3
n+

50
3
.

Theorem 2: Let VRnm be a (m, n)-dimensional vulcanized
rubber network, then ABC(VRnm) and GA(VR

n
m) are given as:

ABC(VRnm) =
(
6
√
2+ 12

√
2+
√
6
)mn
4

+
(√

3+ 3
√
2+

√
6
4

)
m

+
(√

3+ 2
√
2+

√
6
4
−

√
6
4

)
n

+ (
2
√
2

3
+
√
3+

√
5
3
−

√
6
8

).

GA(VRnm) =
(
3+ 4

√
2+

6
√
3

7

)
mn+

(23
5
+

8
√
2

3

)
m

+
(13
5
+

8
√
6

5
−

4
√
2

3
+

12
√
3

7

)
n

+
(3
5
+

4
√
6

5
−

4
√
2

3
+

19
√
3

7

)
.

χ−1
2
(VRnm) =

(
4
√
6+
√
2+ 6

)mn
4
+
(
24
√
5+ 40

√
6

+ 15
√
2+ 60

) m
60
+
(
504
√
5− 140

√
6

+ 120
√
7− 105

√
2+ 420

) n
420
+
(
336
√
5

− 140
√
6+ 120

√
7− 105

√
2+ 420)

1
420

.

Proof: Using Table (3) and the formulae defined by
Equations (12), (13), and (16), respectively. We compute the
required result as follows:

ABC(VRnm)

=

∑
vw∈E(VRnm)

√
dv + dw − 2

dvdw

=

∑
vw∈E13

√
dv + dw − 2

dvdw
+

∑
vw∈E14

√
dv + dw − 2

dvdw

+

∑
vw∈E22

√
dv + dw − 2

dvdw
+

∑
vw∈E23

√
dv + dw − 2

dvdw

+

∑
vw∈E24

√
dv + dw − 2

dvdw
+

∑
vw∈E34

√
dv + dw − 2

dvdw

+

∑
vw∈E44

√
dv + dw − 2

dvdw

= 2

√
2
3
+ (2m+ 2n+ 2)

√
3
4
+ (4n+ 2)

√
3
6

+ (3mn+ 2m+ 2n)

√
2
4
+ (6mn+ 4m− 2n− 2)

√
4
8

+ (2n+ 2)

√
5
12
+ (mn+ m− n− 1)

√
2
4
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= (6
√
2+ 12

√
2+
√
6)
mn
4
+ (
√
3+ 3

√
2+

√
6
4

)m

+ (
√
3+2
√
2+

√
6
4
−

√
6
4

)n+(
2
√
2

3
+
√
3+

√
5
3
−

√
6
8

).

GA(VRnm)

=

∑
vw∈E(VRnm)

2
√
dvdw

dv + dw
=

∑
vw∈E13

2
√
dvdw

dv + dw

+

∑
vw∈E14

2
√
dvdw

dv + dw
+

∑
vw∈E22

2
√
dvdw

dv + dw

+

∑
vw∈E23

2
√
dvdw

dv + dw
+

∑
vw∈E24

2
√
dvdw

dv + dw

+

∑
vw∈E34

2
√
dvdw

dv + dw
+

∑
vw∈E44

2
√
dvdw

dv + dw

= 2
(2√3

4

)
+ (2m+ 2n+ 2)

(2√4
5

)
+ (3mn+ 2m+ 2n)

(2√4
4

)
+ (4n+ 2)

(2√6
5

)
+ (6mn+ 4m− 2n− 2)

(2√8
6

)
+ (2n+ 2)

(2√12
7

)
+ (mn+ m− n− 1)

(2√4
5

)
= (3+ 4

√
2+

6
√
3

7
)mn

+ (
23
5
+

8
√
2

3
)m+ (

13
5
+

8
√
6

5
−

4
√
2

3

+
12
√
3

7
)n+ (

3
5
+

4
√
6

5
−

4
√
2

3
+

19
√
3

7
).

χ−1
2
(VRnm)

=

∑
vw∈E(VRnm)

1
√
dv + dw

=

∑
vw∈E13

1
√
dv + dw

+

∑
vw∈E14

1
√
dv + dw

+

∑
vw∈E22

1
√
dv + dw

+

∑
vw∈E23

1
√
dv + dw

+

∑
vw∈E24

1
√
dv + dw

+

∑
vw∈E34

1
√
dv + dw

+

∑
vw∈E44

1
√
dv + dw

= 2
1
√
4
+ (2m+ 2n+ 2)

1
√
5

+ (3mn+ 2m+ 2n)
1
√
4
+ (4n+ 2)

1
√
5

+ (6mn+ 4m− 2n− 2)
1
√
6
+ (2n+ 2)

1
√
7

+ (mn+ m− n− 1)
1
√
8

= (4
√
6+
√
2+ 6)

mn
4

+ (24
√
5+ 40

√
6+ 15

√
2+ 60)

m
60

+ (504
√
5− 140

√
6+ 120

√
7− 105

√
2

+ 420)
n
420
+ (336

√
5− 140

√
6

+ 120
√
7− 105

√
2+ 420)

1
420

.

Theorem 3: Let VRnm be the vulcanized rubber network,
then M-polynomial of VRnm is given by:
M (VRnm; x, y) = 2xy3 + (2m + 2n + 2)xy4 + (3mn + 2m +
2n)x2y2+ (4n+ 2)x2y3+ (6mn+ 4m− 2n− 2)x2y4+ (2n+
2)x3y4 + (mn+ m− n− 1)x4y4.

Proof: Degree-based edge partitioning of VRnm is given
as Eij(VRnm) = {vw ∈ E(VR

n
m) : dv = i, dw = j},

|E13| = 2, |E14| = (2m + 2n + 2), |E22| = (3mn + 2m +
2n), |E23| = (4n+2), |E24| = (6mn+4m−2n−2), |E34| =
(2n+ 2), |E44| = (mn+ m− n− 1).
Using formula of M-Polynomial defined by Equation (24),
we have

M (VRnm; x, y)

=

∑
i≤j

mijx iyj =
∑
1≤3

m13xy3

+

∑
1≤4

m14xy4 +
∑
2≤2

m22x2y2 +
∑
2≤3

m23x2y3

+

∑
2≤4

m24x2y4 +
∑
3≤4

m34x3y4 +
∑
4≤4

m44x4y4

= |E13|xy3 + |E14|xy4 + |E22|x2y2 + |E23|x2y3

+ |E24|x2y4 + |E34|x3y4 + |E44|x4y4

= 2xy3 + (2m+ 2n+ 2)xy4

+ (3mn+ 2m+ 2n)x2y2 + (4n+ 2)x2y3

+ (6mn+ 4m− 2n− 2)x2y4

+ (2n+ 2)x3y4 + (mn+ m− n− 1)x4y4.

Theorem 4: For vulcanize rubber network VRnm, modified
Zagreb index, inverse Randić index, harmonic index, inverse
sum index and augmented Zagreb index are:
1) mM2(VRnm) =

25
16m(n+ 1)+ 73

48n+
65
48 .

2) RRα(VRnm) = (3× 22α + 3× 2α+1 + 1) mn16α

+(22α+2 + 2α+2 + 1) m
16α + (4× 12α

+4× 8α − 2× 6α + 22α−1 − 1) n
48α

+(24α+1 + 2× 12α + 23α+1 + 2× 6α

+22α+1 − 1) 1
48α .

3) HI (VRnm) =
15
4 mn+

203
60 m+

1283
420 n+

1367
420 .

4) ISI (VRnm) = 13mn+ 164
15 m+

794
105n+

179
42 .

5) AZI (VRnm) =
2456
27 mn+ 1936

27 m+ 217312
3375 n+ 90791

4500 .

Proof: From Theorem 3, we have
M (VRnm; x, y) = 2xy3 + (2m + 2n + 2)xy4 + (3mn + 2m +
2n)x2y2+ (4n+ 2)x2y3+ (6mn+ 4m− 2n− 2)x2y4+ (2n+
2)x3y4 + (mn+ m− n− 1)x4y4.
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Now applying specific operators presented in Table (2) on
M-Polynomial, we get

(sxsy)M

=
2
3
xy3 +

1
2
(m+ n+ 1)xy4 +

1
4
(3mn+ 2m+ 2n)x2y2

+
1
3
(2n+ 1)x2y3 +

1
4
(3mn+ 2m− n− 1)x2y4

+
1
6
(n+ 1)x3y4 +

1
16

(mn+ m− n− 1)x4y4.

(sαx s
α
y )M

=
2
3α
xy3 +

2
4α

(m+ n+ 1)xy4

+
1
4α

(3mn+ 2m+ 2n)x2y2 +
2
6α

(2n+ 1)x2y3

+
2
8α

(3mn+ 2m− n− 1)x2y4 +
2

12α
(n+ 1)x3y4

+
1

16α
(mn+ m− n− 1)x4y4.

JM (x, y)

= M (x) = (3mn+ 2m+ 2n+ 2)x4 + (2m+ 6n+ 4)x5

+ (6mn+ 4m− 2n− 2)x6 + (2n+ 2)x7

+ (mn+ m− n− 1)x8.

sxJM (x)

=
(3mn+ 2m+ 2n+ 2)

4
x4 +

(2m+ 6n+ 4)
5

x5

+
(6mn+ 4m− 2n− 2)

6
x6 +

(2n+ 2)
7

x7

+
(mn+ m− n− 1)

8
x8.

sxJDxDyM

= (3mn+ 2m+ 2n+
3
2
)x4 + (8m+ 32n+ 14)x5

+
4
3
(6mn+ 4m− 2n− 2)x6 +

12
7
(2n+ 2)x7

+ 2(mn+ m− n− 1)x8.

s3xQ−2JD
3
xD

3
yM

= (24mn+ 16m+ 16n+
27
4
)x2

+
1
27

(128m+ 992n+ 560)x3

+ (48mn+ 32m− 16n− 16)x4

+
512
27

(mn+ m− n− 1)x6

+
1728
125

(2n+ 2)x5.

By employing formulae of desired BAIs presented
in Table (2) over expression derived from M-Polynomial,
we get our results:

1. mM2(VRnm) = sxsyM |x=y=1

=
25
16
m(n+ 1)+

73
48
n+

65
48
.

2. RRα(VRnm) = (sαx s
α
y )(M (x, y))|x=y=1

TABLE 4. Edge partitioning based upon neighbor’s degree sum of VRn
m.

= (3× 22α + 3× 2α+1 + 1)
mn
16α

+ (22α+2 + 2α+2 + 1)
m
16α
+ (4× 12α

+ 4× 8α − 2× 6α + 22α−1 − 1)
n

48α

+ (24α+1 + 2× 12α + 23α+1 + 2× 6α

+ 22α+1 − 1)
1

48α
.

3. HI (VRnm) = 2sxJM (x)|x=1

=
15
4
mn+

203
60

m+
1283
420

n+
1367
420

.

4. ISI (VRnm) = sxJDxDyM |x=1

= 13mn+
164
15

m+
794
105

n+
179
42
.

5. AZI (VRnm) = s3xQ−2JD
3
xD

3
yM |x=1 ==

2456
27

mn

+
1936
27

m+
217312
3375

n+
90791
4500

.

To compute the fourth version of atom-bond connectivity
index ABC4(VRnm), Sanskruti index SI (VRnm) and the fifth
version of geometric-arithmetic indexGA5(VRnm),we require
the degree sum of vertices at unit distance from end vertices
of each edge in vulcanize rubber network. In this scenario,
we recognize fifteen types of distinct edges in vulcanize
rubber network. By using simple combinatorial counting
strategy the partition of the edge set E(VRnm), on the basis of
neighbor’s degree sum, into subsets E(i,j)(VRnm), where (i, j)
represent edge vw ∈ E(VRnm) such that (dv, dw) = (i, j) and is
summarized in Table (4).
Theorem 5: Let VRnm be vulcanize rubber network, then

the fourth version of atom-bond connectivity index ABC4,
the fifth version of geometric arithmetic index GA5, and the
Sanskruti index SI of VRnm are given as:

(1) ABC4(VRnm)

= (5
√
10+ 2

√
210+ 3

√
2)
mn
10

+ (45
√
5+ 30

√
10+ 20

√
78+ 6

√
170− 27

√
2)
m
90

+ (24
√
30+ 10

√
10+ 6

√
110− 12

√
210+ 15

√
14

− 18
√
2+ 120)

n
60
+ (2520− 420

√
10+ 45

√
14

− 84
√
170+ 180

√
182+ 378

√
2+ 252

√
30+ 240

√
42

+ 60
√
462− 630

√
5+ 1080

√
7− 280

√
78)

1
1260

.
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(2) GA5(VRnm)

= (8+ 3
√
15)

mn
2
+ (285+ 380

√
2

+ 456
√
6− 180

√
10)

m
285
+ (4004+ 1456

√
30

+ 1232
√
10+ 4576

√
10− 3003

√
15)

n
2002

+ (13585
√
13− 54340

√
2+ 16302

√
21− 65208

√
6

+ 59280
√
7+ 14820

√
30+ 12540

√
42

+ 43472
√
14− 25740

√
10− 122265)

1
40755

.

(3) SI (VRnm)

= (
24496447312
31255875

)mn+ (
561466008516664
983590583625

)m

+ (
3921718689424
41601569625

)n− (
551233094322072507949
38318213112667488000

).

Proof: Using formula given by Equation (14) and edge
partition presented in the Table (4), we proceed as follows:

(1) ABC4(VRnm)

=

∑
vw∈E(VRnm)

√
sv + sw − 2

svsw

= |E(3,7)|

√
8
21
+ |E(4,7)|

√
9
28
+ |E(4,8)|

√
10
32

+ |E(5,6)|

√
9
30
+ |E(5,7)|

√
10
35
+ |E(5,8)|

√
11
40

+ |E(6,6)|

√
10
36
+ |E(6,7)|

√
11
42
+ |E(6,8)|

√
12
48

+ |E(6,9)|

√
13
54
+ |E(6,10)|

√
14
60
+ |E(7,8)|

√
13
56

+ |E(8,8)|

√
14
64
+ |E(9,10)|

√
17
90
+ |E(10,10)|

√
18
100

= 2

√
8
21
+ 4

√
9
28
+ (2m− 2)

√
10
32
+ (4n+ 2)

√
9
30

+ 2

√
10
35
+ 2n

√
11
40
+ (3mn+ 2m+ n− 2)

√
10
36

+ 2

√
11
42
+ (4n)

√
12
48
+ (4m− 4)

√
13
54
+ 4

√
13
56

+ (6mn− 6n)

√
14
60
+ (2n− 2)

√
14
64

+ (2m− 2)

√
17
90
+ (mn− m− n+ 1)

√
18
100

= (5
√
10+ 2

√
210+ 3

√
2)
mn
10

+ (45
√
5+ 30

√
10+ 20

√
78+ 6

√
170− 27

√
2)
m
90

+ (24
√
30+ 10

√
10+ 6

√
110− 12

√
210+ 15

√
14

− 18
√
2+ 120)

n
60
+ (2520− 420

√
10+ 45

√
14

− 84
√
170+ 180

√
182+ 378

√
2+ 252

√
30+ 240

√
42

+ 60
√
462− 630

√
5+ 1080

√
7− 280

√
78)

1
1260

.

Employing formula given by Equation (15) and edge partition
presented in the Table (4), we compute result in following
manner

(2) GA5(VRnm)

=

∑
vw∈E(VRnm)

2
√
svsw

sv + sw

= |E(3,7)|(
2
√
21

10
)+ |E(4,7)|(

2
√
28

11
)+ |E(4,8)|(

2
√
32

12
)

+ |E(5,6)|(
2
√
30

11
)+ |E(5,7)|(

2
√
35

12
)+ |E(5,8)|(

2
√
40

13
)

+ |E(6,6)|(
2
√
36

12
)+ |E(6,7)|(

2
√
42

13
)+ |E(6,8)|(

2
√
48

14
)

+ |E(6,9)|(
2
√
54

15
)+ |E(6,10)|(

2
√
60

16
)+ |E(7,8)|(

2
√
56

15
)

+ |E(8,8)|(
2
√
64

16
)+|E(9,10)|(

2
√
90

19
)+|E(10,10)|(

2
√
100
20

)

= 2(

√
21
5

)+ 4(
2
√
28

11
)+ (2m− 2)(

2
√
2

3
)

+ (4n+ 2)(
2
√
30

11
)+ 2(

√
35
6

)+ (2n)(
4
√
10

13
)

+ (3mn+ 2m+ n− 2)+ 2(
2
√
42

13
)+ (4m− 4)(

2
√
6

5
)

+ (4n)(
4
√
3

7
)+ (6mn− 6n)(

√
15
4

)+ 4(
4
√
14

15
)

+ (2n− 2)+ (2m− 2)(
6
√
10

19
)+ (mn− m− n+ 1)

= (8+ 3
√
15)

mn
2
+ (285+ 380

√
2

+ 456
√
6− 180

√
10)

m
285
+ (4004+ 1456

√
30

+ 1232
√
10+ 4576

√
10− 3003

√
15)

n
2002

+ (13585
√
13− 54340

√
2+ 16302

√
21− 65208

√
6

+ 59280
√
7+ 14820

√
30+ 12540

√
42

+ 43472
√
14− 25740

√
10− 122265)

1
40755

.

Employing formula given by Equation (16) and edge partition
presented in the Table (4), the Sanskruti index SI (VRnm) can
be calculated as:

(3) SI (VRnm)

=

∑
vw∈E(VRnm)

( svsw
sv + sw − 2

)3
= |E(3,7)|

(21
8

)3
+ |E(4,7)|

(28
9

)3
+ |E(4,8)|

(32
10

)3
+ |E(5,6)|

(30
9

)3
+ |E(5,7)|

(35
10

)3
+ |E(5,8)|

(40
11

)3
+ |E(6,6)|

(36
10

)3
+ |E(6,7)|

(42
11

)3
+ |E(6,8)|

(48
12

)3
+ |E(6,9)|

(54
13

)3
+ |E(6,10)|

(60
14

)3
+ |E(7,8)|

(56
13

)3
+ |E(8,8)|

(64
14

)3
+ |E(9,10)|

(90
17

)3
+ |E(10,10)|

(100
18

)3
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FIGURE 4. Polymerization of Methyl Methacrylate into PMMA with n
monomers.

= 2
(9261
512

)
+ 4

(21952
729

)
+ (2m− 2)

(4096
125

)
+ (4n+ 2)

(1000
27

)
+ 2

(343
8

)
+ (2n)

(64000
1331

)
+ (3mn+ 2m+ n− 2)

(5832
125

)
+ 2

(74088
1331

)
+ (4m− 4)

(157464
2197

)
+ (6mn− 6n)

(27000
343

)
+ (4n)

(
64)+ 4

(175616
2197

)
+ (2n− 2)

(32768
343

)
+ (2m− 2)

(729000
4913

)
+ (mn− m− n+ 1)

(125000
729

)
= (

24496447312
31255875

)mn+ (
561466008516664
983590583625

)m

+ (
3921718689424
41601569625

)n− (
551233094322072507949
38318213112667488000

).

III. POLY-METHYL METHACRYLATE NETWORK
Although acrylic monomers and their derivatives are famil-
iar to the world since the 1890s, however, the polymer of
acrylic monomer started to emerge when Otto Röhm study
and explored acrylic chemistry in his PhD thesis (1901) [57].
Poly-methyl methacrylate, a synthetic resin known as acrylic
glass, is widely used as an excellent alternate of glass
and is often used in products like instrument panels, air-
craft canopies, and skylights, and medical technologies [58].
Walter Wright (1937) proposed PMMA, the first replace-
ment for vulcanite, as a denture base material and became
the most commonly used fabrication for denture base [59].
The pendent methyl CH3 groups’ presence avoids the close
packing of polymer chains like crystalline fashion and pre-
vents them from rotating freely around the carbon-carbon
bonds, resulting in transparent and rigid plastic. Now, we pro-
vide the self-explanatory construction of the molecular graph
of polymer PMMA from its monomer. Figure (4) depicts
the bulk free radical polymerization of methyl methacrylate
C5H8O2 into linear chain polymer poly-methyl methacrylate
[C5H8O2]n. Figure (5) represents the n dimensional hydrogen
depleted molecular graph of PMMA, where n is the number
of monomers in polymer chain and is denoted by PMMAn.

A. RESULTS FOR POLY-METHYL METHACRYLATE
NETWORK PMMAn

Following lemma provide some insight in to the poly-methyl
methacrylate network PMMAn and establish an essential
result that is of key importance for forthcoming results.

FIGURE 5. Hydrogen depleted molecular graph of PMMAn.

TABLE 5. Valency-based edge partitioning of PMMAn.

Lemma 2: Let PMMAn be the poly-methyl methacrylate
network shown in Figure (5) with n monomers, then total
number of vertices and edges are 7n + 2 and 7n + 1,
respectively.

Proof: Let PMMAn represent the graph of PMMA net-
work having n monomers. We use the vertex set and edge
set partition given by Equations (2) and (3) for molecular
graph PMMAn. By examining molecular graph PMMAn, it
can easily be observed that there are four type of vertices
having valencies 1, 2, 3, and 4 i.e., δ(PMMAn) = 1 and
1(PMMAn) = 4. Now using simple counting technique,
we obtain the vertex partition and is given as follows. |V1| =
3n + 2, |V2| = 2n, |V3| = n, |V4| = n. Conse-
quently, total number of vertices of PMMAn, denoted by
|V (PMMAn)| = 7n+ 2.
Likewise, we recognize six types of edges in PMMAn based
upon valencies of end vertices of each edge. By using combi-
natorial counting technique on network to get edge partition-
ing as |E12| = n + 1, |E13| = n, |E14| = n + 1, |E23| = n,
|E24| = 2n − 1, |E34| = n. As a result, total number
of edges of PMMA network, denoted by |E(PMMAn)| =
10mn + 9m + 6n + 5. For the sake of simplicity and further
use, edge partition is illustrated in the Table (5).
Theorem 6: Let PMMAn be the poly-methyl methacrylate

network with nmonomers, then the generalized-Zagreb index
Zr,s(PMMAn) is given by the formula:
Zr,s(PMMAn) =

(
2r + 2s + 22r (1+ 2s+1 + 3s)
+ 22s(1+ 2r+1 + 3r )+ 3r (1+ 2s)
+ 3s(1+ 2r )

)
n+

(
2r + 2s + 22r (1− 2s)

+ 22s(1− 2r )
)
.

Proof: Using Table (5) and the formula stated in the
Equation (11), we compute the required result as follows:

Zr,s(PMMAn)
=

∑
vw∈E(PMMAn)

(d rv d
s
w + d

r
wd

s
v)

=

∑
vw∈E12

(d rv d
s
w + d

r
wd

s
v)+

∑
vw∈E13

(d rv d
s
w + d

r
wd

s
v)

+

∑
vw∈E14

(d rv d
s
w + d

r
wd

s
v)+

∑
vw∈E23

(d rv d
s
w + d

r
wd

s
v)

+

∑
vw∈E24

(d rv d
s
w + d

r
wd

s
v)+

∑
vw∈E34

(d rv d
s
w + d

r
wd

s
v)
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= (n+ 1)(1r2s + 2r1s)+ n(1r3s + 3r1s)

+ (n+ 1)(1r4s + 4r1s)+ n(2r3s + 3r2s)

+ (2n− 1)(2r4s + 4r2s)+ (2n+ 2)(3r4s + 4r3s).

By performing usual calculation above expressions boils
down to the required result.

Zr,s(PMMAn) =
(
2r + 2s + 22r (1+ 2s+1 + 3s)

+ 22s(1+ 2r+1 + 3r )+ 3r (1+ 2s)

+ 3s(1+ 2r )
)
n+

(
2r + 2s + 22r (1− 2s)

+ 22s(1− 2r )
)
. (26)

Corollary 2: Using Equation (26) of generalized Zagreb
index of PMMAn, following closed form formulae of certain
degree-based topological indices are derived as special cases.

1) M1(PMMAn) = Z1,0(PMMAn) = 36n+ 2.
2) M2(PMMAn) = 1

2Z1,1(PMMAn) = 43n− 2.
3) F(PMMAn) = Z2,0(PMMAn) = 110n+ 2.
4) ReZM (PMMAn) = Z2,1(PMMAn) = 248n− 22.
5) Mα(PMMAn) = Zα−1,0(PMMAn)

= (3+ 3α + 2α+1 + 22α)n+ 2.

6) Rα(PMMAn) =
1
2
Zα,α(PMMAn)

= (2α + 22α(1+ 3α + 2α+1)

+ 3α(1+ 2α))n+ (2α + 22α(1− 2α)).
7) SDD(PMMAn) = Z1,−1(PMMAn) = 58

3 n+
17
4 .

Theorem 7: Let PMMAn = 03 be a poly-methyl methacry-
late network with n isomers, then ABC and GA indices of 03
are:

1) ABC(03) = (12
√
2+ 2

√
6+ 3

√
3+
√
15)

n
6

+

√
3−
√
2

2
.

2) GA(03) = (2
√
2+ 15

√
3

14 +
2
√
6

5 +
4
5 )n+

√
3
2 .

3) χ−1
2
(03) = (70

√
3+ 84

√
5+ 70

√
6+ 30

√
7

+ 105)
n
210
+ (10

√
3+ 6

√
5− 5

√
6)

1
30
.

Proof: Using Table (5) and the formulae defined by the
Equations (12), (13), and (16), respectively. We compute the
required result as follows:

(1) ABC(03)

=

∑
vw∈E(03)

√
dv + dw − 2

dvdw

=

∑
vw∈E12

√
dv + dw − 2

dvdw
+

∑
vw∈E13

√
dv + dw − 2

dvdw

+

∑
vw∈E14

√
dv + dw − 2

dvdw
+

∑
vw∈E23

√
dv + dw − 2

dvdw

+

∑
vw∈E24

√
dv + dw − 2

dvdw
+

∑
vw∈E34

√
dv + dw − 2

dvdw

= (n+ 1)

√
1
2
+ (n)

√
2
3
+ (n+ 1)

√
3
4

+ (n)

√
3
6
+ (2n− 1)

√
4
8
+ (n)

√
5
12

= (12
√
2+ 2

√
6+ 3

√
3+
√
15)

n
6
+

√
3−
√
2

2
.

(2) GA(03)

=

∑
vw∈E(03)

2
√
dvdw

dv + dw

=

∑
vw∈E12

2
√
dvdw

dv + dw
+

∑
vw∈E13

2
√
dvdw

dv + dw

+

∑
vw∈E14

2
√
dvdw

dv + dw
+

∑
vw∈E23

2
√
dvdw

dv + dw

+

∑
vw∈E24

2
√
dvdw

dv + dw
+

∑
vw∈E34

2
√
dvdw

dv + dw

= (n+ 1)(
2
√
2

3
)+ n(

2
√
3

4
)+ (n+ 1)(

2
√
4

5
)

+ n(
2
√
6

5
)+ (2n− 1)(

2
√
8

6
)+ n(

2
√
12
7

)

= (2
√
2+

15
√
3

14
+

2
√
6

5
+

4
5
)n+

√
3
2
.

(3) χ−1
2
(03)

=

∑
vw∈E(03)

1
√
dv + dw

=

∑
vw∈E12

1
√
dv + dw

+

∑
vw∈E13

1
√
dv + dw

+

∑
vw∈E14

1
√
dv + dw

+

∑
vw∈E23

1
√
dv + dw

+

∑
vw∈E24

1
√
dv + dw

+

∑
vw∈E34

1
√
dv + dw

= (n+ 1)
1
√
3
+ (n)

1
√
4
+ (n+ 1)

1
√
5
+ (n)

1
√
5

+ (2n− 1)
1
√
6
+ (n)

1
√
7

= (70
√
3+ 84

√
5+ 70

√
6+ 30

√
7+ 105)

n
210

+ (10
√
3+ 6

√
5− 5

√
6)

1
30
.

Theorem 8: Let PMMAn be the poly-methyl methacrylate
network with n isomers, then M-polynomial of PMMAn is
M (PMMAn; x, y) = (n+1)xy2+nxy3+ (n+1)xy4+nx2y3+
(2n− 1)x2y4 + nx3y4.

Proof: Using formula of M-Polynomial defined by
Equation (24) and partition presented in the Table (5),
we have

M (PMMAn; x, y)
=

∑
i≤j

mijx iyj

=

∑
1≤2

m12xy2 +
∑
1≤3

m13xy3 +
∑
1≤4

m14xy4

+

∑
2≤3

m23x2y3 +
∑
2≤4

m24x2y4 +
∑
3≤4

m34x3y4
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= |E12|xy2 + |E13|xy3 + |E14|xy4

+ |E23|x2y3 + |E24|x2y4 + |E34|x3y4

= (n+ 1)xy2 + nxy3 + (n+ 1)xy4 + nx2y3

+ (2n− 1)x2y4 + nx3y4.

Theorem 9: For poly-methyl methacrylate network
PMMAn, modified Zagreb index, inverse Randić index, har-
monic index, inverse sum index and augmented Zagreb index
are:

(1) mM2(PMMAn) =
19
12
n+

5
8
.

(2) RRα(PMMAn) =
(
2α + 2× 3α(1+ 2α)(4α + 6α)

) n
24α

+
(
22α + 2α − 1

) 1
8α
.

(3) HI (PMMAn) =
613
210

n+
11
15
.

(4) ISI (PMMAn) =
655
84

n+
2
15
.

(5) AZI (PMMAn) =
1392373
27000

n+
64
27
.

Proof: From Theorem 8, we have
M (PMMAn; x, y) = (n+1)xy2+nxy3+ (n+1)xy4+nx2y3+
(2n− 1)x2y4 + nx3y4.
Now applying specific operators presented in the Table (2) on
M-Polynomial, we get

(sxsy)M =
(n+ 1)

2
xy2 +

n
3
xy3 +

(n+ 1)
4

xy4

+
n
6
x2y3 +

(2n− 1)
8

x2y4 +
n
12
x3y4.

(sαx s
α
y )M =

(n+ 1)
2α

xy2 +
n
3α
xy3 +

(n+ 1)
4α

xy4

+
n
6α
x2y3 +

(2n− 1)
8α

x2y4
n

12α
x3y4.

JM (x, y) = M (x) = (n+ 1)x3 + nx4 + (2n+ 1)x5

+ (2n− 1)x6 + nx7.

sxJM (x) =
(n+ 1)

3
x3 +

n
4
nx4 +

(2n+ 1)
5

x5

+
(2n− 1)

6
x6 +

n
7
x7.

sxJDxDyM =
2(n+ 1)

3
x3 +

3n
4
nx4 +

2(5n+ 2)
5

x5

+
4(2n− 1)

3
x6 +

12n
7
x7.

s3xQ−2JD
3
xD

3
yM = 8(n+ 1)x +

27n
8
nx2 +

8(35n+ 8)
27

x3

+ 8(2n− 1)x4 +
1728
125

x5.

Now employing formulae of desired BAIs presented
in Table (2) over expression derived from M-Polynomial,
we get our results.
Theorem 10: Let PMMAn be poly-methyl methacrylate

network, then ABC4, GA5, and SI of PMMAn are given

TABLE 6. Edge partitioning based upon neighbor’s degree sum
of PMMAn.

as:

(1) ABC4(PMMAn)

= (105
√
2+ 35

√
42+ 45

√
7

+ 21
√
30+ 84

√
5)

n
210
+ (5
√
2+
√
26+

√
30

− 4
√
5)

1
10
.

(2) GA5(PMMAn)

= (39270
√
2+ 11781

√
21

+ 21420
√
7+ 16830

√
10+ 693)

n
58905

+ (36
√
10+ 42

√
2− 28

√
5)

1
63
.

(3) SI (PMMAn)

=

(
166045733
373248

)
n−

(
8783198
59319

)
.

Proof: In order to compute ABC4,GA5, and SI ,we need
edge partition of PMMAn based on neighbors’ valency-sum
of end vertices ∀ vw ∈ PMMAn. We identify eight kind of
edges on valency based sum of neighbors’ vertices of each
edge in PMMAn network. Using formula of invariant ABC4
given by the Equation (14) and edge partition presented in
the Table (6), we proceed as follows:

(1) ABC4(PMMAn)

=

∑
vw∈E(PMMAn)

√
sv + sw − 2

svsw

= |E(2,4)|

√
4
8
+ |E(2,5)|

√
5
10
+ |E(3,7)|

√
8
21

+ |E(4,7)|

√
9
28
+ |E(4,10)|

√
12
40
+ |E(5,10)|

√
13
50

+ |E(7,10)|

√
15
70
+ |E(8,10)|

√
16
80

= n

√
1
2
+

√
1
2
+ n

√
8
21
+ n

√
9
28
+

√
13
50

+ (n+ 1)

√
3
10
+ n

√
3
14
+ (2n− 2)

√
1
5

=
n
210

(105
√
2+ 35

√
42+ 45

√
7+ 21

√
30

+ 84
√
5)+ (5

√
2+
√
26+

√
30− 4

√
5)

1
10
.
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FIGURE 6. Hydrogen suppressed molecular graph of bakelite
network BNn

m.

Now, using formula of invariant GA5 given in Equation (15)
and edge partition presented in the Table (6), we proceed as
follows

(2) GA5(PMMAn)

=

∑
vw∈E(PMMAn)

2
√
svsw

(sv + sw)

= |E(2,4)|(
2
√
8

6
)+ |E(2,5)|(

2
√
10
7

)+ |E(3,7)|(
2
√
21

10
)

+ |E(4,7)|(
2
√
28

11
)+ |E(4,10)|(

2
√
40

12
)+ |E(5,10)|(

2
√
50

15
)

+ |E(7,10)|(
2
√
70

17
)+ |E(8,10)|(

2
√
80

18
)

= n(
2
√
2

3
)+ (

2
√
10
7

)+ n(

√
21
5

)+ n(
2
√
28

11
)

+ (n+ 1)(
2
√
10
7

)+ (
2
√
2

3
)+ n(

2
√
70

17
)

+ (2n− 2)(
4
√
5

9
)

= (39270
√
2+ 11781

√
21+ 21420

√
7+ 16830

√
10

+ 693)
n

58905
+ (36

√
10+ 42

√
2− 28

√
5)

1
63
.

Finally, using formula of Sanskruti index given in
Equation (16) and edge partition presented in the Table (6),
we have

(3) SI (PMMAn)

=

∑
vw∈E(PMMAn)

(
svsw

sv + sw − 2

)3

= |E(2,4)|
(
8
4

)3

+ |E(2,5)|
(
10
5

)3

+ |E(3,7)|
(
21
8

)3

+ |E(4,7)|
(
28
9

)3

+ |E(4,10)|
(
40
12

)3

+ |E(5,10)|
(
50
13

)3

+ |E(7,10)|
(
70
15

)3

+ |E(8,10)|
(
80
16

)3

= 8n+ 8+
9261n
512

+
21952n
729

+
1000(n+ 1)

27

+
125000
2197

+
2744n
27
+ 125(2n− 2)

=

(
166045733
373248

)
n−

(
8783198
59319

)
.

IV. BAKELITE NETWORK
In an earlier paper [60], we discussed and computed several
results regarding bakelite network, see figure (6), that are
presented here to use them for comparative analysis.
Corollary 3 [60]: For bakelite network BN n

m, closed form
formulae for first, second, forgotton, redefined Zagreb, gen-
eral Zagreb, general Randić, and symmetric division degree
indices are:
(1) M1(BN n

m) = Z1.0(BN n
m) = 52mn− 2m− 14n.

(2) M2(BN n
m) =

1
2Z1.1(BN

n
m) = 66mn− 6m− 22n.

(3) F(BN n
m) = Z2.0(BN n

m) = 140mn− 6m− 46n.

(4) ReZM (BN n
m) = Z2.1(BN n

m) = 348mn− 36m− 136n.

(5) Mα(BN n
m) = Zα−1.0(BN n

m) = 4mn(2α + 3α)

+ 2m(1− 2α−1)+ 2n(2α − 2α−1 − 3α).

(6) Rα(BN n
m) =

1
2Zα.α(BN

n
m) = 2× 3α(2α+2 + 3α)mn

+ 2× 3α(1− 2α)m+ 2α+1(2− 3α)n.

(7) SDD(BN n
m) = Z1,−1(BN n

m) =
64
3 mn+

7
3m−

13
3 n.

Proposition 1 [60]: For bakelite network BN n
m, the modi-

fied 2nd Zagreb, inverse Randić, harmonic, inverse sum, and
augmented Zagreb indices are
(1) mM2(BN n

m) =
14
9 mn−

1
18n−

1
3m.

(2) RRα(BN n
m) = (8× 6−α + 2× 9−α)mn

+ (2× 3−α − 2× 6−α)m

+ (21−2α − 2× 6−α − 2× 9−α)n.

(3) HI (BN n
m) =

58
15mn−

7
15n+

1
5m.

(4) ISI (BN n
m) =

63
5 mn−

17
5 n−

9
10m.

(5) AZI (BN n
m) =

2777
32 mn− 729

32 n−
37
4 m.

Theorem 11 [60]: Let BN n
m be the molecular graph of

(m, n)-dimensional bakelite network, then

(1) ABC(BN n
m)

=
1
3

(
(4+ 12

√
2)mn− 4n− (2

√
6− 3

√
2)m

)
.

(2) GA(BN n
m)

=
1
5

(
(10+ 16

√
6)mn− 4

√
6n− (5

√
3− 4

√
6)m

)
.

(3) χ−1
2
(BN n

m)

=
1
15

(
5
√
6+ 24

√
5
)
mn+

(
15− 6

√
5− 5

√
6
)
n

+
(
5− 2

√
5
)m
5
.
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FIGURE 7. 3D graph of M-polynomial of VR7
4 , BN7

4 and PMMA28.

Theorem 12 [60]:LetBN n
m be the (m, n)-dimensional bake-

lite network then the fourth version of ABC and the fifth
geometric arithmetic indices are given by

(1) ABC4(BN n
m)

=
1
42

(
4
√
462+ 21

√
10+ 3

√
182+ 21

)
mn

+
1
42

(
14
√
14+ 14

√
10− 4

√
462− 3

√
182+ 42

)
m

+
1

210

(
42
√
35+ 60

√
14+ 105

√
10− 20

√
462

− 15
√
182− 105

)
n+

1
210

(
126
√
30+ 30

√
462

+ 225
√
182− 130

√
14− 266

√
10− 210

)
.

(2) GA5(BN n
m)

=
1

1365

(
210
√
42+ 780

√
3+ 728

√
14

+ 4095
)
mn+

1
1365

(
1820
√
2+ 1560

√
3− 840

√
42

− 728
√
14+ 2730

)
m+

1
4095

(
3640
√
5+ 1365

√
35

− 3780
√
42− 2340

√
3− 2184

√
14+ 12285

)
n

+
1

30030

(
15015

√
15− 40040

√
2+ 32760

√
30

− 10010
√
35+ 27720

√
42− 34320

√
3

− 16016
√
14− 30030

)
.

V. CONCLUSION AND COMPARATIVE ANALYSIS OF
VULCANIZED RUBBER, BAKELITE, AND
PMMA NETWORKS
Figure (7) demonstrates a comparison between 3D graphs
of M-polynomial of vulcanized rubber, bakelite, and PMMA
networks (all having the same number of monomers).

The following tables provide an insight into numerical
comparison among various BAIs of vulcanized rubber, bake-
lite, and PMMA networks.
Note:Let us assumeVRnm = 01,BN

n
m = 02, andPMMAmn =

03 to keep the tables compact.
First Zagreb index M1, Second Zagreb index M2, and the

Rand ić index R−1
2

measure the extent of branching in the

TABLE 7. Comparison of 01, 02, and 03 using M1 and M2.

TABLE 8. Comparison of 01, 02, and 03 using ReZM and AZI.

TABLE 9. Comparison of 01, 02, and 03 using SDD and ISI.

TABLE 10. Comparison of 01, 02, and 03 using R −1
2

and χ−1
2

.

TABLE 11. Comparison of 01, 02, and 03 using ABC and GA.

carbon-atom skeleton of a molecule. In this regard, Table (7)
and (10) reveals the following order of these indices for same
values of m and n, TI (PMMAmn) ≤ TI (BN n

m) ≤ TI (VR
n
m)
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TABLE 12. Comparison of 01, 02, and 03 viz a viz ABC4.

TABLE 13. Comparison of 01, 02, and 03 viz a viz GA5.

where TI ∈ {M1,M2,R−1
2
}. The densities of these poly-

mers support this fact, e.g., the density of vulcanized rub-
ber is 1.522 g/cm3, the density of bakelite is 1.3 g/cm3,
and density of PMMA is 1.18 g/cm3. We further antici-
pate that the extensive branching may be associated with
the melting temperature of polymers. The melting tem-
perature of vulcanized rubber and PMMA is 873 K and
433 K, respectively. We don’t have the melting temperature
of bakelite as it catches fire at excessive heat. We know
that the sum-connectivity index and the product-connectivity
index correlate well among themselves, and the Table (10)
reflects this fact. Since the SDD index is a good predictor
of total surface area for poly-chlorobiphenyls, ISI index is
a significant predictor of total surface area for octane iso-
mers. Based upon comparison of Table (9), we conjecture
the order in which surface area (SA) of vulcanized rubber
(elastomer), bakelite (thermosetting polymer), and PMMA
(thermoplastic polymer) would have been arranged and is
given as SA(PMMAmn) ≤ SA(BN n

m) ≤ SA(VRnm), having
same values of parameters m and n. Besides, the results
obtained in Tables (7 - 13) could further be effective in
the models of QSPR/QSAR relationships for assessing the
thermodynamic and the mechanical properties of underly-
ing polymeric structures. Although synthetic and natural
polymers are appropriate for the pharmaceutical industry,
natural polymers are attractive as they are economical, bio-
compatible, have no side effects, non-toxic, and suitable
for drug delivery systems. A similar study could have been
performed on natural polymers like cellulose, glycogen, and
amylopectin to predict their behavior, nature, and biological
properties.
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LIST OF ABBREVIATIONS
Abbreviation Meaning
TI Topological Index/Invariant
BAIs Bond-Additive Invariants
CGT Chemical Graph Theory
QSAR Quantitative Structure Activity

Relationships
QSPR Quantitative Structure Property

Relationships
IAMC International Academy of Mathematical

Chemistry
IUPAC International Union for Pure and Applied

Chemistry
ABC Atom-Bond Connectivity Index
ABC4 Fourth Version of ABC
GA Geometric-Arithmetic Index
GA5 Fifth Version of GA
SI Sanskruti Index
SDD symmetric division deg Index
ISI Inverse Sum Index
SCI Sum Connectivity Index
AZI Augmented Zagreb Index
GZI Generalized Zagreb Index
ReZM Re-defined Zagreb Index
SA Surface Area
K Kelvin
PMMA Poly-methyl Methacrylate
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